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Abstract: Deep learning has demonstrated remarkable accuracy analyzing images for cancer detec-
tion tasks in recent years. The accuracy that has been achieved rivals radiologists and is suitable for
implementation as a clinical tool. However, a significant problem is that these models are black-box
algorithms therefore they are intrinsically unexplainable. This creates a barrier for clinical imple-
mentation due to lack of trust and transparency that is a characteristic of black box algorithms.
Additionally, recent regulations prevent the implementation of unexplainable models in clinical
settings which further demonstrates a need for explainability. To mitigate these concerns, there have
been recent studies that attempt to overcome these issues by modifying deep learning architectures
or providing after-the-fact explanations. A review of the deep learning explanation literature focused
on cancer detection using MR images is presented here. The gap between what clinicians deem
explainable and what current methods provide is discussed and future suggestions to close this gap
are provided.

Keywords: deep learning; explanability; explainability; cancer detecton; MRI; XAI

1. Introduction

Deep learning has grown both in terms of research along with private and public
sector application in recent years. A part of this growth is the application of deep learn-
ing algorithms to big data in the healthcare sector [1–11] as depicted in Figure 1. These
algorithms have demonstrated results suitable for clinical implementation but explanation
remains a barrier for wide-spread clinical adoption.

Deep learning is a subset of machine learning that has grown in recent years due to
the advances in computational power and the access to large datasets. Deep learning has
proven to be successful in a wide breadth of applications [12–16]. There are three main cat-
egories of deep learning algorithms which are supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning fits a non-linear function using features
as input data and labels as output data where the labels, or outputs, are known when
training the algorithm. Common supervised deep learning algorithms are convolutional
neural networks and recurrent neural networks. These algorithms are commonly used
for classification tasks such as classifying lesions as benign or malignant. Unsupervised
learning on the other hand does not use labeled output data. It is looking for patterns in
the input data distribution. Some examples of unsupervised deep learning are generative
adversarial networks and autoencoders. These are used for tasks such as data compression
and data augmentation. The final category is reinforcement learning. In reinforcement
learning, a reward function is defined and the neural network optimizes its weights to
maximize the reward function.
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Figure 1. This figure shows the number of published papers using deep learning models to predict
cancer risk, classification, prediction and detection per year since 2008. The data were collected using
keyword searches through PubMed.

Deep neural networks consist of an input layer, output layer, and many hidden layers
in the middle. Each layer consists of neurons which are inspired by how neurons in the
brain process information. Each neuron has a weight that is updated using a technique
called gradient descent during the training process. The weights of the network are
optimized by minimizing a cost function. Nonlinearities are applied between layers to fit
nonlinear functions from the input data to the output. Due to this, neural networks are
able to model complex mappings. After training, the model is able to classify unseen data.

Deep learning has achieved high performance for numerous types of cancers. The
authors of [17] demonstrated accuracy up to 98.42 for breast cancer detection. In [18], they
found that they could detect lung cancer with up to 97.67 using deep transfer learning. In
the fall of 2018, researchers at Seoul National University Hospital and College of Medicine
developed a machine learning algorithm called Deep Learning based Automatic Detection
(DLAD) to analyze chest radiographs and detect abnormal cell growth, such as poten-
tial cancers. In [19], the algorithm’s performance was compared to multiple physician’s
detection abilities on the same images and outperformed 17 of 18 doctors. These results
demonstrate the potential for using deep learning to aid medical practitioners. Despite this
performance, adoption of these systems in clinical environments has been stunted due to
lack of explainability.

Deep learning techniques are considered black boxes as depicted in Figure 2. Explain-
ability attempts to mitigate the black box nature of these algorithms. Explainability is
needed for a variety of reasons. First, there are legal and ethical requirements along with
laws and regulations that are required for deep learning cancer detection systems to be
implemented in a clinical setting. An example of a regulation is the European Union’s
General Data Protection Regulation (GDPR) requiring organizations that use patient data
for classifications and recommendations to provide on-demand explanations [20]. The
inability to provide such explanations on demand may result in large penalties for the
organizations involved. There are also monetary incentives associated with explainable
deep learning models. Beyond ethical and legal issues, clinicians and patients need to
be able to trust the classifications provided by these systems [21]. Explanation is also
needed for trust and transparency [22–28]. Explanation methods attempts to show the
reasoning behind the model’s classification therefore building a degree of trust between
the system, clinician, and patient. This can reduce the number of misinformed results that
would be a possible consequence of non-explainable systems. Finally, explainable deep
learning systems will provide the clinician with additional usefulness such as localization
and segmentation of the lesion location [29–32]. How explanability brings value to the end
user is depicted in Figure 3.
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Figure 2. In general, more accurate models are less explainable.

Figure 3. How explanation methods provide value to the end user.

Explainable and interpretable are used interchangeably in parts of the literature [33]
yet they are defined separately in others. This work will use the terms are used inter-
changeably. There is not an agreed upon definition of explainability. As Lipton mentioned,
“the term explainability holds no agreed upon meaning, and yet machine learning confer-
ences frequently publish papers which wield the term in a quasi-mathematical way”. This
demonstrates the ambiguity of term and the need for a formal definition. That is outside
the scope of this work but for the context of this paper, we adopt the [34] definition of
explainability which is, “explainability is the degree to which a human can understand the
cause of a decision”.

