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Abstract: Currently, vehicle classification in roadway-based techniques depends mainly on pho-
tos/videos collected by an over-roadway camera or on the magnetic characteristics of vehicles.
However, camera-based techniques are criticized for potentially violating the privacy of vehicle occu-
pants and exposing their identity, and vehicles can evade detection when they are obscured by larger
vehicles. Here, we evaluate methods of identifying and classifying vehicles on the basis of seismic
data. Vehicle identification from seismic signals is considered a difficult task because of interference
by various noise. By analogy with techniques used in speech recognition, we used different artificial
intelligence techniques to extract features of three, different-sized vehicles (buses, cars, motorcycles)
and seismic noise. We investigated the application of a deep neural network (DNN), a convolutional
neural network (CNN), and a recurrent neural network (RNN) to classify vehicles on the basis of
vertical-component seismic data recorded by geophones. The neural networks were trained on
5580 unprocessed seismic records and achieved excellent training accuracy (99%). They were also
tested on large datasets representing periods as long as 1 month to check their stability. We found
that CNN was the most satisfactory approach, reaching 96% accuracy and detecting multiple vehicle
classes at the same time at a low computational cost. Our findings show that seismic methods can be
used for traffic monitoring and security purposes without violating the privacy of vehicle occupants,
offering greater efficiency and lower costs than current methods. A similar approach may be useful
for other types of transportation, such as vessels and airplanes.

Keywords: traffic monitoring; deep learning; convolutional neural network; recurrent neural net-
work; deep neural network; signal-to-noise ratio

1. Introduction

Many countries invest heavily in traffic monitoring systems [1], which collect and
analyze traffic data to derive statistical information, such as the numbers of vehicles
on the road and their temporal patterns. Governments use these statistics to forecast
transportation needs, improve transportation safety, and schedule pavement maintenance
work. Identifying the size of vehicles is a key task that helps to predict noise levels and
road damage. The characteristic mix of vehicle types that use a roadway can determine the
geometric design of the road based on the Traffic Monitoring Guide report published by
the Federal Highway Administration in the United States [2].

Vehicle classification systems make use of many recent advances in sensing and ma-
chine learning technologies [3]. Although newer systems perform vehicle classification
with higher accuracy, they differ in their characteristics and requirements, such as the
types of sensors used, parameter settings, operating environment, and cost. Many traffic
monitoring systems rely on vision-based vehicle classification techniques, usually based on
cameras, that deliver high classification accuracy ranged between 90%~99% [4], covering
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large areas compared with emerging alternatives. Although camera-based systems have
high classification accuracy, their performance can be affected by weather and lighting
conditions as well as other factors. For instance, vehicles can be missed when they are
obscured by large vehicles. Furthermore, the system requires huge investments in infras-
tructures to perform a complete coverage of the road network. Another important problem
is the privacy concerns of vehicle occupants, as many people do not feel comfortable
being exposed to cameras. An inductive loop detector based on magnetic characteristics of
vehicles is one of the most commonly used traffic monitoring systems for vehicle detection
and classification [5]. The loop detector system is based on a coil of wire placed under
the roadway to capture the change in the magnetic profile signal’s characteristics, such
as amplitude, phase, and frequency, when a vehicle passes over it [6]. Several studies on
the loop detector technique have shown its high accuracy (99% accuracy) for large vehicle
classification, such as cars, trucks, and vans [7–10], it was also proven that loop detectors
have no dependency on the vehicle speed [11]. Although the loop detector system is the
most widely adopted in-roadway-based vehicle classification technique, it might not be the
most suitable system for easy and low-cost implementation, as it requires coil installation
under the roadway surface.

