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Abstract: This paper focuses on the statistical analysis of mimetic muscle rehabilitation after head
and neck surgery causing facial paresis in patients after head and neck surgery. Our work deals with
an evaluation problem of mimetic muscle rehabilitation that is observed by a Kinect stereo-vision
camera. After a specific brain surgery, patients are often affected by face palsy, and rehabilitation
to renew mimetic muscle innervation takes several months. It is important to be able to observe
the rehabilitation process in an objective way. The most commonly used House–Brackmann (HB) scale
is based on the clinician’s subjective opinion. This paper compares different methods of supervised
learning classification that should be independent of the clinician’s opinion. We compare a parametric
model (based on logistic regression), non-parametric model (based on random forests), and neural
networks. The classification problem that we have studied combines a limited dataset (it contains only
122 measurements of 93 patients) of complex observations (each measurement consists of a collection
of time curves) with an ordinal response variable. To balance the frequencies of the considered classes
in our data set, we reclassified the samples from HB4 to HB3 and HB5 to HB6—it means that only
four HB grades are used for classification algorithm. The parametric statistical model was found to be
the most suitable thanks to its stability, tractability, and reasonable performance in terms of both accuracy
and precision.

Keywords: rehabilitation; House–Brackmann scale; functional data analysis; ordinal classification;
Kinect evaluation

1. Introduction

Image analysis in medicine has been a popular topic in recent decades, and it is still
evolving and finding further applications. Imaging techniques such as X-rays, computed
tomography, and magnetic resonance imaging have been known and used for many years.
However, new imaging methods have recently been developed (e.g., depth maps, 3D
reconstructions, etc.) and their use in modern medicine is breathtaking.

Thus, a new area of image analysis in medicine is beginning, which is expected to
be useful for diagnosis, rehabilitation, or validation of the results. This area does not aim
to replace clinicians (this would not even be possible), but it does aim to save their time
and help to interpret the results. A number of specific applications for biomedical image
analysis can be found in the literature; for example, image analysis can be used to diagnose
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a large number of neurological diseases [1,2] or sleep apnea [3,4]. Furthermore, movement
analysis has been used in rehabilitation [5].

It is possible to find a number of innovative diagnostic procedures based on image
analysis. A research group based in Oklahoma University introduced a radiomics-based
machine learning model to predict peritoneal metastasis in gastric cancer patients using
a small and imbalanced computed tomography (CT) image dataset [6]. Meanwhile, 3D
reconstruction also plays an important role in precise onco-surgery [7].

This paper is focused on 3D reconstruction and statistical analysis of mimetic mus-
cle rehabilitation after head and neck surgery has caused facial paresis. The muscles of
the face include all mimetic muscles innervated by the cranial nerve VII (facial nerve).
Within the parotid gland, the facial nerve terminates by bifurcating into five motor
branches. These innervate the muscles: temporal branch—innervates the frontalis, or-
bicularis oculi, and corrugator supercilii; zygomatic branch—innervates the orbicularis
oculi; buccal branch—innervates the orbicularis oris, buccinator and zygomaticus muscles;
marginal mandibular branch—innervates the mentalis muscle; cervical branch—innervates
the platysma. Two masticatory muscles (masseter, temporalis) that are supplied by the mo-
toric portion of the cranial nerve V3 (mandibular nerve) also contribute to the contour of
the face [8].

In our analysis, we treat the measurements (i.e., trajectories of selected points on
a face) as functional data. Functional data analysis has been applied in many diverse
areas, including (bio)medical data. Let us recall the earlier review paper [9] and a more
recent paper [10], to name just a few. Besides the parametric model, we also applied a non-
parametric approach that is based on (ordinal) random forests. A very recent application
of random forests for clinical risk prediction based on complex data can be found in [11].

Clinicians require an objective, reliable, and valid clinical tool to accurately describe
a patient’s facial function, to monitor status over time, and to assess the course of recovery
and the effects of treatment. For a grading system to have clinical usefulness, it must be
easy to administer, require little time or equipment, and be sensitive enough to detect
clinically important changes [12].

This work builds on previous publications and the work of several research groups
dealing with similar topics [13].

1.1. Biomedical Background

Facial nerve palsy has a significant physical and emotional toll on affected individuals.
A thorough history and physical examination are needed to narrow the broad differential
diagnosis and to determine an appropriate management plan [14].

We distinguish two major types of facial nerve palsy: central (upper) motoneuron
lesion between cortex and nuclei of the facial nerve in the brainstem and peripheral (lower)
motoneuron lesion between nuclei in the brainstem and peripheral organs. The most
common cause of lover motoneuron lesion is idiopathic facial nerve palsy, also known
as Bell’s palsy. Closely following Bell’s palsy are infection and inflammation. Trauma,
including surgical trauma in head and neck surgery, is the third most common cause
of facial nerve paralysis in the general population. Other important etiologies of facial
nerve dysfunction include herpes zoster oticus and neoplasms of the parotid gland, brain,
and the petrous part of the temporal bone [15].