We conducted an extensive literature review by examining relevant papers from six
major academic databases. A keyword based search was used to select papers, it consists
of searching for index keywords based on common variations in literature of the terms
“explainable”, “transparency”, “black box”, “understandable”, “comprehensible”, and
“explainable” and its union with a set of terms related to deep learning cancer detection
including “deep learning”, “machine learning” and “convolutional neural network”. The
research was restricted to articles published between 2012 and 2020 with one exception
published in 1991. The papers were skimmed and then filtered by quality and relevancy.
More papers were then added by using a snowballing strategy that consists of using the
reference list of the selected papers to identify additional papers.

The contributions of this review are three fold. First, this work will focus on explain-
ability for cancer detection using MRI images. Second, we provide a thorough overview of
the current approaches to measure explainability that are commonly used in the literature
and why this is important for medical explainability. There is not an universally agreed
upon metric for an explanation. This review will discuss the advantages and disadvan-
tages of metrics commonly found in the literature. Third, this review will discuss papers
related to what clinicians consider important for explanation systems. This highlights a
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gap between ML researchers who design the algorithms and clinicians who are the end
users. This paper attempts to discuss direction for closing that gap.

This paper is organized in the following way. First, a general taxonomy of explanation
approaches for deep learning cancer detection systems is described. Second, current mea-
sures for explanation quality are examined and analyzed. Third, we discuss explanation
techniques applied to cancer detection deep learning models. Finally, it will conclude with
a discussion with suggested future directions in section four and five respectively.

2. Background

Although the research volume is expanding rapidly around explainability [35–62]
a review focusing on image intepretability within the context of deep learning cancer
detection systems is missing. Indeed, there are existing research studies of deep learning
explainability for medical applications [63–74] in the literature as well as review articles.
Notably, [75,76]. The survey of Tjoa and Guan reviews post-hoc explanation methods
for medical applications. The review looks at medical explainability as a whole. The
authors provide future directions such as including textual explanation and propose
creating a authoritative body to oversee algorithmic explainability. In the review by [76],
the authors provide a review of explainable deep learning models for medical imaging
analysis. The authors discuss medical applications of brain, breast, retinal, skin, CT, and
X-ray images. In contrast to the previously noted reviews, this review focuses solely on
analyzing medical images for cancer detection while discussing the gap between clinicians
and ML researchers.

2.1. Taxonomy

There are various proposed taxonomies to classify explanation methods [77–79]. Gen-
erally, these classification systems are task dependent therefore there is not an universally
accepted taxonomy for explanation methods. This section will outline how explanation
methods are grouped throughout this paper which is guided by the taxonomy by the
authors of [78].

2.1.1. Local vs. Global

Local explanation refers to providing explanations for individual samples. This ap-
proach is useful when explanations for individual patients are of interest. An example of
this is SHAP [80,81] which provides explanations for single classifications. On the other
hand, global explanation refers to providing explanation for a group of samples or the en-
tire model. This shows the overall feature importance for a group of patients. An example
of global explanations are Global Model Explanation via Recursive Partitioning [82] and
Garson’s Algorithm [83] for depicting feature importance.

2.1.2. Data Modality Specific vs. Data Modality Agnostic

Data modality specific refers to explanation methods that are only applicable for a
certain data type. For example, some methods only work with MR images and some
methods only work for tabular clinical records. An example of a method that only works
for images is Grad-CAM [84] which does not apply to other data modalities such as textual
or tabular data. These data modality specific approaches are usually coupled with model-
specific explanation approaches. For example, some explanation methods use feature
maps from convolution operations to calculate what information the model uses to make a
prediction. Data modality agnostic refers to explanation methods that work for any data
type. An example of this is LIME [85] which can provide explanations for image, tabular,
and textual data. These are useful for clinical implementation due to the ability to handle a
wide range of data used to make clinical decisions. These methods commonly use surrogate
or perturbation based approaches to create a general approach for model explanation.
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2.1.3. Ad-Hoc vs. Post-Hoc

For ad-hoc explanation methods, the model itself is designed to be intrinsically ex-
plainable. Common current approaches are limiting learned features to only explainable
features or by altering the optimization procedure to focus on optimizing for explainability
rather than accuracy. The goal of this approach is to design a deep learning model that is
inherently explainable and opposes the notion that there is a trade off between accuracy
and explainability. On the contrary, post-hoc explanation techniques provide explanations
after the classification is made. These are more common in the literature due to ease of
implementation. Some refer to these as diagnostic methods [86] due to their utility for
diagnosing and their apparent limitations for providing a complete explanation for the end
user. Examples of these are saliency maps [87,88], Grad-CAM [84], Respond-CAM [89],
and SHAP [80] where the explanation is provided after-the-fact.

2.1.4. Model Agnostic vs. Model Specific

Model agnostic refers to explanation methods that are able to explain any model
and are not restrained to a certain type (e.g., SHAP). A common approach for model-
agnostic methods is to change the inputs and measure the corresponding change in output.
Then to use this to determine what change in inputs produces the greatest change in
outputs. Model specific explanation methods only work with a specific model. For example,
Grad-CAM [84] produces feature visualizations for convolutional neural networks, but
does not work with LSTMs. These methods often use certain aspects of model architecture,
for example feature maps produced from graph convolutions.

2.1.5. Attribution vs. Non-Attribution

The majority of proposed explanation techniques are attribution based methods.
Attribution methods attempt to calculate the inputs of the neural network that are the
most important with regards to the network’s result. This can be broken further into
two categories: perturbation based approaches and back-propagation based approaches.
Perturbation based techniques estimate the most important features by removing one,
calculating change in class score, and repeating for all features. It uses this to calculate the
attribution of each feature. It then ranks feature importance by attribution. An example
of this is SHAP. These are usually inefficient due to having to compute many iterations.
Gradient-based methods conduct a similar procedure except with a single forward or
backwards pass. Some of these methods provide only positive contributions (e.g., CAM)
and some provide positive and negative contributions (e.g., DeepLIFT). In general, these
methods produce results faster due to having to perform only one pass.