Various privacy-preserving solutions have been proposed, using different kinds of
sensors in, over or at the side of roadways [4]. A combination of infrared and ultrasonic
sensors (up to 99% accuracy) [12] or magnetic sensors used in roadways and on the side
of roadways with accuracy up to 96.4% in the case of using multiple sensor networks
[13–15]. In addition to previous methods, new methods for traffic congestion monitoring
in urban areas were proposed based on GPS, social media data, and network data collected
directly from vehicles [16–20]. These methods have contributed to evolving intelligent
transport systems (ITSs) and proved clear information of traffic flow and traffic destiny for
urban areas. However, most proposed methods have not achieved a classification accuracy
comparable to inductive loops and camera-based systems; moreover, they may require
special installations, such as loop detectors in the road [21]. Various vibration-based vehicle
classification systems have been developed to avoid these shortcomings. Vehicles produce
vibrations from two main sources, the engine system and the interaction between the tires
and the road [22–24]. These signals depend strongly on the size of the vehicle. However,
these signals can be hard to identify owing to the complexities of the seismic waveform
and the influence of the underlying geology on the propagation of the seismic wave. We
have overcome these problems by using artificial intelligence (AI) techniques. Moreover,
seismic data are relatively smaller in size than videos recorded by a camera. One hour of a
single-channel seismic record is 5 MB, while one hour of video can be 1 GB. For long-term
monitoring, smaller data size has a large advantage in data management.

In practice, seismic signals generated by vehicles are hard to distinguish, as most
civilian vehicles generate similar vibrations at frequencies below 20 Hz. However, because
these signals travel through the ground, they are less sensitive to wind noise, which is an
advantage for vehicle detection [25]. Because AI has been instrumental in the dramatic
improvement of voice recognition technology in the last decade, such as voice analysis [26],
we chose to test the application of similar techniques to recognize vehicles from seismic
waves. Furthermore, AI has been widely applied for the classification of seismic events
[27–30]. The application of AI to seismic information for monitoring traffic promises to
offer the advantages of low power requirements, easy implementation, and low cost in
addition to its advantages in occupant privacy.

A study published in 2010 used a neural network to classify vehicles on the basis of
seismic data [31]. The study used acoustic data recorded with a microphone to supplement
the seismic data, and the best classification accuracy achieved was 92%. Another study pub-
lished in 2019 relied exclusively on seismic signatures [25]. That study proposed extracting
spectral features of vehicle seismic signals, using a log-scaled frequency cepstral coefficient
(LFCC) matrix, a step that requires preprocessing the seismic data in the frequency domain.
This method achieved classification accuracy as high as 91.39%. However, both studies



Appl. Sci. 2021, 11, 4590 3 of 14

concerned heavy military vehicles and cannot be generalized to civilian vehicles. Moreover,
both approaches could not use raw seismic data without preprocessing or supplementation
by other data.

This paper describes our proposed traffic monitoring system for civilian applications.
Our purpose was to build and optimize a neural network that takes a window of waveform
data as input, labels it as either seismic noise or a vehicle signal, and identifies the type
of vehicle. The proposed approach relies on seismic data alone without preprocessing. In
this study, we tested three different neural network architectures that are widely used for
the analysis of time series data, including voice recognition. Our approach was applied to
civilian traffic and achieved 99% classification accuracy in the training process and 96%
accuracy in the validation process.

2. Methods

Neural networks, the main backbone for machine learning, operate in a way that
is analogous to biological processes in that the connectivity pattern between neurons
resembles the organization of the animal visual cortex [32]. Neural networks use little
preprocessing compared to other classification algorithms. This means that the network
learns its optimal processing filters, which are manually prepared in traditional algorithms.
This independence from prior knowledge and human effort in feature design is a major
advantage. Consequently, neural networks can efficiently find relationships between a set
of input raw data (in this case, seismic waveforms) and the desired output value (vehicle
class probabilities).