Cases of complete paralysis after surgery in which the onset of paralysis is inde-
terminate should be treated as immediate in nature. Delayed paralysis or incomplete
paresis should be treated medically, with high-dose steroids. A good prognosis should be
anticipated in these cases [16].

1.1.1. Electrodiagnostics of Facial Nerve Palsy

Electrophysiological tests are mainly used to determine the severity and prognosis of
a peripheral facial nerve lesion [17].
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Electroneurography objectively records the amplitude of electrically evoked muscle
action potentials. It analyses the evoked compound muscle action potential (CMAP) of
a specific facial muscle after transcutaneous stimulation of the main trunk of the facial
nerve [18]. The main trunk is stimulated supramaximally at its exit from the stylomastoid
foramen with a bipolar stimulator or stimulating electrodes. The CMAP is recorded
using a bipolar pair of surface electrodes placed on the target muscle. Important test
between 72 h and 21 days after onset, interpretation of result in comparison to needle
electromyography (nEMG) result [19]. Nerve injury is expressed as percentage of function
relative to the normal side [16].

Electromyography (EMG) measures volutional responses of the facial muscles without
electrostimulation. A facial motoneuron unit consists of a facial motoneuron and all muscle
fibers innervated by this motoneuron. Needle EMG (nEMG) is the method used to analyse
a facial motor unit action potential (MUAP) recorded from a needle electrode inserted
in the facial muscle. This examination is important 2–3 weeks after onset of the palsy,
because pathologic activity can occur in case of facial nerve degeneration. In the later time
course, nEMG is important to detect reinnervation potentials as signs of reinnervation of
the facial muscles [18]. Surface electromyography (sEMG) works with voluntary activity of
the facial muscles and not with external stimulation. The recording field is more superficial
and larger than when using nEMG. sEMG is not used for prognostication. Multichannel
sEMG is important if the interplay of different facial muscles should be analysed.

Blink-reflex testing is a test that allows stimulation of the facial nerve proximal to
the lesion site. Testing is electrostimulation of the supraorbital branch of the trigeminal
nerve (V1) and simultaneous sEMG recording from the orbicularis oculi muscle on both
sides. Standard blink testing involves electrical stimulation of the supraorbital nerve
on the affected side combined with a 2-channel simultaneous sEMG recording from both
orbicularis oculi muscles. The exit of the supraorbital nerve in the supraorbital foramen
is palpated on the rim of the orbit [20]. It may be most helpful if facial nerve damage is
suspected to occur within the brainstem [18].

1.1.2. Facial Rehabilitation

Timely intervention is needed to provide patients with the best chance for recovery of
facial nerve function [14].

The pharmacological treatment depends on the cause of facial nerve paresis and gener-
ally most often are used corticosteroids, antiviral agents, calcium channel blockers, vitamins
to support regeneration of the nerve.

Neuromuscular electrostimulation therapy is used for the direct or indirect therapeutic
stimulation of nerves, muscles. In general, three stimulation frequency ranges can be
distinguished: low-frequency, medium-frequency, and high-frequency currents. The low-
frequency stimulation currents (up to about 1000 Hz) are suitable for creating synchronous
muscle contractions. Stimulation can be sensory or motor, but it should always be below
the discomfort threshold. The current is applied via electrodes. These can either be inserted
into the tissue surrounding a nerve, or into the muscle (percutaneous stimulation) or into
the skin applied (transcutaneous stimulation) [21].

One of the most important parts of treatment is facial rehabilitation, which typically
includes five main components, as follows:

1. Patient education to explain the pathologic condition and set realistic goals;
2. Soft tissue mobilisation to address facial muscle tightness and edema;
3. Functional retraining to improve oral competence;
4. Facial expression retraining, including stretching exercises;
5. Synkinesis management [22].

Synkinesis refers to the abnormal, unwanted, involuntary facial movement that occurs
coupled with purposeful facial movement. For example, oro-ocular synkinesis occurs
when movement of the lips results in a closure of the eyelids. Mild forms of synkinesis may
go undetected, but severe forms cannot be ignored because they may cause severe facial
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pain and facial tightness. The treatment of facial synkinesis is one of the most challenging
aspects of facial paralysis care [14].