2.2. Measures for Explanations

There are various approaches for measuring the quality of an explanation which
range from computing an intersection over union (IOU) score to conducting user studies.
Measuring the quality of explanation is challenging because of the importance of the context
the method is used for along with the non-triviality of defining what a good explanation is.
For example, measuring explanation methods for cancer detection could have different
criteria then explanation methods for insurance risk prediction. Therefore, in addition to
testing explanation methods in a general way, it is important to consider the context of
potential applications. This is especially important for cancer explanation methods due to
high-risk nature of the predictions.

2.2.1. What Defines a High-Quality Explanation

The question what defines a high-quality explanation is an important first question
to consider. There are studies that attempt to explore this question [90–92]. One question
that is important is the time taken to understand the explanation. Ideally, the explanation
is thorough enough to convey the necessary information yet concise enough that is to be
understood in a timely manner. The authors of [91] explore this by asking what makes
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explanations explainable in the context of verification. The authors conduct an user study
and identify what kind of increases in complexity have the greatest effect on the time it
takes for humans to verify the rationale, and which seem relatively insensitive. Another
factor to consider is the question who will be the end user of the algorithm. The end
user of the deep learning system should guide the approach to evaluation. Designing
explanation techniques for clinical settings require different explanations than designing
explanation for robotics. A paper published in 2018 by [92] discusses the different roles
involving explanation techniques and how the explanations differs depending on what
role you are providing the explanation for. They show that an explanation for one role
should be measured differently for other roles. This sounds trivial but is often ignored. For
example, measuring explanations for doctors should have different criteria than measuring
explanations for patients receiving the diagnosis or engineers designing the system. Con-
sequentially, this suggests the need to test explanations on a variety of human subjects to
evaluate for whom the explanations fail and for whom the explanation provides adequate
information. For example, the explanation can be thorough and complete for a clinicians
but fail for a patient when ideally it should address the needs of each end user. A limitation
of the current literature is the lack of studies that verify explanation methods with a popu-
lation of radiologists or doctors. To the best of our knowledge, there is not any studies that
incorporate radiologists into the design process of deep learning explanation algorithms.
The majority of human-studies involved general, non-specialized individuals recruited
through a crowd-sourcing service such as Amazon Mechanical Turk [93]. The authors
of [94] also highlight the importance of keeping the end-user in mind when defining what
is explainable and how to measure it. It is also essential to have quantitative measures
to be able to compare different methodologies quantitatively when qualitative measures
fail. A paper published by the authors of [95] propose Remove and Retrain (ROAR) to
quantitatively compute feature importance. ROAR ranks feature importance, removes
these the features ranked as most important, and then retrains the model and measures
the difference during testing. This method is widely used but there still lacks a standard
procedure for quantitatively measuring explanation performance. For measuring qualita-
tively, Doshi-Velez and Kim discuss factors related to qualitative assessment. First, what
are explanations composed of? For example, feature importance or examples from the
training? It other words, what units are being used to provide an explanation. Second,
what are the number of units that explanations are composed of? If the explanation finds
similar training examples to provide an explanation, does it just provide the most relevant
examples or all? Third, if there is only a select few examples how are these ordered and
what determines that criteria? If they are ranked in terms of similarity how is similarity
defined? Or if they are ranked in terms of feature importance, how do you measure feature
importance? Fourth, how do you show the interaction among these units in a human-
digestible way? Fifth, how do you quantitatively show the uncertainty in an explanation?
While there is no silver bullet for measuring explanation quality, these are all important
questions to consider when evaluating the quality of an explanation and choosing a metric
to measure results.

2.2.2. Methods to Measure Explanation Quality

This next section will discuss approaches to measure explanation quality commonly
used in the literature. These are broken into two types: human-based evaluation and
proxy-based evaluation. Human-based studies design an experiment where participants
are recruited and asked to fill out a questionnaire about different explanation methods. This
data is then analyzed in an attempt to answer a question regarding the different explanation
methods (e.g., which one is more concise). The participants are usually recruited using
a crowd-sourcing service if non-specialized participants are acceptable. If specialized
participants are needed, for example doctors, the authors usually recruit a cohort from
local or regional organizations. Out of the papers reviewed for this survey 73 percent use
proxy-based and 27 percent conduct human studies. This statistics highlights a need for



Appl. Sci. 2021, 11, 4573 7 of 21

more human-verified explanation techniques. This section will discuss human-based and
proxy-based methods to measure explanation quality.

“Human-based” can be broken down into two more categories which are specific tasks
or general tasks. For specific tasks, studies can be designed to evaluate specific applications.
An example of this would be explaining predictions for ICU duration. The other category
is when the application is more general or not known. This is when the desire is to test
the explanation method in a general setting. An example of this is Grad-CAM++ [93],
SHAP [80], or LIME [85] which all were tested with randomized human studies using
Amazon Mechanical Turk. The authors produced heatmaps for 5 classes in the ImageNet
testing set totaling 250 images. These maps, along with their corresponding original image,
were shown to 13 human subjects and asked which explanation algorithm invoked more
trust in the underlying model. They consider the algorithm with more votes the model
with greater trustworthiness.