Neural networks consist of three main components: neurons, weights, and bias. In a
feedforward process, the neurons are determined by the values of the previous input and
the weights variable that connect previous inputs to the neuron as shown in Figure 1. Bias
is an independent variable that acts as a refresher that perturbs the function by adding a
constant. The output Y of all neurons can be calculated as follows:

Y = f
[

∑n
1 (X×W) + b

]
(1)

where n is the number of neurons in the previous layer, X is the value that the neuron
holds, W is the weight that connects Y with X, and b is the bias. The nonlinearity activation
function f can be changed depending on the application of the neural network. To ensure a
fair comparison of the three neural network models we evaluated in this study, we adopted
the rectified linear unit (ReLU) [33] as an activation function after all layers. The ReLU
equation returns all negative values to zero and keeps positive values:

f (Y) = max(0, Y) (2)
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Figure 1. A simple neural network illustrating Equation (1). Inputs (x) multiplied by weights (w)
are summed in the dense layer, adding bias (b), then the activation function (f ) is applied to get
the output.



Appl. Sci. 2021, 11, 4590 4 of 14

Neurons are usually stacked in groups called hidden layers. The simplest neural
network contains a single hidden layer and an output layer with a single neuron. In this
study, we used three different models with complex architectures designed to classify data
in the time domain. Each candidate architecture had its weights and bias optimized in a
training process via back-propagation. In all three models, the output of the last layer was
subjected to the SoftMax function [34] to normalize the probabilities by the following:

S(N) =
eN

∑n eNn
, (3)

where N is the value of the output layer and n is the number of neurons in the output layer.
Table 1 lists the specifications of the three models.

Table 1. Characteristics of the three neural network architectures used.

DNN CNN RNN

Number of dense layers 11 4 2
Special layer None Convolutional layer LSTM

Activation function after dense layers ReLU ReLU ReLU
Activation function after the final layer SoftMax SoftMax SoftMax

Trainable parameters 605,572 87,170 871,684

2.1. Deep Neural Network

A deep neural network (DNN) is a simple network with many hidden layers. A large
number of hidden layers is advantageous for dealing with time-series data [28]. Our DNN
model contains 11 hidden layers. The first four hidden layers each contain 256 neurons,
the middle three layers have 128 neurons, and the last four layers have 64 neurons. This
decrease in neuron count helps DNN to compress the information into fewer neurons.
The last layer, the output layer, contains four neurons representing the four classes in
our model (Figure 2). Before each decrease in the size of the hidden layer, we apply
batch normalization to avoid internal covariate shifts [35]. The details of the DNN model
architecture are given in the Supplementary Material (Table S1).
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Figure 2. The DNN architecture used in this study. The 5 s waveform is discretized as 1251 samples
and fed to 11 dense layers, including two batch normalization (B.N) operations between hidden
layers 4 and 5 and hidden layers 7 and 8. The model produces four values indicating the probability
of each vehicle class.
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2.2. Convolutional Neural Network

The convolutional neural network (CNN) has become popular for solving problems
that contain features such as image recognition and is considered the best algorithm for
visual recognition problems [36]. CNN contains a convolutional layer before the main
neural network that is made up of multi-channel filters that extract unique features of each
class. CNN thus breaks problems into smaller tasks, making the classification task for
the next layers much easier [26]. The convolutional layer functions as a feature extractor,
and the neural network (also called the fully connected layer) classifies based on features
instead of the raw data. The CNN we used for this study contained four convolutional
layers with 50 filters (sized 1 × 5) in each layer. We used MaxPool as a downsampling
layer with a dimension of (1 × 3) to keep the maximum value of each of the 3 samples. So,
the output of the MaxPool layer is one-third of the original data (1247/3 = 415 samples).
There are 4 convolutional layers, each followed by a MaxPool layer. The final output of the
convolutional layer is 50 channels signal, and each channel contains 13 features. In other
words, the output is (13 × 50) the features map. We used a flatten layer to convert this map
to a list with 650 variables to introduce it into the fully connected layer.

The fully connected layer contains four hidden layers and a final output layer
(Figure 3). The details of the CNN model architecture used in this study are listed in
Table S2. We chose four convolutional layers after testing different numbers of layers and
considering the trade-offs between accuracy and computational time.
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downsample the amount of contained data. The convolutional and flattening layers condense the original 1251 samples to
650 samples containing filtered features. These are introduced to a neural network with four hidden layers and one batch
normalization (B.N) operation. The model produces four values, indicating the probability of each vehicle class.

