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Abstract: Tomographic reconstruction allows for the recovery of 3D information from 2D projection
data. This commonly requires a full angular scan of the specimen. Angular restrictions that exist,
especially in technical processes, result in reconstruction artifacts and unknown systematic mea-
surement errors. We investigate the use of neural networks for extrapolating the missing projection
data from holographic sound pressure measurements. A bias flow liner was studied for active
sound dampening in aviation. We employed a dense U-Net trained on synthetic data and compared
reconstructions of simulated and measured data with and without extrapolation. In both cases, the
neural network based approach decreases the mean and maximum measurement deviations by a
factor of two. These findings can enable quantitative measurements in other applications suffering
from limited angular access as well.

Keywords: bias-flow liner; tomography; highspeed camera; volumetric sound pressure; dense U-Net;
deep learning

1. Introduction

Tomographic reconstruction of projection fields has been used in many areas for
decades. It is an established technique for 3D imaging and measurement in medicine [1–5],
geoscience [6], for studying combustion [7] or materials science [8]. Another important
field is in acoustic research, where it is becoming increasingly important with modern
technology to make complex acoustic phenomena visible for the first time [9].

In this field, especially the noninvasive volumetric measurement of sound pressure
fields, there is a suitable application for tomographic reconstructions [10]. For investigations
of local phenomena, for instance in sound dampers such as the bias-flow-liners in aircraft
turbines, it is necessary to perform measurements within a flow channel in order to mimic
the conditions of real applications [11,12]. However, in a flow channel, it is not possible
to measure parallel to the flow direction without disturbing the flow. This results in a
limitation of the angular scan range available for the measurement. Often, the angular scan
range is limited from 180◦ at ideal conditions to about 100◦ due to technical facilities [13].

Tomographic reconstruction algorithms such as filtered back projection require a
measurement from different scan angle positions in the range of 180◦ [9]. Limitations of the
angular scanning range result in artifacts such as diagonal lines in the local reconstruction
field and disappearance of sharp edges outside the scan angle range occurs [1–3,14,15].
Furthermore, an unknown systematic measurement error occurs, i.e., the absolute values
of the reconstruction are strongly distorted [16,17]. To improve the reconstruction result,
additional prior knowledge about the measurement object must be integrated into the
reconstruction process. This could be iterative approaches such as algebraic reconstruction
technique [18] or total variation [18]. They need a lot of computing power but can use
estimations as initial value for the reconstruction. Errors in initial estimation can distort
the complete reconstruction.
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The hypothesis in this publication is that neural networks can be used to extrapolate
data from missing scan angles to significantly improve reconstruction results. This enables
the use of standard algorithms for the tomographic reconstruction. There are several existing
deep learning based approaches employing neural networks to directly reconstruct local
data. They replace the established standard reconstruction methods, such as filtered back
projection, and achieve good results, for instance with sparse angle tomography [19–23].
Synthetic data are used for training and validation. Finally, reconstruction improvements
of real limited angle sound pressure measurements are presented.

2. State-of-the-Art
2.1. Sound Pressure Measurements

A standard method for quantitative sound pressure measurements is the detection by
condenser microphones [24]. This allows for point-like measurement. The extension to a
measurement field of one, two or three dimensions is possible with a matrix arrangement
of microphones. By using beam forming, a two-dimensional arrangement of microphones
is sufficient for a three-dimensional reconstruction [25]. However, measurements with
microphones are invasive and distort the sound pressure field [26]. Furthermore, micro-
phones typically feature diameters of several millimeters and have a direction characteristic,
limiting the spatial resolution to several millimeters and distorting measurements based
on relative sound source position [27]. An alternative, noninvasive measurement principle
is the measurement of the transfer function between two microphones. This function then
describes the acoustic behavior between the two measurement points but offers no spatial
resolution [28].

A noninvasive approach based on laser interferometric vibrometry (LIV) can be used
for sound pressure measurement. The LIV measures the integral, sound-induced refractive
index variation along the optical path [29]. If the measurement is also performed from
different angles, the reconstruction of the local sound field for a point in the measurement
volume can be calculated by tomographic reconstruction algorithms. This principle can
be extended to a measurement plane or volume by using a camera as detector. At high-
speed camera-based laser interferometric vibrometers (CLIV), each camera pixel performs
a simultaneous line integral measurement [30].