Sometimes designing and carrying out human studies is infeasible or inconvenient
due to various reasons such as IRB, recruitment, or funding. There are also cases where
human-based studies do not measure what is desired. In these studies a formal definition
of explanation is used as a proxy for explanation quality. The non-triviality here is choosing
what proxy is best to be used. Some examples are showing increased performance for a
method that has been deemed explainable based on human studies or showing that method
performs better with respect to certain regularizers. An example of this approach is Saliency
Maps which measure explanation quality using a localization task on benchmark datasets.

3. Explanation Methods for Deep Learning Cancer Detection Models

This section is separated into two sub-sections. First, post-hoc explanation methods
will be discussed. The second section will discuss ad-hoc methods. Ad-hoc methods
aim to develop intrinsically explainable deep learning systems as opposed to providing
after-the-fact explanations.

Explainability for deep learning models within a medical context is essential to create
safe and responsible systems suitable for clinical implementation. Explainability attempts
to alleviate risk and build trust [96,97]. There are numerous papers published each year
regarding explainability and interpretability for healthcare [98]. This section will further
discuss some of these works regarding image explanation methods for cancer detection.

3.1. Post-Hoc

A majority of deep learning cancer detection models utilize post-hoc methodologies
due to their ease of implementation. Post-hoc methods can be used to analyze the learned
features of the model and to diagnose overfitting. This provides a feedback loop for the
researcher and allows them to improve the model. It also shows the discriminative areas of
the image. This section will review recent studies that apply post-hoc explanation methods
to breast cancer, prostate cancer, lung cancer, brain cancer, and liver cancer.

The predecessor for post-hoc techniques such as Respond-CAM, Pyramid-CAM, Grad-
CAM, Grad-CAM+, and Grad-CAM++ is class activation maps (CAM) which generates a
heatmap using global average pooling. In [99] the method shows the region of the image
used the identify the label by outputting the spatial average of the feature maps of each unit
at the last layer. It was tested as weakly supervised segmentation on the ILSVRC dataset
with a top 5 error rate of 37.1 percent which is only 3 percent away from the top score.

CAM is formally defined as the following. Let fk(x, y) represent the activation of unit
k in the last convolutional layer at spatial location (x, y). The result of performing global
average pooling is Fk = ∑x,y fk(x, y) therefore for a given class, c, the input to the softmax,
Sc is ∑k wc

kFk where wc
k is the weight corresponding to class c for unit k. Essentially, wc

k
indicates the importance of Fk for class c. Finally the output of the softmax for class c, Pc is
given by exp(Sc)

∑c exp(Sc)
By plugging Fk = ∑x,y fk(x, y) into the class score, Sc, we obtain

Sc = ∑
k

wc
k ∑

x,y
fk(x, y) = ∑

x,y
∑
k

wc
k fk(x, y) (1)
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The authors define Mc as the class activation map for class c, where each spatial
element is given by

Mc(x, y) = ∑
k

wc
k fk(x, y) (2)

A further developed version of CAM is Grad-CAM. In [84], Grad-CAM calculates
the gradients of the class score with respect to the activation of the feature maps which
are globally average pooled over the width and height dimensions. This is followed by a
weighted combination which is passed through a ReLU function. This works best with the
final layer because of the larger receptive field compared to the beginning layers. It was
evaluated using the ImageNet localization challenge and outperforms CAM with a top-5
error of 10.89 percent. It achieves an IoU score of 49.6 percent on the PASCAL VOC 2012
segmentation data set. They also used a human study and found Grad-CAM outperforms
guided backpropagation by 16.79 percent.

In order to obtain the class-discriminative localization map Grad-CAM Lc
Grad−CAM ∈ Ru×v

of width u and height v for any class c, we first compute the gradient of the score for class c,
yc (before the softmax), with respect to feature map activations Ak of a convolutional layer,
i.e., ∂yc

∂Ak
. These gradients flowing back are global-average-pooled over the width and height

dimensions (indexed by i and j respectively) to obtain the neuron importance weights αc
k :

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
(3)

During computation of αc
k while backpropagating gradients with respect to activations,

the exact computation amounts to successive matrix products of the weight matrices and
the gradient with respect to activation functions till the final convolution layer that the
gradients are being propagated to. Hence, this weight αc

k represents a partial linearization
of the deep network downstream from A, and captures the importance of feature map k
for a target class c. We perform a weighted combination of forward activation maps, and
follow it by a ReLU to obtain,

Lc
Grad−CAM = ReLU(∑

k
αc

k Ak) (4)

The authors of [29] propose a modified version of CAM called pyramid gradient-
based class activation.they used PG-CAM a densely connected encoder decoder-based
feature pyramid network (DC-FPN) as a backbone structure, and extracts a multi-scale
Grad-CAM that captures hierarchical features of a tumor. Mathmatically, PG-CAM is
defined as follows.

PGCAMc =
5

∑
p=1

ReLU(∑
kp

∑
i

∑
j

∂Lc

∂ f
kp
ij

f
sp
kp
(X, Y)) =

5

∑
p=1

GradCAM
sp
c (5)

where kp is the unit of the feature map sp, GradCAMc
sp is a GradCAM generated from the

feature maps delivered from each scale p, and the PG-CAM aggregating the GradCAMs
will consequently contain information on multiple scales of the feature pyramid.