2.3. Recurrent Neural Network

The recurrent neural network (RNN) is a recently developed architecture in which
connections between nodes form a directed graph along a temporal sequence, which allows
it to exhibit temporal dynamic behavior [3]. RNN is similar to DNN, but it also includes a
memory of previous results. Our RNN model used two layers of long short-term memory
(LSTM) as shown in Figure 4 and Table S3 in the Supplementary Material. Because LSTM
was responsible for the dramatic advancement in speech recognition [37], we anticipated a
similar performance gain in seismic recognition.



Appl. Sci. 2021, 11, 4590 6 of 14Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 15 
 

 
Figure 4. The RNN architecture used in this study. The model contains two LSTM layers and two 
hidden layers. The model produces four values, indicating the probability of each vehicle class. 

2.4. Optimization of Weights and Biases 
Before using the networks, we optimized the values of weights and biases, using a 

back-propagation process. Back-propagation occurs during model training, where the 
data flow from the end of the network to the first layer for another iteration. We repeatedly 
cycled through a known dataset, calculating the error and optimizing the parameters by 
minimizing the loss function. To ensure a fair comparison, we adopted cross-entropy for 
all networks, which expresses the average discrepancy between the predicted class and 
the true class as follows: E =  −∑ 𝑦′  log (𝑦 ) (4)

where y is the outcome of SoftMax for the k class, and y′k is 1 for a true prediction and 0 
for a false one. We used the Adam optimizer [38] for the loss function with a learning rate 
of 0.001 as well as for monitoring the accuracy and mean square error.  

In this study, we used a work frame consisting of the TensorFlow 2.3.0 machine learn-
ing platform with graphics processing unit (GPU) support along with the ObsPy, NumPy, 
and scikit-learn libraries. We used a hardware platform containing dual GeForce RTX 
2080 ti GPUs with 64 GB RAM to run all algorithms. 

3. Data 
3.1. Data Set 

In this study, we used geophones to obtain seismic data for different vehicles at Kyu-
shu University in July 2020. We placed the geophones in three stations 15 m apart, located 
0.5 m from the road. The vertical motions (vibration) were recorded at a rate of 250 Hz. 
We tagged vehicles by size as large (e.g., buses and trucks), medium (e.g., private passen-
ger cars), and small (e.g., motorcycles and scooters).  

Figure 4. The RNN architecture used in this study. The model contains two LSTM layers and two
hidden layers. The model produces four values, indicating the probability of each vehicle class.

2.4. Optimization of Weights and Biases

Before using the networks, we optimized the values of weights and biases, using a
back-propagation process. Back-propagation occurs during model training, where the data
flow from the end of the network to the first layer for another iteration. We repeatedly
cycled through a known dataset, calculating the error and optimizing the parameters by
minimizing the loss function. To ensure a fair comparison, we adopted cross-entropy for
all networks, which expresses the average discrepancy between the predicted class and the
true class as follows:

E = −∑ y′k log (yk) (4)

where y is the outcome of SoftMax for the k class, and y′k is 1 for a true prediction and 0 for
a false one. We used the Adam optimizer [38] for the loss function with a learning rate of
0.001 as well as for monitoring the accuracy and mean square error.

In this study, we used a work frame consisting of the TensorFlow 2.3.0 machine
learning platform with graphics processing unit (GPU) support along with the ObsPy,
NumPy, and scikit-learn libraries. We used a hardware platform containing dual GeForce
RTX 2080 ti GPUs with 64 GB RAM to run all algorithms.