1.1.3. Evaluation of Facial Nerve Function

For clinicians, it is essential to evaluate the function of the facial nerve objectively.
In everyday practice, the most commonly used tool is the standard grading system, such as
the House–Brackmann scale. This system involves a six-point scale (with I being normal
and VI total) of flaccid paralysis (Table 1). Group I represents normal facial movement
with no weakness or synkinesis. A patient placed in group II has only slight asymmetry of
facial movements with a possible slight synkinesis. Patients in group III have an obvious
asymmetry with obvious secondary defects but some forehead movement. The presence
of forehead movement indicates that there has not been total degeneration of the nerve.
Patients in group IV have an obvious asymmetry, no forehead movement, and weakness
with possible disfiguring synkinesis or mass action. When there is only slight movement of
the face, no forehead movement, and not enough facial function to return to have secondary
defects, the patient is placed into group V. The absence of any movement or tone places
the patient in group VI [23].

Table 1. House–Brackmann scale (HB).

Grade Description Characteristic

I Normal function normal facial function in all areas

II Mild dysfunction Gross: slight weakness on close inspection; very slight synkinesis
At rest: normal tone and symmetry
Motion Forehead: moderate to good function
Eye: complete closure with minimum effort
Mouth: slight asymmetry

III Moderate dysfunction Gross: obvious but not disfiguring
difference between two sides; noticeable synkinesis
At rest: normal tone and symmetry
Motion Forehead: slight to moderate movement
Eye: complete closure with effort
Mouth: slightly weak with maximum effort

IV Moderately severe dysfunction Gross: obvious weakness and disfiguring asymmetry
At rest: normal tone and symmetry
Motion Forehead: none
Eye: incomplete closure
Mouth: asymmetric with maximum effort

V Severe dysfunction Gross: only barely perceptible motion
At rest: asymmetry
Motion Forehead: none
Eye: incomplete closure
Mouth: slight movement

VI Total paralysis no movement

The House–Brackmann scale produces comparable results between different observers
in patients with normal or only mildly impaired facial nerve function. Interobserver vari-
ability can increase depending on the severity of facial nerve paresis. However, House–
Brackmann does not promote uniformity of reporting and comparison of outcomes in pa-
tients with moderate or severe facial nerve paresis [24].

2. Materials and Methods

Our study included 93 patients, with 122 undergoing head and neck surgical pro-
cedures with the specific risk of postoperative facial nerve dysfunction. The data were
collected from 3.2.2019 to 14.5.2020.

Every patient was measured over a defined schedule of check-ups (the first one
before the surgery and then repetitively based on a defined schedule). The patient is
asked to perform a series of exercises using the mimetic muscles during the examination,
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and the clinician evaluates this exercise numerically. The main disadvantage of this method
is that these measurements are strongly subjective.

Figure 1 shows scheme of the whole process from data acquisition to model development.

data
acquisition

data
preprocessing

parametric
statistical model

OLR
ordinal logistic

regression

non-parametric
statistical model

RF
random forests

neural networks
GRU

network with gated
recurrent unit

CNN
convolutional

neural network

Figure 1. Scheme of data analysis and models.

2.1. Data Acquisition

A mobile robotic system and a special software developed at UCT Prague were used
for data acquisition Figure 2. This system can operate in a static mode for sensing mimetics
(this issue) or in a dynamic mode for sensing gait and body movements (another project
solved at UCT Prague).

Kinect v2 and RealSense are used for image acquisition. The final version of this robot
uses only RealSense D435 manufactured by Intel. The Kinect sensor had to be replaced
because Microsoft discontinued production in 2018 and subsequently support ceased at
that time without the possibility of replacement.

The robot has undergone several versions during its development over the past
months, see Figure 2. Several control loops are located in the robot, which control the robot
in the correct direction and distance from the patient. The basic loop is located directly
in the controllers of both axles and it regulates the speed of rotation of individual wheels,
which it obtains from the superior processor. The master processor then processes the odo-
metric data from both axles and runs another loop in it, which controls the total distance
travelled by all wheels based on a comparison with the theoretical position obtained from
the robot model.

The robot includes adaptive cruise control, which responds to changes in the dis-
tance of the patient from the robot and to the desired position and direction of the robot
in the recording corridor. The direction and position in the corridor is obtained from data
from the lidar, the distance of the patient from the robot is obtained from both the lidar
and the stereo camera. Consequently, in the case of failure of one of the sensors, it is
possible to control the system without interruption.

During the recording, the robot stores all of the data that could be needed for a ret-
rospective analysis of both the patient’s gait or mimics and any robot failure. Currently,
the system can store all of the operating data, as follows: voltage on individual cells of
both LiPol batteries, odometry of each wheel, raw data from lidar, stereoscopic recording
of the patient’s gait, and video recording of gait.
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Figure 2. Scheme and an equipment for face rehabilitation measurement. Patient is measured during
facial exercises in a hospital during regular check-ups. (a) Scheme of face measurement, (b) Mobile
robotic platform used for face measuring (in static mode), (c) Last robot version for gait analysis,
(d) A desktop application for data collection (face is in this image pixelized).