Integrated gradients has became popular due to its ability to explain models that use
different data modalities. This is in addition its ease of use, theoretical foundation, and
computational efficiency. Formally, Integrated Gradients is defined as follows

IG(x) = (xi − x′i)×
∫ 1

α=0

∂F(x′ + α× (x− x′))
∂xi

dα (6)

where i is the feature, x is the input, x′ is the baseline, and α interpolation constant to
perturb features by. Note that this integral is often approximated due to computational
costs and numerical limits.
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Occlusion is a simple to perform model agnostic approach which reveals the feature
importance of a model. It can reveal if a model is overfitting and learning irrelevant
features as in the case of adversarial examples. Adversarial examples are inputs designed
to cause the model to make a false decision. In that case, the model misclassifies the image
(say malignant as benign) despite the presence of discriminating feature occluding all
features (pixels) one-by-one and running the forward pass each time can be computationally
expensive and can take several hours per image. It is common to use patches of sizes
such as 5 × 5, 10 × 10, or even larger depending on the size of the target features and
computational resources available.

CAM and Grad-CAM calculate the change in class score based on features extracted
by the model. These two methods then visualize the features that cause the largest change
in class score. On the other hand, occlusion occludes part of the image and then calculates
the change in class score using the occluded image. It repeats this for many patches of the
image and the patch that produces the largest change in class score is deemed the most
important. Both methods produce a heatmap highlighting the most discriminative areas of
the image. Therefore, the largest difference between the two techniques is how the they
compute the most discriminative area of the image. The disadvantage of occlusion is that
it is computationally expensive and takes longer to compute than CAM or Grad-CAM.
The advantage of Grad-CAM and CAM is that they can compute their results in one
pass instead of many passes like occlusion techniques. The disadvantage of Grad-CAM
and CAM is that they only take into account the feature maps therefore could produce
misleading results whereas occlusion takes into account different patches of the image.
A summary of these methods is presented in Table 1.

3.1.1. Brain Cancer

The authors of [100] attempt to incorporate explainability into the model before train-
ing. The authors assess the advantages of implementing features to increase explainability
early in the development process, by training a neural network to differentiate between
MRI slices containing either a vestibular schwannoma, a glioblastoma, or no tumor. They
report that after training to detect explainable features, the network highlights more
explainable regions.

In [29] PG-CAM to Grad-CAM was compared and it was found that PG-CAM out-
performed Grad-CAM by delivering a 23 percent higher localization accuracy for the
validation set.

3.1.2. Liver Cancer

A CNN was developed to classify liver lesions by [101]. To interpret the network, the
authors visualized the activations of the last convolution layer. The authors calculated a
feature score for each feature by hindering the network to utilize that feature and observing
the difference in class score. They tested if the network was able to discover explainable
radiological features. The model obtained a PPV of 76.5 ± 2.2 in identifying the 1–4 correct
radiological features for the 60 manually labeled test lesions.

3.1.3. Breast Cancer

Deep learning has achieved remarkable accuracy for the detection and segmentation
of breast cancer [102–111] . Detection in Mammography using Deep Convolutional Neural
Networks by the author of [112] employee deep convolutional neural networks to localize
classifications and masses in mammogram images without training directly on the full
images. The authors implement a VGGNet architecture and report an accuracy of 92.53.
The network was train by using images cropped around a ROI and then tested on the
original, unaltered images. The authors then apply Grad-CAM.

A Neoadjuvant chemotherapy (NAC) aims to minimize the tumor size before surgery.
Predicting response to NAC could reduce toxicity and delays to effective intervention. The
authors of [113] implement a CNN to predict response using DCE-MRI images and then
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produce Grad-CAM heatmaps for post-hoc explanation. They report accuracy ranging
from 0.69 to 0.88.

Table 1. Post-Hoc explanation techniques for cancer classification.

Method Results Perturbation or Gradient Local or Global Model-Agnostic or Model-Specific

SHAP Perturbation Both Model-Agnostic

CAM Gradient Local Model-Specific

Grad-CAM Gradient Local Model-Specific

PG-CAM Gradient Local Model-Specific

Occlusion Perturbation Local Model-Specific

Saliency Map Gradient Local Model-Agnostic

Integrated Gradients Gradient Local Model-Agnostic

3.1.4. Prostate Cancer

Deep learning has also shown great success for prostate cancer [114–126] . The authors
of [127] implement a convolution feature extractor followed by a SVM classifier for the task
of detecting prostate cancer. They report an AUC of 0.86 for T2W images and 0.93 for ADC
images. After prediction the authors generate CAM heatmaps for the MRI images to show
localization of prostate lesions.

The authors of [32] demonstrated the ability to localize prostate lesions in T2W trans-
verse images using Grad-CAM. The authors used MRI images for classification as well
as tabular data such as weight, height, and age from ProstateX dataset. Deep learning
techniques were used for classification. After classification GradCAM, Saliency Maps,
LIME and Deep-SHAP were used to provide post-hoc explanations. They reports results
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of an average error of 6.93 pixels. The authors also made the qualitative observation that
different explanation methods highlight different aspects of the resulting classification.

3.1.5. Lung Cancer

The authors of [128] described the goal of their paper “To explain predictions of a
deep residual convolutional network for characterization of lung nodule by analyzing heat
maps.” The authors used occlusion to systematically block regions of a nodule and map
drops in malignancy risk score to generate clinical attribution heatmaps on 103 nodules
from Lung Image Database Consortium image collection and Image Database Resource
Initiative (LIDC-IDRI) dataset, which were analyzed by a thoracic radiologist. They report
an accuracy of 85 percent for classification and qualitatively access their explanation results.

