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Abstract: In the domain of functional magnetic resonance imaging (fMRI) data analysis, given two
correlation matrices between regions of interest (ROIs) for the same subject, it is important to reveal
relatively large differences to ensure accurate interpretation. However, clustering results based only
on differences tend to be unsatisfactory and interpreting the features tends to be difficult because
the differences likely suffer from noise. Therefore, to overcome these problems, we propose a new
approach for dimensional reduction clustering. Methods: Our proposed dimensional reduction
clustering approach consists of low-rank approximation and a clustering algorithm. The low-rank
matrix, which reflects the difference, is estimated from the inner product of the difference matrix,
not only from the difference. In addition, the low-rank matrix is calculated based on the majorize–
minimization (MM) algorithm such that the difference is bounded within the range −1 to 1. For the
clustering process, ordinal k-means is applied to the estimated low-rank matrix, which emphasizes
the clustering structure. Results: Numerical simulations show that, compared with other approaches
that are based only on differences, the proposed method provides superior performance in recovering
the true clustering structure. Moreover, as demonstrated through a real-data example of brain
activity measured via fMRI during the performance of a working memory task, the proposed
method can visually provide interpretable community structures consisting of well-known brain
functional networks, which can be associated with the human working memory system. Conclusions:
The proposed dimensional reduction clustering approach is a very useful tool for revealing and
interpreting the differences between correlation matrices, even when the true differences tend to be
relatively small.

Keywords: k-means; fMRI data analysis; MM algorithm

1. Introduction

Currently, the neural basis of the human cognitive system is studied using nonin-
vasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS) [1–4].
In particular, for investigating the complex and distinctive functional network structure
of the human brain and its nervous system [5,6], functional connectivity analysis, which
examines the temporal synchronization between brain regions (e.g., [7]), is gaining popu-
larity in this field. Functional connectivity between specific regions of interest (ROIs) is
usually compared among various subjects or experimental conditions. Additionally, the
patterns of functional connections are often analyzed in terms of network structures, such
as community structure and network centrality. For example, recent studies have revealed
that the community structures of functional connectivity networks differ not only between
schizophrenic individuals and healthy controls [8] but also during the performance of
different cognitive tasks [9].

Here, we focus on situations in which correlation matrices between ROIs are calculated
for each subject in two different conditions. In such situations, it is important to reveal
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subnetworks of ROIs such that the differences between conditions are relatively large.
However, it is difficult to interpret the features of distinctive clusters because the range of
correlations is bounded, i.e., [−1, 1], and the differences are affected by observational error.

In [10], through the use of benchmark data sets, it was reported that increasing the
number of dimensions does not affect the clustering results. On the other hand, in [11], it
was demonstrated that clustering results tend to be worse when the data include noise,
irrespective of the clustering method used, such as k-means. Concretely, we assume a
situation such that some meaningful variables include a clustering structure, e.g., [12],
whereas the other variables do not and are considered as noise. In this situation, it is
difficult to detect the clustering structure using a clustering algorithm. One very useful
approach for addressing this problem is low-rank approximation for the difference matrix.
Here, dimensional reduction signifies estimating a low-rank correlation matrix from the
full-rank difference matrix; that is, the estimated low-rank approximation can emphasize
the clustering structure. However, such estimated low-rank matrices occasionally lose
clustering structure information because the original difference matrix is affected by noise,
as demonstrated in upper Figure 1, and mask the true clustering structure. To overcome this
problem, we focus on the inner product matrix of the difference matrix. Even if the original
difference matrix includes noise, the inner product matrix can emphasize the clustering
structure of variables, as demonstrated in the middle of Figure 1. Such an approach, which
uses inner products for clustering, was proposed in [13] for processing high-dimensional
data. For estimating low-rank matrices, singular value decomposition is very popular.
However, the range of the estimated low-rank matrix is not bounded, whereas that of the
correlation is bounded within the range −1 to 1.

In this paper, we propose a new dimensional reduction clustering approach for the
inner product of the difference between two correlation matrices. The problem is to estimate
both the clustering structure of differences between correlation matrices and the low-rank
correlation matrix, which can describe the clustering structure, given two correlation
matrices. Our approach has two advantages. First, the clustering results are superior to
those from methods that rely only on the difference. Second, the range of the estimated
low-rank matrix is bounded within the range −1 to 1, and thus, it is easy to interpret the
relations. This approach consists of two steps. First, a low-rank matrix is estimated such
that each cluster is discriminated. The novelty of the proposed approach is that the low-
rank approximation model is for the inner product of the difference and not only for the
difference. From the model, we can estimate the low-rank correlation matrix with features
related to the clustering structure. Second, a clustering structure is calculated from the
low-rank matrix using an ordinal clustering algorithm such as k-means [14]. A visualization
of the proposed approach is shown in lower Figure 1. To address the problem of estimating
a correlation matrix from a non-correlation matrix, previous studies have developed a
variety of methods [15–19]. In our proposed approach, we need to estimate a low-rank
correlation matrix, which indicates the difference between correlations, from the non-
correlation matrix. To solve the nearest low-rank correlation matrix problem [20–23], we
adopted and implemented the idea of majorization [20,21] because it eases the estimation
of low-rank correlation matrices via the majorization function [24,25].