2.2. CLIV

When a laser beam passes through an acoustically active volume, the phase of the
light wave changes as a function of the sound wave due to the sound-induced change of
the refractive index. This is called the optoacoustic effect [9].

Consider a simple LIV set-up, a plane wave sound source and a photo detector. The
laser beam travels through a known constant distance l. Let the plane sound wave excite
the medium along l. Over time the sound wave creates areas of higher density and areas
of lower density in dependence of the current spatial and temporal sound pressure wave
propagation. This oscillation is given by the frequency and amplitude of the sound wave.
The changes in the light intensity are detected as a phase shift [9]. The intensity signal I(t)
of the laser light can be described as:

I(t) ∼ {1 + V · cos(∆Θ(t))} with 0 ≤ V ≤ 1, (1)

depending on the modulation depth V and the phase shift ∆Θ. The intensity signal
oscillates with the instant frequency

f I(t) =
1

2π

∂

∂t
∆Θ = fB + ∆ f (t), (2)

where fB represents the carrier frequency and ∆ f (t) the frequency shift. A fluctuation of
the sound field results in a fluctuation of the frequency shift
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∆ f (t) =
L̇(t)

λLaser
(3)

in dependency of the laser wavelength λLaser and the time derivative L̇ = dL/dt of the
optical path length

L(t) =
∫

l
n(z, t)dz, (4)

i.e., the line integral over the refractive index n along the laser beam [10]. The Gladstone–
Dale theorem [30] provides the mathematical link between the refractive index n(z, t) and
the density ρ of the medium:

n− 1 = Gρ, (5)

with the material dependent Gladstone–Dale constant G. Using Equations (2)–(5) and the
assumption of an adiabatic change of state, the one-dimensional acousto-optical relation-
ship between the instant frequency f I(t) and the time derivative ṗ(z, t) = dp(z, t)/dt of
the sound pressure along the optical path can be established:

∆ f I(t) =
1

λLaser

no − 1
κp0n0

∫
l

ṗ(z, t)dz, (6)

where κ is the adiabatic exponent, n0 and p0 are the refractive index and the pressure
under reference conditions, respectively. This equation is valid for a projection line in
the measurement volume. Thus, the integral sound pressure can be estimated from the
detected intensity signals instant frequency f I(t). In order to detect negative and positive
frequency shifts, i.e., heterodyne detection, and to define a measurement range for f I(t),
the laser light has to be modulated with a carrier frequency fB [7]. This can be achieved
by using an acousto-optical modulator (AOM). Finally, the photo detector has to be fast
enough to capture the high-frequency fluctuations fB + ∆ f .

The extension of this technique is the matrix measurement of many projections with
a camera. Figure 1 shows the camera-based laser interferometer. This enables a three-
dimensional tomographic measurement of local sound pressure fields with a spatial resolu-
tion of 31.5 µm at a sampling rate of 120 kHz.

Laser:
λ = 532 nm

AOM 1

AOM 2

high-speed
camera

x

y
z

F

F− fB

Figure 1. Measurement principle of the heterodyne Mach–Zehnder interferometer. Laser: λ = 532 nm, solid state laser;
camera: 64 × 1024 Pixel, fB: 30 kHz, field of view: 2 × 30 mm, frame rate: 120 kHz. Taken from [7].

2.3. Tomographic Reconstruction

The optical measurement of sound pressure can only be done in projection. This means
that a two-dimensional tomographic reconstruction must be performed. The solution of
this inverse problem can be done using the filtered back projection.
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The tomographic reconstruction is performed as follows: Let the measurement of
a projection be a vector to Rp(x′, α, t) in a transformed plane (x′, y′) from an angular
perspective of the rotation angle α as shown in Figure 2. Using a total number of Nx′ scan
lines and Nα angular scans these vectors give the sinogram with Nx′ · Nα dimensions (see
Figure 3).

x

y

x′

Rp(x′, α, t)

α

transformed plane

sound field
p(x, y, t)

scan lines

Figure 2. Principle of the Radon transformation.
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Figure 3. Full angle (FA) sinogram in angular range [0, 180]◦.