3. Data
3.1. Data Set

In this study, we used geophones to obtain seismic data for different vehicles at
Kyushu University in July 2020. We placed the geophones in three stations 15 m apart,
located 0.5 m from the road. The vertical motions (vibration) were recorded at a rate of
250 Hz. We tagged vehicles by size as large (e.g., buses and trucks), medium (e.g., private
passenger cars), and small (e.g., motorcycles and scooters).
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During the experiment, a video camera was used to provide a visual guide for the
manual preparation of the training data. Each event (the passage of a vehicle) lasted
2–3 s when the vehicle was close to the geophone. Based on signals at three stations, we
estimated the speeds of the vehicles. The speeds of most vehicles used in this experiment
were 25~35 km/h, and the maximum speed was 45 km/h. In the training process, we
chose clear vehicle signals, eliminating all signals that contained surrounding noise or that
overlapped with other vehicles to avoid overfitting the models. The selected events were
extracted from the record in the form of windows 5 s long, containing 1251 data points
(5 × 250 Hz = 1250 samples). This duration was selected to guarantee the inclusion of the
whole seismic waveform. We extracted, on average, 68 waveform windows per geophone
station for each of the three-vehicle classes for a total of 612 windows. We also selected
318 waveform windows to represent the noise in our data as the fourth class. These include
noise produced by strong winds, bicyclists, walkers, pedestrians pushing a trolley, road
maintenance, and ambient noise. These 930 windows constituted the entire input to the
three neural networks; examples of each class in the dataset are shown in Figure S1 in the
Supplementary Material.

3.2. Training Data Augmentation

Large networks are trained using large amounts of training data to avoid overfit-
ting [36]. Our dataset of 930 samples was inadequate for this purpose; therefore, we
generated synthetic data from our initial dataset for training purposes. We added random
noise to waveforms to change their signal-to-noise ratio (SNR), as shown in Figure 5. We
varied the SNR [39] from 1 to 5 as determined by the following:

SNR =
Psignal

Pnoise
=

(Asignal

Anoise

)2

, (5)

where P is average power and A is the root mean square amplitude. The resulting aug-
mented dataset used for training contained 4650 synthetic samples (5 × 930).
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produce a signal to noise ratio of 6.

4. Results
4.1. Training and Validation

We split our augmented dataset randomly into three portions, using the scikit-learn
splitting function, dedicating 60% for training, 20% for validation, and 20% for testing.
We used the same training set for each of the three networks and trained them over
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150 iterations, then selected the model with the best validation accuracy. We also improved
our training experience and prevented overfitting in two ways.

First, we applied early stopping in which the networks monitored the validation
accuracy and terminated the training when accuracy did not increase for 20 iterations.
Second, we set a 30% dropout chance for all weights and biases. So, in each iteration, all
weights and biases have a 30% chance to be ignored in the training process. The dropout
technique improves the independence of the individual weights [40]. Training took a short
computation time: DNN took 87 s, CNN took 112 s, and RNN took 56 s. Because of early
stopping, DNN and RNN trained for less than 150 iterations. All models showed a great
improvement during training, reaching accuracies close to 99% (Figure 6).
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In the validation process, we checked the models’ performance with new data or data
that were not used in the training process. The models did not display any overfitting,
thanks to the early stopping that curtailed training before any degradation of the validation
accuracy. The resulting validation curve represents the generality of the model. Both DNN
and CNN reached accuracies of approximately 97%, whereas RNN validation accuracy
was approximately 85% (Figure 7).
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We also monitored the improvements in loss function and mean square error
(Figure S2 in the Supplementary Material). Table 2 summarizes the performance of the
three models during training and validation.
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Table 2. Performances of networks for training (3420 waveforms) and validation (1140 waveforms).

DNN CNN RNN

Time (s): Total training (Average per epoch 1) 87 (0.89) 112 (0.74) 56 (0.69)
Accuracy (%): Training (Validation) 98.6 (95.6) 99.1 (94.7) 99.2 (86.1)

Loss: Training (Validation) 7.80 × 10−2 (0.293) 2.77 × 10−2 (0.240) 3.52 × 10−2 (1.070)
Mean square error: Training (Validation) 6.02 × 10−3 (0.019) 3.58 × 10−3 (0.023) 2.98 × 10−3 (0.065)

1 Each epoch includes 4560 waveforms of 5 s each.

4.2. Classification Accuracy

We tested the classification accuracy of the three networks using 20% of the dataset
(1116 samples). We compared the results with those of a similarity method for seismic
event detections called template matching [41]. We randomly selected 50 waveforms for
each vehicle class from the training data to be used as templates. We also recorded 15 min
of new data for this experiment. We took into consideration factors that might affect the
data, including the time of recording, location of stations, and types of geophones. The
networks were not retrained before this exercise, and the templates also were not changed.