2.2. Data Preprocessing

The whole process of data preprocessing is thoroughly described in a recent paper [13].
To make this paper self-contained, let us briefly review this process here.

While being recorded by Kinect, the patients conduct their exercises at different times
and at different speeds. Consequently, a temporal registration of the data is necessary
for further statistical analysis. For that purpose, the original curve Pi(t) representing
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movement of any facial point for measurement (patient) i is transformed using a time
warping function wi in such a way that curves P̃i are aligned for all i.

P̃i(t̃) = Pi(wi(t̃)), where t̃ = w−1
i (t). (1)

The warping functions wi are computed by a landmark registration technique, where
the beginnings and end of each repetition are identified and a piecewise cubic interpolation
is used for the warping function. A more detailed description of the used registration
technique can be found in [13].

In the clinician’s House–Brackmann evaluation, classes HB4 and HB5 are seldom
used compared to others due to their similarity with HB3 and HB6, respectively. To balance
the frequencies of the considered classes, we reclassified the samples from HB4 to HB3
and HB5 to HB6.

Some exercises exhibited insufficient range of motion detectable by Kinect. In the
following analysis, we consider these exercises: raising eyebrows, frowning, smiling, baring
teeth, and pursing lips.

To reduce the amount of data obtained by Kinect and to access only the important
behaviour, we chose several points of interest (POI) for the selected exercises and we com-
puted various indicators from the mutual position of the selected POI at each time instant.
The resulting indicator curves measure symmetry (movements in the left-half versus move-
ments in the right-half of the face), intensity (the range of motion during the exercise),
and speed (how fast the selected exercise is performed, measured by the warping function).
The exact definition of all computed indicators is described in [13].

2.3. Compared Statistics

On one hand, we deal with the classification problem with very complex explana-
tory data (collection of curves for each observation) having unclear functional link to
the response variable, which suggests using non-parametric statistics (or neural networks)
as a preferred option. On the other hand, the number of observations is very limited, which
increases the risk of overfitting for these methods. Therefore, we decided to compare para-
metric, non-parametric statistics and neural networks, which is less prone to overfitting,
but requires very careful model specification to get reasonable results.

2.4. Parametric Statistical Model

Detailed description of the parametric statistical model for HB classification can be
found in [13]. Let us recall that within this approach, the curves of the indicators are
analysed by two parametric statistical models in two steps:

• The first step consists of application of functional logistic regression (FLR) to indicator
curves (understood as functional data) separately for each indicator type (exercise).
This turns the indicator curves (functional data) into health scores (real-valued data
between 0 and 1).

• In the second step, classification of the set of health scores for each patient (multivariate
data) into HB grades is performed using multivariate ordinal logistic regression (OLR).

2.4.1. Functional Logistic Regression

Logistic regression is a popular model that comes from the methodology of generalised
linear models (GLM), which is characterised by Bernoulli-type error distribution (binary
output variable Y) and logit link function. Functional logistic regression is a generalisation
of this methodology to functional input data (functional covariates). A functional datum
(a curve) is linearly transformed into real-valued linear predictor (by taking scalar product
in L2 space). The linear predictor is then turned into probability of a positive outcome
P(Y = 1) by application of the inverse link function. The corresponding formula is

pk =
1

1 + exp (−α −
∫

Xk(t)β(t)dt)
. (2)
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In our setting, Xk represents the curve of the particular indicator in the k-th sample
(a functional covariate) and pk is the predicted probability of the k-th sample being healthy
(i.e., having HB 1). We interpret these pk as health scores (“rate of healthiness”) for
a specific indicator and we then use them in the next step as covariates for HB classification.
The parameters of the model include the scalar intercept α and the functional parameter β,
both are estimated from the data by maximum likelihood approach.

More details about the functional approach can be found in [25]. For our calculations,
we made use of an implementation of FLR in the statistical software package R (function
classif.glm within the fda.usc package), see [26] for more details.

2.4.2. Multivariate Ordinal Logistic Regression

Given that we face the problem of classification with multiple, ordered, classes (HB
grades) on the basis of the vector of health scores, we have chosen the apply the multivariate
Ordinal Logistic Regression (OLR). This is a parametric statistical tool that is derived from
the classical logistic regression. Whereas the classical logistic regression requires binary ex-
planatory variable, OLR makes it possible to model ordinal explanatory variable (multiple
classes with ordering). In particular, OLR applies a series of classical logistic regressions to
cumulative probabilities to estimate the ordinal version of cumulative distribution function of
the explanatory variable. Probabilities of individual classes (values of explanatory variable) are
then predicted by taking the differences of the cumulative probabilities.