The remainder of this paper is organized as follows. In the Methods section, the reason
for using the inner product of the difference between correlation matrices is discussed,
and its advantage over using only the difference is explained. In addition, the proposed
model and corresponding objective function are introduced. To estimate the parameters,
an algorithm based on the derived majorization function is provided. Afterward, the
simulation design of our numerical study and the fMRI data for a mental arithmetic task,
for a demonstration of our proposed approach, are described. The results of the simulation
and real fMRI data for the mental arithmetic task are discussed. Finally, we offer our
concluding remarks regarding the proposed method.
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Figure 1. Image of proposed approach.

2. Methods

In this section, we explain the proposed method. First, before introducing the op-
timization problem, we explain our reason for using the inner product of the difference
between correlation matrices, instead of using only the difference. The model of the pro-
posed method is then introduced, and the optimization problem of the proposed method is
presented. Finally, the simulation design of our numerical study and the fMRI data for a
mental arithmetic task, for a demonstration of our proposed approach, are explained.

2.1. Model of Proposed Method

Here, the model of the proposed method is explained. Let R(1)
o = (r(1)ijo ) r(1)ijo ∈

[−1, 1], (i, j = 1, 2, · · · , p; o = 1, 2, · · · , n), and R(2)
o = (r(2)ijo ) r(2)ijo ∈ [−1, 1], (i, j =

1, 2, · · · , p; o = 1, 2, · · · , n), be the correlation matrices between variables under condition
1 and condition 2, respectively, where n is the number of subjects and p is the number of
variables. From R(1)

o and R(2)
o (o = 1, 2, · · · , n), the difference is calculated as follows:

D =
1
n

n

∑
i=1

(
R(1)

o − R(2)
o

)
,

where D = (d1, d2, · · · , dp)T = (dij), dij ∈ [−2, 2] (i, j = 1, 2, · · · , p). The clustering
structure of D is assumed to be in the following form:

D =


D1 O12 · · · O1k
O21 D2 · · · O2k

...
...

. . .
...

Ok1 Ok2 · · · Dk

, (1)

where D` ∈ [−2, 2]p`×p` (` = 1, 2, · · · , k) is a block matrix such that the absolute values
of the elements tend to be higher than those of the elements of O`s (` 6= s), where each
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element of O`s is 0. That is, D is assumed to be changed to Equation (1) through the
permutation of these rows and columns.

However, even if D has such a clustering structure, the structure is masked because
the dij values are observed with noise, and the corresponding correlations are bounded
within the range −1 to 1. Therefore, it is difficult to capture the clustering structure using
low-rank approximation based only on D. To overcome this problem, the inner product
of D is focused upon because the clustering structure of the inner product is emphasized,
rather than using only D. Here, the inner product of D is defined as follows:

∆ = DT D, (2)

where the elements of ∆ are defined as δij ∈ R (i, j = 1, 2, · · · , p), and T indicates transloca-
tion. We focus on the inner product and construct the model based on low-rank approx-
imation from δij. First, from the property of the inner product, for an arbitrary δij, there
exists θij (0 < θij ≤ 2π) such that

δij = ‖δi‖ · ‖δj‖ cos θij, (3)

where δj = (δ1j, δ2j, · · · , δpj)
T (j = 1, 2, · · · , p), and ‖ · ‖ is the Euclidean norm. Here,

cos θij ∈ [−1, 1] can be considered a correlation, and the matrix representation is

Θ =


1 cos θ12 · · · cos θ1p

cos θ21 1 · · · cos θ2p
...

...
. . .

...
cos θp1 cos θp2 · · · 1

. (4)

Based on Equations (3) and (4), Equation (2) is expressed as follows:

∆ = DT D = ddT �Θ, (5)

where d = (‖d1‖, ‖d2‖, · · · , ‖dp‖)T , and � is a Hadamard product.
From Equation (5), we then construct the following model:

ddT �Θ = ddT � XXT + E, (6)

where X = (xiq) xiq ∈ R(i = 1, 2, · · · , p; q = 1, 2, · · · , d) is a coordinate matrix with rank
d (d ≤ p), d is determined by the researchers, and E = (eij) eij ∈ R (i, j = 1, 2, · · · , n) is an
error matrix. In addition, the following constraint is added to X:

‖xi‖ = 1 (i = 1, 2, · · · , p), (7)

where xi = (xi1, xi2, · · · , xid)
T . From the constraint of Equation (7), xT

i xj becomes the corre-
lation coefficient between i and j with rank d [20,21], and XXT also becomes a correlation
matrix with rank d. The reason why XTX becomes a correlation matrix is explained in [15].