The resulting detection accuracies are listed in Table 3. DNN achieved the best
accuracy, with 97.8% correct detections, followed by CNN with 96.6% and RNN with 85.3%.
Template matching had much lower classification accuracy and took an order of magnitude
longer to process the testing data.

Table 3. Performances and running time (1140 waveforms) of networks and template matching.

Template Matching DNN CNN RNN

Time (ms) 560 74 67 55
Accuracy (%) 77.3 97.8 96.6 85.3

Mean square error N/A 0.009 0.014 0.063

4.3. Vehicle Detection in Continuous Records

Because practical applications involve records longer than 5 s, we tested the framework
for detecting vehicles using the 15 min continuous waveform dataset described in the
previous section. The single-channel waveforms were cut into windows 5 s long, with a
gap between consecutive windows of 1 s to reduce the potential for redundant detections
(Figure 8).

Thanks to the feature extraction implemented in the convolutional layer, CNN
was able to detect vehicles of different classes with overlapping seismic records. In the
example of Figure 9, a truck, a lightweight car, and a motorcycle passed the geophone
in quick succession.

We used a 90% probability threshold to determine the predicted vehicle class. The
15 min record included 93 different vehicles. Table 4 shows the performance of the three
models in terms of precision and recall per vehicle class. Precision represents the percentage
of correct declarations among all declarations made by the model, and recall represents the
percentage of correct declarations among all declarations:

PrecisionClass =
TPClass

TPClass + FPClass
(6)

RecallClass =
TPClass

TPClass + FNClass
(7)

where TP stands for true positive, FP stands for false positive, and FN stands for false-
negative [42]. We used visual data, as shown in Figures 8f–h and 9a to determine the true
positive/true negative and ensure calculating the real accuracy for our method. By clear
margins, CNN had the best precision and RNN had the best recall.
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4.4. Scalability to Long Records

One desirable feature of a seismic-based system for traffic monitoring is its ability
to operate continuously with minimal supervision, which means the system needs to
deal with long records (e.g., several weeks or months). For that reason, we evaluated
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the computational cost of the three models, ignoring their accuracy and focusing on the
scalability of networks to handle large records. We chose 1 h of data to measure running
time and memory usage, then repeated the measurements after successively doubling the
size of the dataset to a maximum of 1024 h (nearly 43 days) (Figure 10). CNN interpreted
a month-long (720 h) record in 70 min, a computation time 10% faster than DNN. CNN
also had the lowest memory usage, requiring 40% less memory than RNN. In terms of
computational cost for long records, CNN was more efficient than DNN and RNN.

Table 4. Precision and recall of networks on a 15 min data record, including 16 large, 49 medium,
and 28 small Vehicles.

Clas DNN CNN RNN

Precision (%)
Big (bus, trucks) 100 100 88.8

Medium (light car) 75.8 97.9 81.3
Small (motorcycle) 90.4 90.9 80

Recall (%)
Big (bus, trucks) 93.8 100 100

Medium (light car) 95.9 95.2 97.9
Small (motorcycle) 67.8 72.2 85.7

Average Precision (Recall) (%) 88.7 (85.8) 96.2 (89.1) 83.3 (94.5)
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5. Discussion

This study achieved good performance in probabilistic vehicle detection, and it con-
firmed the effectiveness of long-term monitoring. The neural networks outperformed
template matching in computational cost and in terms of accuracy and generalization.
CNN, in particular, achieved state-of-the-art performance in analyzing new data.