In our framework, the explanatory variable represents HB evaluation with ordered
HB grades: HB1 < HB2 < HB3 < HB6. Regression models for cumulative probabilities
take the form:

P(HBk ≤ j) =
1

1 + exp (−αj − ∑i βi pik)
. (3)

The output P(HBk ≤ j) is the probability that the k-th sample has HB grade j or better,
αj is the (HB specific) intercept parameter, βi is the coefficient for the health score of the i-th
indicator (independent of the HB level) and pik is the health score of the i-th indicator
and the k-th sample. The parameters αj and βi are estimated from the data by maximum
likelihood method.

To avoid overfitting and to provide stable model predictions, we performed a stepwise
variable selection procedure based on minimising the AIC (considering both directions,
starting from the empty model).

To compensate for the imbalance of the input data, we applied weighted version
of multivariate OLR, where the weights of samples were set as the inverse value of
the frequency of the corresponding class.

The probability of a sample’s having a specific HB grade is calculated as the difference
of cumulative probabilities:

P(HBk = j) = P(HBk ≤ j)− P(HBk ≤ j − 1). (4)

The resulting predicted class for a sample is determined as the class with the
highest probability.

More details of this method can be found in [27] (which are referred to there as a cu-
mulative logit model). We performed our calculations of OLR using the polr function from
the MASS package in R (see [28] for further details).

2.5. Non-Parametric Statistical Model

In this subsection, we describe the methodology of non-parametric statistical model
for our problem. Non-parametric models are based on different philosophy compared
to the parametric approach that was described earlier. Instead of specifying the types of
regression functions a prior and calibrating their parameters from the data, the form of
the functional dependence of the response variables on the covariates is constructed directly
on the data. In general, this approach is typically less sensitive to model misspecification
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(compared to parametric approach) but requires more data to provide stable prediction.
This is the reason why we have chosen this approach as an alternative for comparison of
the parametric approach.

Similarly to the parametric approach, we split the modeling process into two steps:

• In the first step, we apply kernel functional classification to turn curves of individual
indicators into real-valued health scores.

• In the second step, HB grades are predicted from the lists (vectors) of health scores
using the ordinal forests method.

Splitting the modeling process into these two steps is advantageous for potential further
use by practitioners because it makes the whole process more tractable and it enables
the practitioners to see the performance of the patient in each exercise, which underlies
the final HB classification; see also [13].

2.5.1. Kernel Functional Classification

Kernel classification is a very popular technique for non-parametric supervised classi-
fication because of its flexibility: it generalises the concept of k-nearest neighbour. The func-
tional version of the kernel classification is discussed in detail in the well-known and fre-
quently cited book [29]. The main idea is to determine posterior probabilities of the groups
for a new observation (new curve) according to its proximities to curves in the training
dataset with a known group. The proximities are calculated via a kernel (denote K) is
applied to a distance between curves (d) with respect to a bandwidth (h).

Although functional kernel classification can be used for the multiple classes problem,
we use it for prediction of a probability of class HB 1 (the health score), for the reasons
described earlier. In particular, we have

pN =
∑n

i=1 1[HBi=1]K(h−1d(XN , Xi))

∑n
i=1 K(h−1d(XN , Xi))

, (5)

where pN is the estimated posterior probability that new observation (new indicator curve)
XN has HB1, Xi for i = 1, . . . n are indicator curves in training set with known HB grade
denoted as HBi, the indicator function 1[HBi=1] equals one if HBi = 1 and is zero otherwise,
K is normal (Gaussian) kernel, h is the bandwidth optimised in order to minimise loss
function (misclassification rate) on the training set and d is the L2 distance defined as

d(XN , Xi) =

√∫
(XN(t)− Xi(t))2dt.

We calculate the health scores pN for each indicator (exercise) and both for obser-
vations in the training set (for the purpose of calibration of ordinal forests in next step)
and in the testing set (for the purpose of final classification by the calibrated ordinal forests).

Our calculations were implemented in the statistical software R, while kernel classifi-
cation was done via the function classif.kernel within the fda.usc package); see [26]
for more details.

2.5.2. Ordinal Forests

The ordinal forest is an efficient non-parametric tool based on random forests (RF),
which is tailored to construct a classification rule for problems with multivariate input
data (both low-dimensional and high-dimensional) and with ordinal response variable.
This technique has recently been introduced in [30] and it fits perfectly with our need to
construct a non-parametric classifier for ordered HB grades from lists of health scores.