Mathematically, a sinogram is the forward operation of the Radon transformation.
Thus, a solution of the inverse problem by applying the inverse Radon transformation is
needed for the reconstruction of the sound field

precons(x, y, t) =
∫ 180°

0°
Rp(x′, α, t) ∗ h(x′)dα, (7)

with the filter function h(x′). Due to the integral operation of the inverse transformation,
low-frequency components are weighted higher than high-frequency components. With
the filter function this weighting error can be corrected during the reconstruction. This
leads to a sharper image and ensures an absolute value reconstruction [9]. Different types
of filters can be considered as a filter function. For example, there is the Ram–Lak filter
with a linear increase of the amplitude over the frequency, the well-known Hamming filter
or the Hanning filter [31]. While the Ram–Lak filter is sensitive to noise, it has provided
the best absolute value reconstruction results, which was tested on simulated data. Thus,
the Ram–Lak filter will be used for all reconstructions on simulated and measured data in
the following investigations for a fair comparison.

There are prerequisites in the measurement setup to reconstruct a local field. For
example, the field to be measured must be scanned from different directions in an angular
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range of 180◦ and high angular resolution [10]. The angle resolution depends on the crucial
spatial resolution of the local field. Sparse angular sampling can result in aliasing [10].
Furthermore, a stationary and spatially closed field is required [9]. If these prerequisites
are violated, strong artifact formation and additional information loss of the local absolute
values will occur. A high angular limitation results in high artifact formation also known
as missing cone artifacts [32]. This is caused by an incorrect frequency weighting, as well
as the systematic reconstruction deviation of the absolute amplitude, caused by numeric
instabilities, compared to the model field [17].

2.4. Deep Learning

Neural networks differ from analytical approaches in one fundamental aspect. Ana-
lytical approaches use a deterministic mathematical model to represent the transformation
equation from input to output. On the other hand, neural networks are modeled by an
adaptive mathematical equation. This equation consists of an input vector X, a weight
vector W and a bias b [16]:

kneuron = f (WT · X + b) (8)

Equation (8) represents a neuron k, which exhibits a nonlinear activation function f .
This again produces a nonlinear transformation of the input signal. Weights are parame-
ters updated by error propagation, also known as backpropagation. Neurons are usually
grouped into layers, which can be distinguished into input, hidden and output layers. The
connection model between layers can vary. So, comprehensible task processing can be
achieved. The most common layer topologies are perceptron layers as well as convolutional
layers. This last type is particularly efficient for tasks regarding image processing [19,33,34].
The type of neural network is determined by its architecture. This refers to the size, type
and connection model that exists between the layers. The implementation of convolu-
tional layers in neural networks has become a crucial factor for image processing tasks
in recent years [19,35]. An example of this, is the Unet in Figure 4, top. Later, the Dense
Unet has shown improvement (Figure 4, overall) by replacing convolutional layers with
denseblocks [19]. Here, a denseblock consists of a set of convolutional layers concatenated
using a skip-layer strategy (see Figure 4, bottom). Similar to a convolutional layer, dense
blocks have their own hyperparameters, such as the growth rate k and the number of
repetitions l. The growth rate k refers to the feature layers that are calculated from the
previous step. Then, l indicates how many times k feature layers will be concatenated.

Figure 4. Dense Unet architecture (top) used for limited angle tomographic image reconstruction.
Example of denseblock structure (bottom), with hyperparameters k = 8 and l = 4.
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With the use of dense blocks in every convolutional step, there are more connections
between every neuron in the step. Thus, the overfitting can be reduced [36]. The disad-
vantage is a larger number of hidden layers, which requires more computing power and
increases the training time.