To reiterate, the purpose of the proposed method is estimating a low-rank matrix such
that the clustering structure is emphasized. To achieve this purpose, X is estimated such
that the sum of squares for E in Equation (6) is minimized.

2.2. Formulation of Proposed Method

In this subsection, we show the proposed dimensional reduction clustering approach
based on Equation (6). The proposed method consists of two steps. First, a low-rank
correlation matrix, which indicates the difference between two correlation matrices, is
estimated. Second, a traditional clustering algorithm such as k-means [14] is applied to X
to obtain the clustering structure of variables. Although such two-step approaches have
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already been proposed in [26,27], those methods were proposed for multivariate data, not
square matrices.

Afterward, the optimization problem of estimating a low-rank correlation matrix is
described. Given ∆ and d, the optimization problem is formulated as follows:

L(X| ∆) =
∥∥∥∆− ddT � XXT

∥∥∥2

F
→ Min (8)

subject to

‖xi‖ = 1 (i = 1, 2, · · · , p), (9)

where ‖ · ‖F indicates the Frobenius norm. In this study, to estimate X such that Equation (8)
is minimized with the constraint of Equation (9), the majorize–minimization (MM) algo-
rithm is used.

2.3. Algorithm for Estimating Low-Rank Correlation Matrix Based on MM Algorithm

This subsection provides a detailed description of the MM algorithm for estimating X.
First, we derive the majorizing function of Equation (8) in the same manner as in [24,25].
The updated formula for xi is also derived based on the majorizing function. Based on the
majorizing function, the problem is then converted into a linear problem. Therefore, the
updated formula can be derived via the Lagrange multipliers method with the constraint
Equation (9).

However, first, before the derivation the majorizing function is presented, the principle
of the MM algorithm is explained. For more details on the MM algorithm, see [24,25]. Let
f (θ) be an objective function with the parameter θ, and g(θ| θ(t)) be a real valued function,
where θ(t) is the fixed value of θ. When g(θ| θ(t)) satisfies

g(θ| θ(t)) ≥ f (θ) for all θ,

g(θ(t)| θ(t)) = f (θ(t)),

g(θ| θ(t)) is said to be a majorizing function. In general, deriving the updated formula
for g(θ| θ(t)) is expected to be easy compared to that for f (θ). Therefore, in this proposed
approach, the majorizing function of (8) is derived in the same manner as in [24,25].

The objective function Equation (8) can now be defined as follows:

1
2

L(X| ∆) =∑
i<j

(
δij − ‖di‖ ‖dj‖ xT

i xj

)2

=C− 2 ∑
i<j

δij ‖di‖ ‖dj‖ xT
i xj + ∑

i<j
‖di‖2 ‖dj‖2 xT

i xjxT
i xj. (10)

The third term of Equation (10) corresponding to i is expressed as follows:

xT
i

(
‖di‖2 ∑

j 6=i
‖dj‖2 xjxT

j

)
xi = xT

i Bxi, (11)

where Bi = ‖di‖2 ∑j 6=i ‖dj‖2 xjxT
j . Let λi be the maximum eigenvalue of Bi. For any

x ∈ Rd with the constraint ‖x‖ = 1, the following inequality is satisfied:

xT(Bi − λi)x ≤ 0, (12)

where Id is an identity matrix of size d. That is, Bi− λi is negative semi-definite. Let xi ∈ Rd

and zi ∈ Rd be coordinate vectors of subject i corresponding to the current step and the
previous step, respectively. Based on Equation (12), the following inequality is satisfied:
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(xi − zi)
T(Bi − λi Id)(xi − zi) ≤ 0

⇐⇒xT
i Bixi ≤ 2λi + 2xT

i (Bi − λi Id)zi − zT
i Bizi. (13)

If xi = zi, Equation (13) becomes an equality equation. Equation (13) is substituted
into the third term of Equation (10), resulting in

1
2

L(X| ∆) ≤C− 2 ∑
i<j

δij ‖di‖ ‖dj‖ xT
i xj

+ ∑
i<j

(
2λi + 2xT

i (Bi − λi Id)zi − zT
i Bizi

)
. (14)

From (14), the updated formula of xi is derived as follows:

xi ←
∑j 6=i δij‖di‖ ‖dj‖ xj − (Bi − λi Id)zi∥∥∥∑j 6=i δij‖di‖ ‖dj‖ xj − (Bi − λi Id)zi

∥∥∥ . (15)

For the algorithm based on Equation (15), see Algorithm 1.