The authors of [129] applied XAI visualization to gain an insight into the features
learned by a DCNN trained to classify estrogen receptor status (ER+ vs. ER−) based on
dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) of the breast. The au-
thors developed a network that utilized “transfer-trained dual-domain DCNN architecture
derived from the AlexNet model trained on ImageNet data that received the spatial (across
the volume) and dynamic (across the acquisition sequence) components of each DCE-MRI
ROI as input”. The authors implemented integrated gradients as a post-hoc explanation
technique. They observed that the CNN learned relevant features from the spatial and
dynamic domains. They note there were differences in the contributing features from the
two domains.

3.2. Ad-Hoc

Ad-Hoc explanation techniques modify the training procedure and/or network archi-
tecture to learn explainable features. An additional proposed approach to learn explainable
features was the work by the authors of [130] using supervised iterative descent. The
authors’ approach learns explainable features for image registration by incorporating a
shared modality-agnostic feature space and using segmentations to derive a weak supervi-
sory signal for registration. The authors report their experiments “demonstrate that these
features can be plugged into conventional iterative optimizers and are more robust than
state-of-the-art hand-crafted features for aligning MRI and CT images”. This is significant
with respect to medical imaging because of the multi-modality aspect which is common to
medical imaging.

The authors of [131] propose a two part explainable deep learning network. One part
extracts features and predicts while the other part generates an explanation. The authors
create a mathematical model to extract high-level explainable features. The explanation
model reports information such as what are the most important features, what is their rank,
and how does each one influence the prediction.

Capsule networks have been recently utilized due to the impression they are more
explainable compared to CNN [132]. The authors of [133] state that convolutions neural
networks struggle with explainability therefore they propose explainable capsules, or
X-Caps. X-Caps utilize a capsule network architecture that is designed to be inherently
explainable. The authors design to capsule network to learn an explainable feature space
by encoding high-level visual attributes within the vectors of a capsule network to perform
explainable image-based diagnosis. The authors report accuracy similar to that of unex-
plainable models demonstrating accuracy and explainability are not mutually exclusive.
The authors define a routing sigmoid as follow.

ri,j =
exp(bi,j)

exp(bi,j) + 1
(7)

where ri,j are the routing coefficients determined by the dynamic routing algorithm for
child capsule i to parent capsule j and the initial logits, bi,j are the prior probabilities that
the prediction vector for capsule i should be routed to parent capsule j.
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Lr =
γ

H ×W

W

∑
x

H

∑
y
||Rx,y −Ox,y

r || with Rx,y = Ix,y × Sx,y|Sx,y ∈ 0, 1 (8)

Let the critical response maps A(x|c) for a given CT scan slice image x for each
prediction c be computed via back-propagation from the last layer of the last explainable
sequencing cell in the proposed SISC radiomic sequencer. The notation used in this study
is based on the study done by the authors of [134] for consistency. The last layer in the
explainable sequencing cell at the end of the proposed SISC radiomic sequencer contains
N = 2 nodes, equal to the number of possible predictions (i.e., benign and malignant).
The output activations of this layer are followed by global average pooling and then a
softmax output layer. So, to create the critical maps for each possible prediction, the back-
propagation starts with the individual prediction nodes in the last layer to the input space.
For a single layer l, The deconvoluted output response rl is given by,

hl =
K

∑
k=1

fk,l ∗ pk,l (9)

where fk is the feature map and pl is the kernel of layer l. the symbol ∗ represents the
convolution operator. Therefore, the critical response map A(x|c), for a given prediction c
is defined as,

A(x|c) = D′1M1...DL−1M′L−1Dc
LFL (10)

where M′ is the unpooling operation and Dc
L is the convolution operation at the last layer

with kernel pL replaced by zero except at the cth location corresponding to the prediction c.
The majority of ad-hoc explanation techniques attempt to learn an explainable fea-

ture space using modifications to traditional architectures that vary from modifying loss
functions to modifying the procedure for computing convolutional features. Some papers
argue the best approach is to move away from convolutional neural networks to capsule
networks due to greater explainability with similar predictive performance though data is
limited [133].

3.2.1. Brain Cancer

A capsule network trained to recognize explainable radionomic features was proposed
by the authors of [132]. The explainability of capsule networks is studied. The authors’
results show that the radiomics features extracted by Capsule networks can not only
distinguish between the tumor types, but also show considerable correlation with hand-
crafted features, which are more acceptable and reliable from a physician’s point of view.

3.2.2. Lung Cancer

The authors of [135] proposed An explainable Deep Hierarchical Semantic Convolu-
tional Neural Network for Lung Nodule Malignancy Classification in 2018. The proposed
network provides two levels of output. One level contains the low-level, explainable
features for radiologists and the second level provides a high-level malignancy prediction
score. They incorporate both of these tasks in their loss function therefore optimizing the
network parameters for both levels mentioned above. The authors use the LIDC dataset
which contains annotated lung nodule characteristics. The network achieves a test AUC of
0.856. For the semantic, explainable features task they achieved mean accuracy of 0.908,
0.725, 0.719, 0.834 and 0.552; mean AUC score of 0.930, 0.776, 0.803, 0.850 and 0.568; mean
sensitivity of 0.930, 0.758, 0.673, 0.855 and 0.552; and mean specificity of 0.763, 0.632, 0.796,
0.636 and 0.554 for calcification, margin, subtlety, texture, and sphericity, respectively.

Another approach is SISC: End-to-end explainable Discovery Radiomics-Driven Lung
Cancer Prediction via Stacked explainable Sequencing Cells was proposed by the authors
of [134]. They implement an end-to-end system that automatically discovers semantically
meaningful radiomic features using radiomic sequencers. The radiomic sequencer being
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discovered possesses a deep architecture comprised of stacked explainable sequencing
cells (SISC). The network produces an AUC score of 89.06.