3. Experimental Setup and Methodology
3.1. Experimental Setup and Measurement Execution

The aim was to enable a complete reconstruction of the local sound pressure under
a limited incomplete angle. For this purpose, a full angle projection measurement of the
sound field was performed with the CLIV system proposed in [9] as a reference. The sound
field to be investigated was limited by a translucent PMMA cylinder of 100 mm diameter
to allow a angular scan range of 180◦ and shield the reference beam of the interferometer
from the propagating sound wave in the measurement object. An approximately plane
sound wave was generated by a speaker mounted to the top end of the tube. Thus, the
sound wave propagates perpendicular to a hexagonal array of 169 Helmholtz resonators at
the bottom of the cylinder (see Figure 5). Each Helmholtz resonator is cylindrical, has a
resonator volume of 1.41 cm3 and a hole aperture of 2 mm diameter (see Figure 6). This
results in a resonator frequency of 1479 Hz. The measurement of the local sound field was
performed at the resonator frequency. The maximum effective lateral range of the CLIV
system is 25 mm with a spatial resolution of 31.5 µm. In order to perform a measurement
of the entire cylinder, the measurement was divided into seven, 2 cm wide lateral areas,
which were stitched in post-processing.

Figure 5. Acoustic measurement setup for generating a local sound field with 180◦ optical access.

Figure 6. Liner model used for measurements, providing 169 Helmholtz resonators.
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The measurement procedure starts with setting the lateral position. After that follows
the measurement of each scan angle with a resolution of 0.1◦ in a angular scan range of
180◦. When a scan is completed, the next lateral position is scanned.

The measuring time per single angle scan is 1s. In addition, there is a camera hardware-
related memory cycle of approx. 2 min, which is decisive for the total measurement time
per scan point. The measurement volume is located 31.5 µm above the resonator surface.
This allows for the largest possible local sound pressure changes and avoids reflections
from the resonator surface that affect the measurement result. The measuring system
is capable of recording a pixel area of 64 pixels in height with the necessary frequency.
However, only a reduced height of 16 px was used in order to speed up the measuring
process.

3.2. Methodology

To investigate the performance of the neural network, a projection measurement of
the sound field above the hexagonal measurement object was performed using CLIV. The
reconstruction of the fully measured angular scan range will later serve as a validation object.

The goal is to provide a complete reconstruction of the local sound pressure under
constrained angle. Therefore, an additional computational step was introduced with the
neural network to extrapolate the missing information. The complete process is described
in Figure 7. For validation and comparison of the reconstruction of the sound pressure
data, angular information was removed from the full measurement to create a constrained
angle sinogram. These data were fed into the neural network. Due to the complex structure
of the network, there are computational limitations. The pixel resolution of the projection
data at input as well as output is limited to 256 angle measurements at 1024 individual
projection lines per lateral plane. Hence, the remaining spatial resolution after the extrap-
olation process is 97.6 µm. Only the missing angle information is reconstructed by the
neural network. Using the original angle constrained data, the complete sinogram can
be assembled. However, the extrapolated part of the sinogram has a different angular
resolution than the measured part. This means that resampling of the full sinogram must
be performed.

Figure 7. Flow chart for processing limited angle tomography: Projection data are recorded holograhically with limited
angle (LA) access and assembled into a sinogram. The limited angle sinogram is fed into a pretrained dense Unet and the
missing projection data are extrapolated. Filtered back projection is then used to calculate the local field.
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3.3. Neuronal Network Training

In order to enable extrapolation, the neural network must be trained. For this purpose,
a training data set was created from 60,000 synthetically generated sound pressure fields.
These sound pressure fields were modeled after a tomographic measurement of a Kundt’s
tube at an angular access of 180◦(see Figure 5). The measured model is a hexagonal array
of Helmholtz resonators with a circular resonator aperture. The size of the resonator holes
(rx; ry), the number of resonators nholes, the distance between the resonators (xdist; ydist),
the amplitude above the resonators (ahole) and the orientation of the start scan angle (α)
were varied. This is superimposed by a static sound pressure throughout the cylinder
(offset). In the region of the apertures there is a Gaussian reduction of the sound pressure.
The parameter range of the randomly varied quantities is listed in Table 1. By randomly
choosing the above parameters, an asymmetric pattern is guaranteed for each image. Only
in case of such asymmetric modeling an angular scan of 180◦ is necessary. Extrapolation of
the neural network by repetition and mirroring of already existing areas of the input data
can thus be excluded.

Table 1. Parameters used for sound field generation .