Algorithm 1 Estimating correlation matrix with rank d

Require: Inner product ∆, rank d, initial vectors zi (i = 1, 2, · · · , p), and ε > 0
Ensure: coordinate matrix X with rank d

t← 0
while L(t)(X|∆)− L(t−1)(X|∆) ≥ ε do

for i = 1, 2, · · · , p do

xi ←
(

∑j 6=i δij‖di‖ ‖dj‖ xj − (Bi − λi Id)zi
)/∥∥∥∑j 6=i δij‖di‖ ‖dj‖ xj − (Bi −

λi Id)zi

∥∥∥
zi ← xi

end for
t← t + 1

end while
return X

Finally, to detect the clustering structure of the variables, k-means is applied to X,
with which k clusters on the d dimensions are detected from xi ∈ Rd (i = 1, 2, · · · , p).

In short, the proposed method can estimate p by d matrix X, which is composed of
the coordinates of variables on d dimensions, from the inner product matrix with full rank
∆. Therefore, estimating X from ∆ is considered a dimensional reduction. Furthermore,
k-means is applied to X such that the rows of X are classified into k clusters.

2.4. Simulation Study

In this subsection, the superiority of the proposed method is shown via the results
of a numerical simulation. In particular, the recovery of clustering results is evaluated in
this simulation.

First, we reveal the simulation design. To evaluate the clustering results, artificial data
with a true clustering structure are generated and correlation matrices between variables are
calculated from the data. Dimensional reduction clustering approaches are then applied
to the difference between the two correlation matrices, and the clustering results are
obtained. In this numerical simulation, the true number of clusters is assumed to be known
beforehand. Finally, an adjusted Rand index (ARI) [28] between the true clustering structure
and the estimated clustering structure is calculated, and the effectiveness of the proposed
method is compared with that of existing approaches. Here, ARI is the similarity index
between two clustering results. When two clustering results are completely equivalent to
each other, ARI becomes 1; otherwise, ARI becomes close to 0.
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Afterward, we explain the method for generating the artificial data. Multivariate data
representing condition 1 and condition 2 are generated as follows:

X ∼ N(0p, ΣX) and Y ∼ N(0p, ΣY), (16)

where X and Y are random vectors of conditions 1 and 2, respectively; 0p is a vector with
length p, for which the elements are all zero; and ΣX ∈ [−1, 1]p×p and ΣX ∈ [−1, 1]p×p

are true correlation matrices of condition 1 and condition 2, respectively. Here, in this
simulation, p is set to 120. From Equation (16), p dimensional vectors are generated 60 times
for each condition, and sample correlation matrices of condition 1 and condition 2 are
calculated as R(X) ∈ [−1, 1]p×p and R(Y) ∈ [−1, 1]p×p, respectively. The input data are
then calculated as D = R(X)− R(Y).

In this simulation, four factors are utilized; a summary of the simulation is shown
in Table 1. As a result, there are 4× 3× 3× 2 = 72 patterns in this simulation. For each
pattern, the corresponding artificial data are generated 100 times and evaluated using the
ARI. The descriptions of the factors are presented as follows.

Table 1. Summary of simulation design.

Names of Factors Levels Descriptions

Methods 4 proposal, Method 2, Method 3, and Method 4
Rank 3 Rank = 2, 3 and 4

The number of clusters 3 k = 2, 3, and 4
The difference between true correlation 2 0.1, and 0.2

Factor 1: Methods

For this factor, we evaluate four methods. The purpose of setting this factor is to
evaluate the effect of using an inner product and to estimate a bounded low-rank matrix.
Here, the proposed method is referred to as method 1. By contrast, method 2 is designed
to have an approach similar to that of the proposed approach, except method 2 is based
only on difference and not on the inner product. Through a comparison between the
proposed method and method 2, we can evaluate the effect of using the inner product. On
the other hand, in method 3, the low-rank matrix is estimated from only the difference and
calculated via Cholesky decomposition, where these estimated values are characterized
by no constraint. Based on a comparison between the proposed method and method 3,
the effect of both the inner product and bounded constraint is evaluated. Meanwhile, in
method 4, the low-rank matrix is estimated from the inner product; however, the estimated
values are characterized by no constraint. Therefore, based on a comparison between the
proposed method and method 4, the effect of the bounded constraints is estimated.

These four methods are then explained from the perspective of calculation. The first
method is the proposed approach based on the inner product of D. For the second method,
an approach based on difference, and not on the inner product model, is adopted. The
second method consists of two steps, as does the proposed method. First, D is decomposed
as D = BT B using Cholesky decomposition, where B = (b1, b2, · · · , bp) bi ∈ Rq(i =
1, 2, · · · , p; q ≤ p). Let b† = (‖b1‖, ‖b2‖, · · · , ‖bp‖)T ; therefore, there exists cos φij such
that dij = ‖bi‖ ‖bj‖ cos φij (0 ≤ φij < 2π). From the decomposition, the optimization
problem of the second method is formulated as follows:

L(2)(X2) = ‖D− b†b†T � X2XT
2 ‖2

F (17)

subject to

‖x(2)i ‖ = 1 (i = 1, 2, · · · , p),



Appl. Sci. 2021, 11, 4582 8 of 18

where X2 = (x(2)1 , x(2)2 , · · · , x(2)p ), x(2)i ∈ Rd. The parameters of Equation (17) can be
estimated in the same manner as in the proposed method. Subsequently, k-means is applied
to the estimated X2.