The basic idea of ordinal forests is to replace the ordinal response variable Y by a latent
continuous variable Y∗ so that Y depends on (and is uniquely determined by) Y∗ via a non-
decreasing step function. In our setting, this means that individual HB grades correspond
to adjacent intervals of Y∗. The values of Y∗ (and its intervals) are optimised with the aim
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of maximising the prediction performance on the training set. We then grow a regression
forest with Y∗ as a continuous response variable.

For a new observation, we start with prediction of Y∗ from the regression forest
and we then determine the corresponding Y (HB grade in our case).

For our calculations related to ordinal forests, we utilised the software R package;
namely, the ordfor function (implemented within the ordinalForest package) with
default values of hyperparameters.

2.6. Neural Networks

Two deep neural network (DNN) structures were trained on the given data. The core
of the first DNN structure, which is further referred to as GRU DNN, are three recurrent
layers with Gated Recurrent Unit [31] cell architecture (for full pipeline see Figure 3). Given
the nature of the data, the main strength of GRU DNNs is the ability to infer temporal
patterns and dependencies in the time-series, if any are present.

preprocessed
data

minibatch

class
probability
distribution

inferred
class

GRU
nh1

GRU
nh2

GRU
nh3

FF
nff

D
ro
po
ut

0.
5

R
eL
U

R
eL
U FF

nc

So
ftm

ax

Figure 3. GRU DNN with three RNN layers with gated recurrent unit architectures at its core. FF
marks a typical fully-connected (dense) layer. n is number of hidden units in the respective layers.

The second DNN structure, which is further referred to as CNN DNN, utilises three
two-dimensional convolutional layers (for full pipeline see Figure 4). Convolutional layers
have a strong history in feature extraction and pattern recognition [32,33], both of which are
expected of the data. They also allow for an effective dimensionality reduction and, thus,
computational efficiency.
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Figure 4. CNN DNN with three 2D convolutional layers (CNL) at its core. FF marks a typical
fully-connected (dense) layer. n is number of filters or hidden units, f is 2D filter dimensions and s is
stride of the filter for the respective layer.

Both DNN structures have been trained and evaluated on the same data as the statisti-
cal methods. The parameters were optimised by minimising cross-entropy loss function
using the Adam optimiser. Accuracy and F1-score, tracking both precision and recall,
were used to measure performance on the validation data. For more information about
performance metrics, we refer the reader to [34].

To account for imbalance in class distribution of the training data, the loss function was
scaled by class weights, which were calculated based on the ratio of samples in each class.

To counteract overfitting, which was expected given the small size of the dataset,
a static dropout rate of 0.5 was applied after the feed-forward layer directly following
the core structure (see Figures 3 and 4). The training process was also stopped early
if the average value of area under curve (AUC) on the validation data did not improve for
20 subsequent epochs and only the best performing parameters were saved.
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The cross-validation results are categorised by the DNN structure type (GRU or CNN)
and an indicative number of trainable parameters of the whole structure.

3. Results

The overall classification results of parametric OLR model and non-parametric random
forest (RF) model are summarised in Table 2. The neural network classifications for selected
structures are shown in Tables 3 and 4.

Table 2. Confusion matrix with numbers of (mis)classified cases by OLR model and random forest
(RF) on a test set.

HB by a Clinician
HB by OLR HB by RF

1 2 3 6 1 2 3 6

1 28 17 10 3 48 1 9 0
2 6 13 2 0 17 2 2 0
3 2 3 15 3 13 1 8 1
6 0 1 5 14 3 0 12 5

Table 3. Confusion matrix with numbers of (mis)classified cases by GRU neural network structures
on a test set (tp marks the number of trainable parameters).

HB by a Clinician

HB by HB by

GRU-tp100k GRU-tp1.6M

1 2 3 6 1 2 3 6

1 38 7 7 6 37 7 7 7
2 9 7 2 3 6 11 2 2
3 7 2 9 5 10 4 5 4
6 5 2 5 8 9 4 4 3

Table 4. Confusion matrix with numbers of (mis) classified cases by CNN neural network structures
on a test set (tp marks the number of trainable parameters).

HB by a Clinician

HB by HB by

CNN-tp160k CNN-tp4M

1 2 3 6 1 2 3 6

1 43 1 8 6 43 4 11 0
2 8 6 4 3 9 9 3 0
3 7 4 12 0 8 2 12 1
6 5 1 3 11 4 1 1 14

Given that our goal is not to precisely predict clinician’s HB scores because they may
be subjective, we consider both the correct classification of HB classes (model HB equals to
clinician’s HB) and the approximate classification (we tolerate the model HB to differ by
at most 1 from the clinician’s HB class). The accuracy (or recall) of individual HB classes
and the overall accuracy are depicted in Table 5. By accuracy of an HB class, we denote
the fraction of correctly classified samples by the model out of all samples in that HB class
(assigned by a clinician). The overall accuracy is the fraction of correctly classified samples
in all classes out of all samples.