Offset in Pa rx in mm ry in mm ahole in Pa nholes xdist in mm ydist in mm α in ◦

training set [0.5; 30] [0.4; 1] [0.4; 1] [0.1; 30] [1; 130] [5; 15] [3; 10] [0; 180]
example set 2.8 1 1 0.8 35 6 4 12

For training, 80% of the data set was used. The remaining data were used as a
validation data set. A total of 24 epochs were trained to converge the loss function to
a acceptable remaining loss and thus, the extrapolation results can not be substantially
improved. Additionally, the problem of overfitting is minimal. The overfitting and thus
the difference of the loss function between training data set and validation data set after 24
epochs was less than 0.3%.

The training results are shown in Figure 8. Good reconstruction results have been
obtained. Mean squared error (MSE) and structural similarity (SSIM) [37] were used as
comparison values. The MSE is calculated according to the following formula:

MSE =
1

nx · ny

√√√√ 50 mm

∑
x=−50 mm

50 mm

∑
y=−50 mm

(Y(x, y)− Ŷ(x, y))2 (9)

where the coordinates x and y are the lateral and axial positions of a reconstructed plane.

0 10 2010−5

10−4

10−3

10−2

epochs

M
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training
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0 10 20
0.7

0.8
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1

epochs
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Figure 8. Visualization of training process with 60,000 data sets (48,000 training data set; 24,000 vali-
dation data set) over 24 epochs. As validation parameters mean squared error (MSE) and structural
similarity (SSIM) are shown.
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Starting with the 2nd epoch, an MSE lower than 0.1% is reached. In epoch 7, there is
a sudden increase of the error to 0.27% in the validation data set. This can be explained
by the NADAM optimization algorithm used. The algorithm does not run into a local
minimum, but tries to reach the global minimum. Thus, due to abrupt changes in the
optimized weights, the error may increase abruptly [38]. After 24 epochs, an error of the
MSE of less than 0.005% was reached. The impact of an overfitting effect is negligible after
24 epochs. The same result can be seen for SSIM, which reaches a value of 99.4% after
24 epochs of training. The training took 11 h on a high performance workstation with an
Nvidia TITAN RTX GPU. After training the extrapolation process took in summary 35 s for
one extrapolation process. This time is mainly limited by the loading and saving process of
the data.

4. Results
4.1. Synthetic Data

A synthetic sound pressure field was generated according to the parameters presented
in Table 1 (2. line). The first row of Figure 9 shows the sinograms with full scanning
angle (a), limited scanning angle (LA) (b) and the neuronal network based extrapolation
(c). The second row shows corresponding local data computed by filtered back projec-
tion (d–f). The bottom row describes the relative error referred to the full angle filtered
back projection tomographic reconstruction. The local error for limited angle and neu-
ral network reconstruction are depicted in (h,i). Boxplots at (g) show the corresponding
error distribution.

The modeled constant sound pressure field in the cylinder (Figure 9i)) results in a
quadratic function in the sinogram over the projection axis. In the angular axis, the function
is constant. Each hole produces a reduction in the total amplitude on each measurement in
the angular scan range. If several resonators are in succession in the direction of projection,
the reduction in amplitude is summed. The hole position has a sinusoidal curve over the
scanned angle axis. These correlations were learned without the possibility of mirroring or
repeating certain parts of the already given range by training the neural network.

It can be seen that a reconstruction using filtered back projection of the measurement
data with full angular scan range leads to an artifact-free reconstruction result, only higher
noise emissions are visible. On the contrary, when reconstructing with a limited angular
scan range, clear artifacts can be seen. Individual resonators have an elliptical shape
and become blurred. This leads to an inseparability of individual resonators if they
are close to each other. Furthermore, an incorrect absolute value reconstruction occurs,
which deviates both downwards and upwards. Locally, especially between neighboring
resonators, excessive sound pressure values are reconstructed and the values within a hole
are calculated as too low. The sinogram extrapolated by means of neural network shows a
considerable qualitative improvement in the reconstruction. The resonators regain their
circular shape and are separable. However, a low-pass effect can be seen at the hole edges
in the extrapolated angular regions.