The third method also consists of two steps. Eigenvalue decomposition is applied
to D, and the low-rank matrix corresponding to λ1, λ2, · · · , λd is estimated, where
λ1 ≥ λ2 ≥ · · · ≥ λq (q ≤ p) are eigenvalues of D. Afterward, k-means is applied to the
estimated low-rank matrix. The fourth method is similar to the third method, with the only
difference being that eigenvalue decomposition is applied to the inner product matrix of D
and not only to D.

These methods, i.e., method 2, method 3, and method 4, are referred to as tandem
approaches [29], each of which consists of two steps. First, the existing dimensional
reduction method is applied to the data and the low-rank data matrix is estimated. Second,
a typical clustering algorithm, such as k-means clustering, is applied to the estimated
low-rank data matrix. In a practical situation, these approaches are sometimes used.

Both the third and fourth methods provide us with low-rank matrices and clustering
results. However, from these results, it is difficult to interpret the degree of the relation
because these estimated values are not bounded. On the other hand, both the first and
second methods allow us to interpret the results easily because these estimated values are
bounded within the range −1 to 1.

Factor 2: Rank

For the four methods mentioned in the previous subsection, the rank must be deter-
mined. In this simulation, ranks are set to 2, 3, and 4.

Factor 3: Number of clusters

All four methods mentioned in the Factor 1: Methods subsection adopt k-means
clustering. In the simulation, we assume that the the number of true clusters is known
beforehand. The number of clusters is set to k = 2, 3, and 4.

Factor 4: Difference between true correlations

At first, the generation of true clustering structures is determined by k = 2, 3, and 4.
The true clustering structure is dependent on ΣX and ΣY. When k = 2, the equations for
ΣX and ΣY are

ΣX =

[
Σ1 O60

O60 I60

]
and ΣY =

[
I60 O60

O60 Σ1

]
,

where O60 ∈ { 0 }60×60, I60 is a 60× 60 identity matrix, Σ1 = (σ
(1)
ij ) (i, j = 1, 2, · · · , 60),

and σ
(1)
ij = 1 if i = j. To reiterate, there are two levels for simulation factor 4. The first

level and second level are σ
(1)
ij = 0.1 (i 6= j) and σ

(1)
ij = 0.2 (i 6= j), respectively. When

σ
(1)
ij = 0.1 (i 6= j), the corresponding difference matrix is more affected by observational

error compared to when σ
(1)
ij = 0.2 (i 6= j). With this factor, the degree of effect on the

observational error is evaluated.
For k = 3,

ΣX =

 Σ2 O40 O40
O40 I40 O40
O40 O40 I40

 and ΣY =

 I40 O40 O40
O40 Σ2 O40
O40 O40 Σ2

,
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where Σ2 ∈ {0, 0.1, 0.2, 1}40×40 is defined in the same manner as Σ1. Finally, for k = 4,

ΣX =


Σ3 O30 O30 O30

O30 I30 O30 O30
O30 O30 I30 O30
O30 O30 O30 Σ3

 and ΣY =


I30 O30 O30 O30

O30 Σ2 O30 O30
O30 O30 Σ2 O30
O30 O30 O30 I30


where Σ3 ∈ {0, 0.1, 0.2, 1}30×30 is defined in the same manner as both Σ1 and Σ2.

With the aforementioned ΣX and ΣY, a true clustering structure is described. For
k = 2, 3, and 4, the cluster sizes of each are the same; that is, for k = 2, 3, and 4, the cluster
sizes are 60, 40, and 30, respectively.

2.5. fMRI Data for Mental Arithmetic Task

Among the cognitive functions, working memory (WM) is important for engaging in
everyday tasks such as conversations or reading books. WM is the system for temporally
storing and processing necessary information [30,31]. In studies on cognitive function, the
neural basis of the WM has been investigated using fMRI. In the current research, the brain
regions and functional connectivity networks associated with the WM system are revealed.
To validate the effectiveness of the proposed method, we apply the proposed method to
fMRI data measured during the WM task.

2.5.1. Participants

Thirty-two healthy adults (20 males and 12 females; mean age, 22.0 ± 1.2 years;
31 right-handed and 1 left-handed) participated in this experiment. This study was ap-
proved by the Research Ethics Committee of Doshisha University (approval code: 1331) in
Kyoto, Japan. Written informed consent was obtained from each participant.