3.2.3. Breast Cancer

DeepMiner was proposed by [136] in 2018. Their framework attempts to discover
explainable representations and build explanations using these representations for medical
purposes, specifically breast cancer. An advantage to this approach is there is no need to
train on full medical reports. They attempt to analyze the individual units rather than train
a network to output a medical report. Their network is composed of three phase. First, they
crop patches of the mammogram image. They then train a network using these cropped
patches. Second, they have human experts annotate the units from this network. Third,
they generate explanations by ranking the annotated units. The utilize transfer learning
and obtain a AUC for 0.838 for normal patches, 0.802 for benign patches, and 0.872 for
malignant patches. They test the explanation quality by using the Greedy Matching Score
to compare the generated explanations with the explanations in the ground truth resulting
in a score of 0.627.

In general, ad-hoc techniques provide more advantageous explanations compared
to post-hoc techniques due to their inherently explainable design. One can argue that
this makes the explanations more trustworthy. The disadvantage of ad-hoc techniques is
their accuracy and scalability. When altering deep learning architectures to be inherently
explainable there is usually an amount of accuracy lost. Also, the scalability of ad-hoc
methods comes into question. In general, there are claims of post-hoc techniques not
being as trustworthy since they are attempting to explain inherently unexplainable models.
However, they do not suffer from the accuracy and scalability problems the ad-hoc methods
do. See Table 2 for an overview of both post-hoc and ad-hoc methods.

Table 2. Explanation Techniques for Deep Learning Cancer Detection.

Reference Condition Explanation Type Method Evaluation Type 1

Wu et al., 2018 [136] Breast Cancer Ad-Hoc Deep-Miner PE
Shen et al., 2019 [135] Lung Cancer Ad-Hoc explainable Deep Hierarchical Semantic CNN PE

Kumar et al., 2019 [134] Lung Cancer Ad-Hoc SISC NS
Xi et al., 2018 [137] Breast Cancer Post-Hoc Grad-CAM NS
Lee et al., 2018 [29] Brain Cancer Post-Hoc Pyramid Grad-CAM PE

Wind et al., 2020 [100] Brain Cancer Post-Hoc Grad-CAM HE
Yang et al., 2017 [127] Prostate Cancer Post-Hoc CAM NS
Gulum et al., 2020 [32] Prostate Cancer Post-Hoc Grad-CAM and Saliency Maps PE

Venugopal et al., 2020 [128] Lung Cancer Post-Hoc Grad-CAM NS
Zhen et al., 2020 [138] Liver Cancer Post-Hoc Saliency Maps NS
Wang et al., 2019 [101] Liver Cancer Post-Hoc CAM HE

Papanastasopoulos et al., 2020 [129] Breast Cancer Post-Hoc Integrated Gradients HE
Afshar et al., 2019 [132] Brain Cancer Ad-Hoc Capsule Network HE

LaLonde et al., 2020 [133] Lung Cancer Ad-Hoc X-Caps HE
Pintelas et al., 2020 [131] Brain Cancer Ad-Hoc explainable Model CS

Blendowski et al., 2019 [130] Lung Cancer Ad-Hoc Supervised Iterative Descent PE
1 Evaluation type for explanation method. PE = Proxy-Based Experiment. HE = Human-Based Experiment. CS = Case Study. NS = Not Stated.

4. Discussion

There has been significant research progress with regards to explainable deep learning
cancer detection systems. The majority of methods utilized in the literature are local,
post-hoc methods that are usually model and data specific. Current research demonstrate a
trajectory heading towards explainable deep learning for cancer diagnosis, but there is still
work to be done to fully realize the implementation of these systems in a clinical setting.

When a methodology provides an obviously wrong explanation it is important to
be able to probe more to find out what went wrong. There is little research around
this area despite being important for clinical implementation. This would help alleviate
misclassification errors and provide greater insight to the clinician. Being able to quantify
uncertainity in explanations is important for clinicians as well. This would give the clinician
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a gauge for the amount of trust to have in an explanation. This would also help alleviate
potential errors introduce by explanation techniques.