For a quantitative comparison between limited angle reconstruction and neural net-
work reconstruction, the relative local deviation towards the full angle reconstruction was
calculated and is presented in Figure 9h,i. In the comparison of the two reconstructions,
a clear reduction of the relative error for the neural network reconstruction can be seen.
Large areas of the limited angle reconstruction have an error above 10% whereas the error
of the neural network reconstruction is larger than 10% only in the area of large hole
clusters. In the region of hole accumulations there are high spatial frequencies due to edges.
However, when extrapolating the missing angular regions, there is a spatial low-pass
effect. Thus, the high spatial frequencies are missing in the sinogram. The filtered back
projection additionally attenuates low spatial frequencies. This amplifies the noise in the
entire loose sound field. Especially in the area of high spatial frequencies, this leads to an
incorrect reconstruction.
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For better comparability of the overall results, the distribution of the magnitude
relative error over the middle part of the sound field in the area (35 mm × 35 mm) was
calculated and is shown in Figure 9g. This avoids a distortion of the comparison due to
edge effects.

It can be seen that the error of the reconstruction using neural network was signif-
icantly reduced from mean value 9.8% to 4.6% compared to the reconstruction without
extrapolation. Especially the maximum error could be reduced by more than 10%. With
this approach an enhancement of local reconstruction results by a factor of 2 can be reached
at an limited angular scan range of [40, 140]◦.
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Figure 9. Synthetic sound pressure field reconstruction: (a) full angle (FA) sinogram; (b) limited angle (LA) sinogram;
(c) neural network (NN) extrapolated sinogram; (d) full angle filtered back projection tomographic reconstruction; (e) lim-
ited angle filtered back projection tomographic reconstruction; (f) neural network extrapolated filtered back projection
tomographic reconstruction; (g) error distribution of local reconstructions compared to full angle reconstruction; (h) local
error of limited angle reconstruction compared to full angle reconstruction; (i) local error of neural network reconstruction
compared to full angle reconstruction.
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In a further step, the impact of complexity in the synthetically processed pressure
fields was investigated. Therefore, seven different pressure fields with different number
of resonators were generated. After the neural network extrapolation and tomographic
reconstruction, the relative error distribution to the full angle reconstruction is shown in
Figure 10. For a better understanding, the used model field is shown above every error
distribution plot. To give a better overview, the number of trained data sets with the same
number of holes, meaning the same complexity distribution is shown as well.

For a very simple model with only few resonators, the neural network reconstruction
distribution error is a factor of 2 higher than reconstructions with higher complexity starting
at nine holes. We assume that this effect is caused by a small number of trained data sets
with a corresponding number of holes, because the focus of the training data is on a higher
number of holes. At an average number of holes of 9 to 80 resonators, the neural network
reconstruction distribution errors are very low and are below 4.5%. For 122 resonators
and above, the neural network reconstruction distribution error increases again and is at a
comparable level to that at low complexity. We assume that the resolution of the sinogram
is to low in relation to its complexity. This results in averaging errors within a pixel and
consequently in reconstruction errors compared to limited angle filtered back projection.
The neural network always shows improvement over the limited angle reconstruction,
even if only a limited number of training sets existed. However, the increasing uncertainty
for lowly represented training sets indicates that network training always needs to be
performed on structures similar to the specimen.
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Figure 10. Limited angle and neural network extrapolated error distribution of tomographic reconstruction in dependency
of model complexity.

4.2. Measurement Data

For validation the neural network, trained on synthetic data, was employed on experi-
mental data. The measurements, shown here, were performed at the resonance frequency
of the Helmholtz resonators at fR = 1479 Hz. Some resonators were deactivated by filling
resonator volume with liquid, to avoid a hexagonal rotational symmetry.