2.5.2. Experimental Design

The participants were asked to perform a mental arithmetic task in an fMRI scan-
ner. The experimental design is shown in Figure 2. In this experiment, a block design
was adopted such that procedures for the rest periods and task periods were conducted
alternately. During rest, participants were instructed to watch a fixation point. On the
other hand, during the task, they were instructed to press buttons to answer true or false
in response to a presented numerical formula. They could proceed to the next formula
at their own pace by selecting an answer to the current formula. They performed two
types of mental arithmetic tasks, each having a different level of difficulty: (1) low-WM
load (Low-WM) tasks, which consisted of addition of one-digit numbers, and (2) high-WM
load (High-WM) tasks, which consisted of arithmetic operations on real numbers with
three digits. Each of the two task types was performed three times (i.e., each participant
performed a total of six tasks in the experiment), and the task order was randomized. The
durations of the first rest block, second rest block, and task block were 40 s, 36 s, and
30 s, respectively.

Figure 2. Experimental design.

2.5.3. Data Acquisition

All MRI scans were performed on a 1.5T Echelon Vega (Hitachi, Ltd.). Functional
images were acquired using a gradient-echo echo-planar imaging sequence (TR = 3000 ms,
TE = 40 ms, flip angle = 90◦, field of view = 240 × 240, matrix size = 64 × 64 pixel,
thickness = 5.0 mm, and number of slices = 20). Structural images were acquired using an



Appl. Sci. 2021, 11, 4582 10 of 18

Rf-spoiled steady state gradient echo sequence (TR = 9.4 ms, TE = 4.0 ms, flip angle = 8◦,
field of view = 256× 256 mm, matrix size = 256× 256 pixel, thickness = 1.0 mm, and num-
ber of slices = 194). The stimuli (fixation point and arithmetic formula) were presented and
synchronized with fMRI data acquisition using presentation software (Neurobehavioral
System Inc., Albany, CA, USA), and participant responses were acquired using the fORP932
Subject Response Package (Cambridge Research Systems Ltd., London UK).

2.5.4. Data Preprocessing

The first six scans were excluded from the analysis to eliminate the nonequilibrium
effects of magnetization. The functional images were preprocessed using SPM12 software
(Wellcome Department of Cognitive Neurology, London UK) [2]. These images were re-
aligned to correct for head movements and subsequently slice-timing corrected; anatomical
images were then coregistered to the mean of the functional images. The images were
also spatially normalized into Montreal Neurological Institute (MNI) space and smoothed
using a Gaussian filter (8 mm full width at half maximum).

2.5.5. Functional Connectivity Analysis: Derivation of Correlation Matrices

For the functional connectivity analysis, the functional images preprocessed using
SPM12 were further processed using the CONN toolbox [32]. In detail, nuisance re-
gression was performed using an anatomical component-based noise correction method
(aCompCor) [33], in which the first five principal components of signals from the white
matter and cerebrospinal fluid masks, head-motion parameters, their first-order tem-
poral derivatives, and the main task effect from the task block (modeled as a canoni-
cal hemodynamic-response–function-convolved response) and its first order derivatives
were regressed to eliminate physiological noise and potential confounding effects of the
task responses.

To calculate functional connectivity during the tasks, the preprocessed images were
parcellated into 116 regions, including 90 cerebrum regions and 26 cerebellum regions de-
fined via automated anatomical labeling (AAL); the mean Blood-Oxygen-Level-Dependent
(BOLD) time course was then calculated for each region. Subsequently, Pearson correlations
among BOLD time courses of the 116 regions were calculated and then Fisher-z transformed.
As a result, a 116× 116 correlation matrix was constructed for each participant. In this
study, we chose 90 cerebrum regions as the ROIs and used the corresponding 90× 90
correlation matrices for the analysis because the WM system is considered associated with
the cerebrum regions [34].

3. Results

In this section, we describe the results of the numerical simulations and of applying
the proposed fMRI data method.

3.1. Simulation Results

In this subsection, we describe the results of the numerical simulations. Figure 3 shows
the results in terms of the number of clusters and ranks for σ

(s)
ij = 0.1 (s = 1, 2, 3; i 6= j),

for which we assume that the true difference is relatively small. Therefore, it is difficult
to recover the true clustering structure. The vertical axes represent the results in terms of
ARIs. Here, the methods are compared in terms of the medians and interquartile ranges
(IQRs) of the ARIs. In Figure 3, the results of the second and third methods, which utilize
only the difference and not the inner product, indicate lower performance than that of the
proposed method. As the results in Figure 3 show, the model that utilizes the inner product
tends to outperform models that focus only on the differences. In particular, for d ≥ k, the
results of the proposed method tend to be superior to those of the other methods.
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Figure 3. Simulation result for σ
(s)
ij = 0.1 (s = 1, 2, 3; i 6= j).

The results for σ
(s)
ij = 0.2 (s = 1, 2, 3; i 6= j) are shown in Figure 4. The tendency

of these results is similar to those for σ
(s)
ij = 0.1 (s = 1, 2, 3; i 6= j), whereas the results

corresponding to σ
(s)
ij = 0.2 tend to indicate higher performance than those corresponding

to σ
(s)
ij = 0.1.

Figure 4. Simulation result for σ
(s)
ij = 0.2 (s = 1, 2, 3; i 6= j).