To complete the evaluation of the multi-class classification, Table 6 shows precision
calculated for all HB classes individually. The precision of an HB class represents the proba-
bility that a sample given the HB class by a model is assigned the same class by a clinician.
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Table 5. Comparison of classification of all models. Both the correct and approximate classifications
are considered.

Correct Classification

HB by a Clinician

O
LR R
F

G
R

U
-t

p1
00

k

G
R

U
-t

p1
.6

M

C
N

N
-t

p1
60

k

C
N

N
-t

p4
M

1 48% 83% 66% 64% 74% 74%
2 62% 10% 33% 52% 29% 43%
3 65% 35% 39% 22% 52% 52%
6 70% 25% 40% 15% 55% 70%

Overall accuracy 57% 52% 51% 46% 59% 64%

Approximate classification

HB by a clinician

O
LR R
F

G
R

U
-t

p1
00

k

G
R

U
-t

p1
.6

M

C
N

N
-t

p1
60

k

C
N

N
-t

p4
M

1 78% 84% 78% 76% 76% 81%
2 100% 100% 86% 90% 86% 100%
3 78% 39% 48% 39% 70% 61%
6 70% 25% 40% 15% 55% 70%

Overall accuracy 80% 69% 67% 61% 73% 79%

Table 6. Comparison of precision of classification of all models.

HB by a Model

O
LR R
F

G
R

U
-t

p1
00

k

G
R

U
-t

p1
.6

M

C
N

N
-t

p1
60

k

C
N

N
-t

p4
M

1 78% 59% 64% 60% 68% 67%
2 38% 50% 39% 42% 50% 56%
3 47% 26% 39% 28% 44% 44%
6 70% 83% 36% 19% 55% 93%

The parametric OLR model achieves an acceptable accuracy of exact classification and a suf-
ficient accuracy of approximate classification, displaying only 20% of misclassified samples
(predicted HB class differs by more than 1 from the clinician’s evaluation). The rates indicate
balanced accuracy for all four HB classes, not preferring the dominant HB1 class. Meanwhile,
the correct accuracy of the individual HB classes is not consistent in the non-parametric model
random forests because the model mainly predicts the dominant HB1 class. There is also much
higher number of misclassified cases (31%).

The accuracy of classification by neural networks differs substantially based on the ar-
chitecture and number of trainable parameters. The GRU architecture provides sub-optimal
results for both low and high number of parameters (see Table 5) with as much as 33%
and 39% misclassified cases, respectively. In contrast, CNN based architectures achieved
accuracies that are comparable to the parametric OLR model and benefit from higher
amount of trainable parameters. The small (160 thousand parameters) CNN misclassified
in 27% of test cases, while the large (4 million parameters) in only 21%. It is important
to note that the number of trainable parameters of the presented neural network models
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is substantially higher when compared to the size of the training set, which makes them
highly susceptible to overfitting.

A comparison of the overall accuracy on the testing set with accuracy on the training
datasets (for each step of cross-validation procedure) reveals that the OLR model provides
stable results and does not suffer from overfitting, see Table 7. Meanwhile, the non-
parametric model random forests displays overfitting: it achieves worse accuracy for
testing set compared to accuracy on training sets. Non-parametric methods usually require
(by their nature) rich training dataset to learn the systematic patterns and filter out non-
systematic (random) noise. Otherwise, due to their flexibility, they tend to adapt to
non-systematic random effects.

Table 7. Overall exact accuracy of classification: comparison of results on the testing set and training sets.

O
LR R
F

G
R

U
-t

p1
00

k

G
R

U
-t

p1
.6

M

C
N

N
-t

p1
60

k

C
N

N
-t

p4
M

Test set 57% 52% 51% 46% 59% 64%

Train set 1 55% 98% 94% 43% 99% 99%
Train set 2 63% 100% 100% 100% 100% 100%
Train set 3 50% 99% 100% 96% 100% 100%
Train set 4 60% 98% 100% 97% 100% 100%
Train set 5 62% 100% 98% 69% 100% 100%

As expected, neural network models exhibit strong overfitting to the training set
for similar reasons as the non-parametric random forest model. However, due to early
stopping and dropout regularisation, they can still achieve testing set accuracy that is on
par with the parametric OLR model.

The main advantage of the OLR parametric model over the neural network approach
lies in the possibility to interpret intermediate steps of the classification process. This
provides clinicians with more information on the recovery process, it also enables them to
control and possibly adjust the automated evaluation procedure; see [13].

4. Discussion

The following figures show the resulting comparison of these approaches. Figure 5
represents a “theoretical” exact classification (perfect fit required), which is not so crucial for
clinicians. Figure 6 shows the results of the so-called approximate classification (classifier
differs from the clinician by at most 1 HB grade). This classification is most widely used
in the clinical setting.