The first row of Figure 11 shows the sinograms with the full scanning angle (a),
limited scanning angle (b) and the neuronal network based extrapolation (c). To get
the limited angle sinogram, the outer angles in the scan range [0, 40]◦ as well as [140,
180]◦ were removed. The second row shows corresponding filtered back projection of the
sinograms (d–f). The bottom row describes the relative error referred to the full angle
filtered back projection tomographic reconstruction. The local error for limited angle and
neural network reconstruction are depicted in (h,i). Boxplots at (g), show the corresponding
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error distribution. In addition, the location of the active resonators were marked in each
case in the reconstruction.
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Figure 11. Measured sound pressure field reconstruction: (a) full angle (FA) sinogram; (b) limited angle (LA) sinogram;
(c) neural network (NN) extrapolated sinogram; (d) full angle filtered back projection tomographic reconstruction; (e) lim-
ited angle filtered back projection tomographic reconstruction; (f) neural network extrapolated filtered back projection
tomographic reconstruction; (g) error distribution of local reconstructions compared to full angle reconstruction; (h) local
error of limited angle reconstruction compared to full angle reconstruction; (i) local error of neural network reconstruction
compared to full angle reconstruction.

In Figure 11, artifacts due to stitching the measurements can be seen. This results in
horizontal lines in the sinograms (a–c) and circles in the reconstructions (d–f). Furthermore,
strong distortions for radii above 45 mm due to the optical aberrations induced from the
glass cylinder are apparent.

In the full angle reconstruction (d), a reduction of the sound pressure by 0.4 Pa can be
seen above each active resonator. The resonators have a circular contour. The deactivated
resonators can also be seen clearly. There is no characteristic minimum in the area above
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the resonator. That means this area has no local acoustic damping effect. The limited
angle reconstruction (e) shows similar artifacts to the reconstruction of synthetic data,
additionally to the measurement artifacts, mentioned in the full angle reconstruction. Line
artifacts, as well as amplitude errors, are present. The contours of the resonators are
elliptical. The amplitude over the resonators reconstructed with limited angle deviates by
0.23 Pa compared to the full angle reconstruction.

The sinogram of the neural network extrapolated data (c) shows a hard transition from
the extrapolated angular scan range. There is a spatial low-pass effect in the extrapolation.
However, this reconstruction (f) also shows a significant improvement compared to the
limited angle reconstruction. The contour of the resonator is round and artifacts are
strongly attenuated. The amplitude over the resonators reconstructed with neural network
extrapolation deviates by 0.05 Pa compared to the full angle reconstruction.

The comparison of the limited angle and neural network with the full angle recon-
struction shows that, overall, a significant reduction in relative error distribution can be
achieved with the neural network extrapolated sinogram. Especially, in a close range
around the Plexiglas wall an error reduction with neural network reconstruction is notice-
able. Local errors surrounding the position of local resonators, are present in Figure 11h.
This means every hole has a significant local sound pressure error compared to the full
angle reconstruction. In neural network comparison (i), there is no error surrounding the
position of local resonators. Thus, it can be assumed that the reconstruction of a single hole
is almost similar compared to the full angle reconstruction.

The associated distribution error is presented in Figure 11g. The mean error can be
reduced from 3.5% to 2.6% and maximum error can be reduced from 22.13% to 11.34%. The
reconstruction improvement is lower than the synthetic model. We assume this is caused by
measurement artifacts and deviation of the model used for physical boundary conditions.

5. Summary and Outlook

Limited angle tomography is important for many applications, especially at technical
processes but suffers from artifacts and unknown measurement deviations. The hypothesis
of the approach of extrapolation of non-scannable angular regions through an neural
network with only synthetic data sets used for training can be confirmed. We show that
we can reduce the MSE by a factor of 2.24 and the maximum error by a factor of 2.22 on
synthetic data and reduce the MSE by a factor of 1.93 and the maximum error by 1.95 when
evaluating measurement data. The dense Unet was applied to real measurement data
acquired with a high-speed camera-based laser interferometric vibrometer on a bias flow
liner model. The measurements validate the approach, demonstrating the big potential for
this technology to generate a paradigm shift in limited angle tomography. Using the neural
network for extrapolation only, is a simple extension and easier to implement compared to
using neural networks for the complete tomographic reconstruction. Established signal
processing only needs to be extended with this technique and has not to be changed
completely.

Further investigation is required into the translation of this technique to other speci-
men and structures especially regarding their sparseness and complexity. In the next steps,
the approach can be further improved. We want to use 3D data for extrapolation. By doing
so, the measurement artifacts could be minimized, resulting in more appropriate informa-
tion to feed in the neural network for extrapolation. In addition, more complex structures
have to be trained. Finally the approach will be applied at real flow channel measurements.
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