CNN was able to detect and identify these vehicles by their frequency components,
even when their signals overlapped. For example, at the time of 16:33:43 in Figure 9, CNN
determined a 40% probability for a truck and a 60% probability for a car, even though the
truck’s signal was stronger than that of the car. We attribute this ability to the convolutional
filters in CNN which, unlike RNN and DNN, input extracted features to the dense layers.
Although RNN had the highest recall, CNN had the highest precision. Because CNN
detected the overlapped vehicles with a probability of less than 90% (Figures 8d and 9),
these identifications were not counted as detections, but the recall score could be enhanced
by decreasing the threshold probability to below 90%. However, CNN and other networks
have failed to recognize the existence of overlapped vehicles within the same type. The
current network’s architectures were not designed to count multiple vehicles. This problem
could be overcome by using more than one receiver.
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The relatively poor performance of RNN may stem from the intrinsic conflict between
the independence of vehicle events and the inclusion of the LSTM layer in RNN that detects
sequences of events. The RNN tries to create a long memory for the sequence of vehicle
classes, but the succession of vehicle events is essentially random.

All networks were similar in their computational cost. However, CNN had the shortest
running time for very long records. On average, CNN needed 5 min to interpret a 1-day
record and 70 min to interpret a 1-month record. DNN had the lowest memory demand of
the three models, using a maximum of 1.72 GB of the system RAM; however, memory usage
was tolerable for the other two models (Figure 10). Theoretically, the cost of memory usage
is constant at all levels of traffic because the neural network only needs to store the weights
and biases [29]. Ultimately, the proposed system based on seismic signals has been proved
as an alternative solution for vehicle classification with an accuracy of up to 97%, close
to the previously adopted systems based on the automatic visual classification (90~99%)
and the loop detector systems (99% accuracy). The systems we tested did not have high
power requirements or high computational costs and were physically unobtrusive. More
importantly, the traffic monitoring system based on seismic data was able to detect and
classify vehicles reliably without violating the public’s privacy.

6. Conclusions

Machine learning proved to be an effective and low-cost technique to enable traffic
monitoring in real-time based on seismic data. In this study, we evaluated three neural net-
work systems for this purpose and demonstrated that CNN provided the best performance
in terms of accuracy and speed. CNN also surpassed the others in its ability to detect
overlapping signals. RNN did not perform as well as the others for traffic monitoring
because its intrinsic reliance on temporal sequences conflicts with the random nature of
traffic data. Although seismic data can be used for traffic monitoring, all neural networks
have a shortcoming in terms of counting vehicles because they cannot identify the presence
of multiple vehicles of the same class within a waveform frame.

The main limitation of neural networks is the human effort expended in acquiring
and compiling a suitable amount of training data. We augmented our dataset by
adding random noise. Although the models can be deployed without extra training, we
recommend retraining the model as much as possible to guarantee the best performance
in the generalization.

Neural networks that process seismic data offer compelling advantages over current
approaches to traffic monitoring. The seismic record has small file sizes compared to videos
and other types of monitoring data. Because the system is simple and passive, consisting
of a few geophones, it can be implemented for months at a time without supervision.
The recorded data can be analyzed at a low computational cost to give clear statistical
information for vehicles during the implementation period. This makes the proposed
system suitable for use in hard-to-access roads. Our favored method, based on CNN, is
suitable for continuous records of a month or longer; CNN was able to process a month’s
worth of data in approximately an hour.

The proposed method can be extended by investigating the feasibility of using it to
estimate more types of traffic data, such as speed, direction, and if the driving follows a
probable manner or not (i.e., drive while drunk). Since we identified the car type via our
CNN-based approach, the estimation of the speed of the vehicles could be possible; we
presently are investigating accurate speed estimation systems. It may also be possible to
extend a similar approach to other types of transportation, such as vessels, bicycles, foot
traffic, or airplanes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11104590/s1, Figure S1. Other factors were monitored while the training and validation
process., Figure S2. Examples of the waveforms used in the training process., Table S1. The compo-
nents of DNN’s architecture, the output of each layer, and the parameters, Table S2. The components
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of CNN’s architecture, the output of each layer, and the parameters, Table S3. The components of
RNN’s architecture, the output of each layer, and the parameters.
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