The overall comparison of the methods is then plotted in Table 5. It is evident from
the overall accuracy row of the approximate classification that the OLR classification
method gives the best results of all the selected approaches on these data.

In comparison of the models by HB grades, we considered two approaches: accuracy
(Table 5) and precision (Table 6). The former is calculated from the row-wise distribu-
tions in a confusion matrix and it relates to most frequent approach (probability of correct
classification given the true HB). The latter is calculated from the column-wise distribu-
tions in a confusion matrix and relates to the Bayesian approach (probability of correct
classification given the predicted HB).
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Figure 5. Accuracy of correct classification in different HB classes.
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Figure 6. Accuracy of approximate classification in different HB classes.
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5. Conclusions

We developed a tool for statistical analysis of mimetic movements of patients after
head and neck surgery. This tool is intended for the objective assessment of the patient’s
rehabilitation process, which has so far only been assessed subjectively by a clinician. We
compared a number of approaches:

• Parametric statistics (based on OLR)
• Non-parametric statistics (based on ordinal random forests)
• GRU
• Convolutional neural network

The parametric statistical approach based on the combination of functional logistic
regression and ordinal logistic regression provided stable and reasonable results for both
accuracy and precision. This demonstrates its potential to become a widely acceptable
and useful method. The pros and cons of individual algorithms are summarised in Table 8.

Table 8. Pros and cons of observed methods.

Method Pros Cons

statistical models in general + easily tractable, allow for
analysis of underlying drivers

– require careful choice of
models and methods

parametric statistics + provide explicit
dependence formulas (enable
in-depth analysis of
the studied phenomena)

– sensitive to model
misspecifications

+ do not require large
datasets

non-parametric statistics + good flexibility – prone to overfitting on
small datasets

+ strict (distributional
and model) assumptions not
required

neural models in general + highly modular – susceptible to sparse
training data
– black box

GRU based models + infer long temporal
dependencies

– can not reduce
dimensionality, slow
training/inference for longer
measurement;s
– ineffective parallelisation,

longer training

CNN based models + infers patterns from data,
both in temporal
and cross-feature dimensions

– more susceptible to
overfitting

+ for dimensionality
reduction

Various approaches were used for data analysis, starting with standard continuous
statistical data analysis and ending with convolutional neural networks. The reliability of
the individual approaches was tested and compared. The resulting application is currently
successfully used in the rehabilitation of patients with so-called vestibular swannoma at
the Clinic of Otorinolaryngology, University hospital Královské Vinohrady, Prague.

Future Work

Future plans in the framework of this research focus mainly on the following
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• Better data acquisition: As part of data collection and pre-processing, it is expected
that the operator will be immediately informed about the quality and usability of
the record;

• Unsupervised learning: In the next step, the data will be processed independently of
clinical practice, which is heavily burdened by the subjective opinion of the physician;

• Fusion with the project devoted to gait analysis: The data from these experiments are
fused with data from the analysis of gait of the same patients (these patients often
suffer from balance problems in addition to mimic problems);

• Mobile application: In addition to a full-fledged application in a hospital environ-
ment, it is also planned to create a mobile application (using the camera system of
a smartphone), which will be available to patients for home rehabilitation.
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Funding: The work of J.K., P.K., J.M., L.Č. was funded by the Ministry of Education, Youth and Sports
by grant ‘Development 406 of Advanced Computational Algorithms for evaluating post-surgery
rehabilitation’ number LTAIN19007 and the work of M.Ch., L.V., K.T. was funded by PROGRES Q28
Oncology, Charles University in Prague, Czech Republic. This support is gratefully acknowledged.

Institutional Review Board Statement: This study was conducted according to the guidelines of
the Declaration of Helsinki, and it was approved by the Institutional Ethics Committee of Charles Uni-
versity Prague, University Hospital Kralovske Vinohrady, EK-VP/431012020, approved 22 June 2020.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the cor-
responding author. The data are not publicly available due to ethical restrictions.

Acknowledgments: We thank the Ministry of Education, Youth and Sports; Faculty Hospital
Královské Vinohrady; University of Chemistry and Technology Prague.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AIC Akaike information criterion
CNN Neural network with convolutional layers
DNN Deep neural network
FLR Functional logistic regression
GLM Generalised linear models
GRU Neural network with gated recurrent unit
HB House–Brackmann facial nerve grading system
MATLAB a proprietary multi-paradigm programming language and numerical

computing environment
OLR Ordinal logistic regression
ORL Otorhinolaryngology
POI Point of interest
R a free software environment for statistical computing and graphics
RF Random forests
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