Since the end user of explainability approaches for cancer detection will be clinicians
and their patients, it is essential to take into account what they consider to be explainable.
This is an important aspect that is often ignored by explanation studies. Most algorithms are
measured using quantitative methods such as log loss or human studies of non-clinicians
recruited from a service such as Amazon Mechanical Turk. There is a need to incorporate
clinicians into the design process of these algorithms and to evaluate the algorithms with
the doctors that will be using them. There are studies that attempt to design clinical
visualization development and evaluation with clinicians and researchers. The authors
of [139] introduce Clinical-Vis which is an EHR visualization based prototype system for
task-focused design evaluation of interactions between healthcare providers (HCPs) and
EHRs. They design a study where they recruit 14 clinicians. They compare the clinicians
interaction with their systems against a baseline system. They qualitatively analyzed the
differences between systems by having the clinicians think out loud during the assigned
tasks. The authors also conducted a survey after the task was complete and analyzed the
surveys. The measured time taken to arrive at a decision, accuracy of decision, confidence
in decision, and TLX scores which the authors define as “Self-reported mental demand,
physical demand, effort level, hurriedness, success and discouragement on a scale of 0–10”.
Overall, they found their system performed above baseline across all measures. The authors
of [59] perform an iterative design of an explanation system for recurrent neural networks
(RNN) including machine learning researchers and clinicians. They use feedback from
clinicians while designing the algorithm. They evaluate it using a mixture of techniques
including quantitative, qualitative, and case-studies. To the best of our knowledge, there
are no studies such as this for explanation techniques. There is a study that interviews a
cohort of clinicians to gain insight on what they consider to be explainable deep learning.
The authors of [86] interviewed 10 clinicians belonging to two groups—Intensive Care Unit
and Emergency Department. The goal of this study was to shed light on what clinicians
look for in explainable machine learning and developing a metric to measure it. The
authors interviewed each clinician for 45–60 min. They proposed the clinician’s notions of
explainability to determine what each clinician understood by the term and what he/she
expected from ML models in their specific clinical setting. They designed an hypothetical
scenario regarding the use of an explainable deep learning system to gain insights into
what the clinicians looked for in explainable systems. The authors found that the clinicians
viewed explainability as a means of justifying their clinical decision-making (for instance,
to patients and colleagues) in the context of the model’s prediction. The clinicians desired
to understand the clinically relevant model features that align with current evidence-
based medical practice. The implemented system/model needs to provide clinicians with
information about the context within which the model operates and promote awareness
of situations where the model may fall short (e.g., model did not use specific history or
did not have information around certain aspect of a patient). Models that lacked accuracy
were deemed suitable as long as an explanation of the prediction was provided. The
authors state a quote that stood out was ”the variables that have derived the decision of the
model” and mentioned it was brought up by 3 ICU, 1 ED clinicians which is also identified
in. The authors report that the clinical thought process for acting on predictions of any
assistive tool appears to consist of two primary steps following presentation of the model’s
prediction: (i) understanding, and (ii) rationalizing the predictions. The clinicians stated
they wanted to see both global and local explanations. Clinicians found finding similar
training examples to be useful is certain applications such as diagnosis but not as much in
other cases. The clinicians reported one of the most sought after features was a measure
for uncertainty. ‘Patient trajectories that are influential in driving model predictions’ was
reported to be an important aspect of model explanation. These studies provide direction
for future algorithmic development as well as a call for more research regarding the clinical
performance of current explanation techniques.



Appl. Sci. 2021, 11, 4573 15 of 21

Future Directions

There are numerous works that propose novel explanation methods but little focus
on what makes an explanation suitable for the context it will applied. This is essential for
domains such as cancer diagnosis. Furthermore, more studies are needed to identify what
clinicians deem explainable and use these insights as a measuring stick for explanation
methods for deep learning cancer detection systems. Another important direction is
using these insights to derive quantitative explanation metrics. The majority of metrics
used to measure explanation quality are designed without clinicians involved. To create
explanation techniques suitable for clinician integration is is necessary to measure them
in a way guided by end-user criteria. Explanation techniques also can be useful to extract
clinically relevant features. There are studies that use explanation techniques to localize
lesions but these models do not extract information such as shape, volume, area, and
other relevant characteristics. A future opportunity is to extract these features without
computationally expensive segmentation. With this, clinicians do not need to extract these
features manually. If explanation techniques are implemented into clinical settings, the
system can automatically extract these characteristics for the clinicians thus aiding in the
diagnosis process.

The common approach for providing an explanation for image classification is to
produce a heatmap showing the most discriminative region. More work needs to be done
to provide greater insight than using this direct approach. For example, it would provide
more insight if explanation methods could should why a classification was not made
and quantify the uncertainity of the explanation. Being able to reason for and against
is also important to provide greater insight and explainability. More studies should be
conducted on where current methods fail and why. This would provide the community
more insight on how to create more robust explanation methods. It would also provide
greater confidence the methods we currently have.

Currently, the majority of cancer detection studies utilize post-hoc techniques. As
stated in [33,140] it is advantageous to develop intrinsically explainable (i.e., ad-hoc)
deep learning models. Post-hoc explanation methods may be useful for diagnosing the
deep network model but the insight gained is unsubstantial. A model suited for clinical
implementation should be fully explainable with the predictive power of modern deep
learning approaches. Post-hoc methods only explain where the network is looking which is
not enough information for high stakes decision making. Post-hoc methods are fragile and
easily manipulated [141,142] and can provide misleading results which hinders clinical
implementation. Some approaches attempting ad-hoc models were discussed in the paper
with results that show that intrinsically explainable models can achieve accuracy similar
to that of unexplainable models. More research is needed to verify this and evaluate the
clinical performance.

5. Conclusions

A review on explainability techniques for cancer detection using MRI images was
presented. Different evaluation methods for these methods were discussed with their
respective significance. In addition to this, what clinicians deem to be explainable was
also discussed along with the gap between what current methods provide versus what
clinicians want. The importance of designing explanation methods with this in mind was
highlighted. A critical analysis and suggestions for future work were then presented to
conclude and future efforts were suggested based on the current state of the literature.

In summary, there is a need to incorporate clinicians in the design process for these
algorithms and a need to build intrinsically explainable deep learning algorithms for cancer
detection. The majority of explanation techniques are designed for general use and do
not incorporate context. This is important for clinical use cases due to the unique, high-
risk environment. It is important to evaluate proposed methods alongside clinicians to
determine the clinical strengths and weaknesses of the methods. This has the potential to
help guide future efforts. Furthermore, there is a need to go beyond basic visualization



Appl. Sci. 2021, 11, 4573 16 of 21

of the discriminative regions. Some promising future directions include quantifying the
explanation uncertainty, providing counter examples, and designing ad-hoc models that
are intrinsically explainable.
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