From the overall results, we note two specific observations. First, the number of
clusters is relatively large and performance tends to be relatively low, irrespective of the
type of method; this tendency has been reported in [35]. Second, all methods depend on
the selection of hyperparameters. Based on the simulation results, the tuning parameters
should be set to d ≤ k.
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3.2. Results of fMRI Data Analysis

In this subsection, we show the results of applying the proposed method to the fMRI
data. Concretely, the purpose of this example is to detect clustering structures where
the difference between two experimental conditions, i.e., High-WM and Low-WM tasks,
is emphasized. In addition, the features of these estimated clusters are interpreted in
combination with knowledge on ROIs related to WM, including the task-positive network
(TPN), ventral attention network (VAN), salience network (SN), visual network (VN), and
default mode network (DMN). The TPN consists of the fronto-parietal network (FPN),
dorsal attention network (DAN), and cingulo-opercular network (CON). The FPN and
DAN are related to executive function [36] and top-down attention, respectively, whereas
the CON is involved in exerting control over the contents of WM [37]. In addition, the VAN
is associated with response to stimuli and bottom-up attention, whereas SN activation is
said to be observed in situations wherein changes in behavior may be advisable [38,39].
The VN is literally associated with visual information processing, whereas the DMN relates
to internally focused tasks such as retrieving autobiographical memory, envisioning the
future, and conceiving the perspectives of others [40].

We then explain how to construct the difference between correlation matrices. For
each subject, using a matrix of difference between the correlation matrices of High-WM
and Low-WM, we calculate one mean matrix of these differences. As described in the
previous section, the input difference is a 90× 90 matrix.

In the proposed method, rank and the number of clusters must be selected. For the
determination of rank, we set the rank candidates to 2, 3, 4, 5, and 6, and select one
among them. Generally, when the rank is larger, the values of the objective function tend
to be lower.

The proposed method is then applied to difference matrices of rank = 2, 3, 4, 5, 6,
and the rate of change in values of the objective function is calculated as follows:

Ld(X| ∆)− Ld+1(X| ∆)

Ld(X| ∆)
(d = 2, 3, 4, 5, 6),

where Ld(X| ∆) is the value of the objective function with rank d. From Figure 5, d = 3
is selected because, among the candidates, the change in values for the objective function
tends not to change even when the rank is larger than 3. For the number of clusters,
the silhouettes coefficient [41] is used; the number of clusters that provides the highest
silhouettes coefficient is k = 3.

Figure 5. Change in rate for objective function; vertical and horizontal axes indicate rank and ratio of
values for objective function, respectively.
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The left side of Figure 6 shows the results of applying the proposed method. Through
the estimated low-rank correlation matrix, we confirm that the clustering structure is
emphasized and that the relations among ROIs belonging to the same cluster are estimated
to be higher. The right-hand side of Figure 6 shows the original difference matrix, in which
both rows and columns are permutated by the estimated clusters. The right-hand side of
Figure 6 also shows that relations among ROIs belonging to cluster 1 tend to be higher
during the difficult task than during the easy task, although those among ROIs belonging
to cluster 2 or cluster 3 tend to be lower.

Figure 6. Estimated correlation matrix for d = 3 and clustering result; upper-left figure of each heatmap indicates histograms
of these coefficients.

The features of the estimated cluster are then interpreted in combination with knowl-
edge on WM. Figure 7 represents the difference matrix (High-WM - Low-WM) permutated
based on both estimated clusters and WM. We particularly focused on differences related
to the TPN and DMN. For the relations of ROIs belonging to the TPN, those belonging
to cluster 1 tend to be higher than those belonging to cluster 2 or cluster 3. Therefore,
in cluster 1, correlation among ROIs related to the TPN tended to be active under the
condition of High-WM.

These values on Figure 8 are performed to confirm the features of the clusters. In
Figure 8, each boxplot represents the differences between ROIs within the WM for each
cluster. When correlations within the WM are active in the High-WM condition, the median
tends to be greater than 0. On the other hand, when those correlations are active in the
Low-WM condition, the median tends to be lower than 0. First, the features of cluster 1
are interpreted. The values corresponding to the TPN in cluster 1 tend to be higher than
those in cluster 2 and cluster 3. To reiterate, the TPN includes ROIs within the FPN, DAN,
and CON. The connectivities within the FPN tend to be higher in High-WM [42], whereas
the DAN is related to top-down attentional control [43]. In addition, there are no ROIs
belonging to the VAN or SN as features of cluster 1, where the VAN is related to bottom-up
attentional processing. Therefore, cluster 1 is interpreted as comprising ROIs related to
top-down attentional control. In cluster 2, there are no ROIs belonging to either the FPN
or DAN, and the TPN includes only the CON. The values for the SN in cluster 2 tend to
be higher than those in cluster 1 and cluster 3; the SN facilitates access to attention and
working memory resources. In addition, the differences corresponding to the DMN tend to
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scatter around 0 symmetrically. From these features, cluster 2 is interpreted as comprising
ROIs related to the SN. In cluster 3, those within the TPN are lower compared to those
within the other clusters. In addition, those within the VAN tend to be higher than those in
cluster 2, where there are no ROIs within the VAN. Therefore, cluster 3 is interpreted as
comprising ROIs related to bottom-up attentional processing.

Figure 7. Difference matrix (High-WM–Low-WM) permutated based on estimated clusters and WM.

Figure 8. Boxplot of difference (High-WM–Low-WM) based on estimated clusters and WM.

Although the proposed method was applied to fMRI data during mental arithmetic
tasks as an explanatory analysis, these results suggest that our method can detect commu-
nity structures consisting of well-known functional networks associated with the human
working memory system.
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4. Conclusions and Remarks

We proposed a new dimensional reduction clustering approach based on differences
between correlation matrices. The estimated low-rank correlation represents the difference,
and it is easy to interpret the relations because the estimated values are bounded within
the range −1 to 1 and because the clustering structure is emphasized. In addition, based
on the idea of using the inner product of the difference and not only the difference, we
demonstrated that the clustering recovery tends to be accurate. The effectiveness of the
proposed method is demonstrated through numerical simulations of the recovery of a
true clustering structure. According to these results, the proposed method can detect
informative features related to clustering structure and can eliminate noise, and using the
low-rank approximation model for the inner product and not only the difference degrades
the effect of noise not related to the clustering structure. Certainly, based on the result
of numerical simulation, the clustering approach based on eigen decomposition of D
performs well. However, it is difficult to interpret the estimated low-rank matrix because
these values are not bounded.

In addition, we show the results of applying the proposed method to real fMRI data
related to WM. Through dimensionality reduction, the clustering structures of the ROIs are
emphasized, as shown in the left side of Figure 6, because the variances of these estimated
low-rank correlation coefficients tend to be larger. Specifically, our proposed method results
in clusters that are interpreted based on knowledge regarding WM.

Finally, we discuss the future direction of this research topic. There are four things to
consider. First, although the proposed method certainly provides us with interpretable re-
sults from the perspective of WM, the proposed method requires further evaluation through
real-data analyses and comparison with other methods. The properties of the clustering
results, in particular, should be evaluated through the use of benchmark data. Second,
although we show that the proposed method is based on Pearson’s correlation coefficient,
other kinds of similarity measures, such as Spearman’s correlation coefficient, should be
considered. Third, in the numerical simulations, we evaluate the clustering results using
ARI. However, there are several other measures for comparing clustering results [44,45];
these external validation measures are classified into three kinds of measures, i.e., pair
counting, information-theory-based approaches, and set-matching measures. In the pair-
counting approach, a pair of subjects is regarded as agreeing if the pair belongs to the same
cluster in both clustering results or belongs to different clusters in both clustering results;
otherwise, these subjects are regarded as disagreeing. In the information-theory-based
approach, mutual information measures between two clustering results are used [46–48].
On the other hand, in set-matching measures, pairs of clusters are used instead of pairs of
subjects; for this approach, several indices have already been proposed [49,50]. Examples
of related indices include centroid index [51] and centroid ratio [52]. Therefore, other eval-
uation indices should be considered for use with our proposed method. Fourth, an ideal
number of clusters must be determined. In the real-data example, we used the silhouettes
coefficient. However, various methods for determining the number of clusters have also
been developed [53–55], where the method proposed in [55] is also used for determining
the number of dimensions. Further simulations must be performed to better evaluate the
effects of these approaches on the results of our proposed method.
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The following abbreviations are used in this manuscript:

AAL automated anatomical labeling
ARI adjusted Rand index
aCompCor an anatomical component-based noise correction method
BOLD blood-oxygen-level-dependent
CON cingulo-opercular network
DAN dorsal attention network
DMN default mode network
EEG electroencephalography
fMRI functional magnetic resonance imaging
fNIRS functional near-infrared spectroscopy
FPN fronto-parietal network
IQRs interquartile ranges
MNI Montreal Neurological Institute
ROIs regions of interest
SN salience network
VN visual network
TPN task positive network
VAN ventral attention network
WM working memory
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Chapman and Hall: New York, NY, USA, 2015; pp. 619–636. [CrossRef]
48. Vinh, N.X.; Epps, J.; Bailey, J. Information theoretic measures for clustering comparison: variants, properties, normalization and

correction for chance. J. Mach. Learn. Res. 2010, 11, 2837–2854.
49. De Souto, M.C.P.; Hielho, A.L.V.; Faceli, K.; Sakata, T.C.; Bonadia, V.; Costa, I.G. A comparison of external clustering evaluation

indices in the context of imbalanced data sets. In Proceedings of the 2012 Brazilian Symposium on Neural Networks, Curitiba,
Brazil, 20–25 October 2012; pp. 49–54.
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