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Abstract: Combination therapies for the treatment of oral squamous cell carcinoma have been studied
extensively and represent a synergistic approach with better outcomes than monotherapy. In this
study, a novel combination therapy was investigated using gold nanoparticles (GNP) conjugated
to programmed cell death protein ligand 1 (PD-L1) antibodies and nonthermal plasma (NTP). The
present study describes the effectiveness of NTP using PD-L1 antibody conjugated to GNP in PD-L1
expressing SCC-25 cells, an oral squamous cell carcinoma line. Immunocytochemistry revealed
higher levels of PD-L1 expression and an increase in the selective uptake of PD-L1 antibody + GNP
on SCC-25 cells compared to HaCaT cells. In addition, cell viability analyses confirmed higher
levels of cell death of SCC-25 cells after treatment with PD-L1 antibody, GNP, and NTP compared to
HaCaT cells. Among the experimental groups, the highest cell death was observed upon treatment
with PD-L1 antibody + GNP + NTP. Following the Western blot analysis and immunofluorescence
staining, the expression of apoptosis-related proteins was found to increase after treatment with
PD-L1 antibody + GNP + NTP among the other experimental groups. In conclusion, the treatment of
SCC-25 cells with PD-L1 antibody + GNP + NTP significantly increased the number of dead cells
compared to other experimental groups. The results of this in vitro study confirmed the therapeutic
effects of PD-L1 antibody + GNP + NTP treatment on oral squamous cell carcinoma.

Keywords: gold nanoparticle; nonthermal plasma; oral cancer; PD-L1; combination therapy

1. Introduction

Despite the significant advances in cancer prevention, diagnosis, and treatment over
the past 50 years, the prognosis of oral cancer has not improved. In South Korea, approxi-
mately 3600 people are diagnosed with oral cancer, resulting in approximately 1200 deaths,
annually [1,2]. In addition, the surgical treatment of oral cancer often results in defects in
major structures of the head and neck, causing both aesthetic and functional damage that
can result in psychological disorders and reduced quality of life. Furthermore, cytotoxic
chemotherapy and radiation therapy inevitably sacrifice normal cell and may cause side
effects such as vomiting, nausea, diarrhea, hair loss, trismus, and inflammation [3]. To
reduce these side effects, studies are actively being conducted with the aim of developing
treatments that act solely on cancer cells.
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Among these, a recent study investigated the use of monoclonal antibodies (mAb)
to selectively attack cancer cells. In fact, mAb against cancer cell-specific antigens have
been proposed as alternatives to cancer-selective treatment. However, most mAb acting
alone do not show a sufficiently strong therapeutic effect. Nevertheless, cancer cell-specific
antibodies continue to show beneficial effects when used in cancer treatments. Since these
antibodies specifically bind to the surfaces of cancer cells, they show clinical potentials of
cancer cell selectivity that are differentiated from conventional chemotherapy.

To find antigens that selectively target cancer cells, these antigens must be specifically
expressed on cancer cells. In a previous study, PD-L1 was found to be highly expressed
in patients with oral cancer and was associated with a poor prognosis [4]. PD-L1 was
recently proposed as an immune checkpoint because of its association with the immune
evasion of cancer. Moreover, the inhibition of PD-L1 has been shown to promote T cells
with anticancer activity [5]. In fact, the achievement of the immune checkpoint block
treatment in patients with various malignant tumors is changing the paradigm of the
treatment [3,6]. Advances in immunotherapy improved the survival rates of cancer patients.
In many clinical trials, monoclonal antibodies that target immune checkpoint proteins
have demonstrated significant responses in the treatment of lung cancer and terminal
stage melanoma patients [7]. The United States Food and Drug Administration (FDA)
has accepted the use of three PD-L1 inhibitors and two PD-1 inhibitors for the cure of
melanoma, lymphoma, and lung cancers [7,8].

However, a large number of patients do not react to immune checkpoint inhibitors
or develop a resistance to treatment [9]. Therefore, the complete elimination of cancer
and the reduction of its recurrence rate are difficult to achieve using only one method,
such as immunotherapy [10]. Thus, many clinical trials involving immune checkpoint
inhibitors are currently being conducted in combination with other treatment methods,
including radiation therapy or chemotherapy, to improve the cancer survival rate and the
synergistic effects on the suppression of the growth of cancer cells [8,10-12]. However,
this approach has limitations in clinical practice due to its potential toxicity, resulting
in dose limitations and low responses in patients. In this regard, if immunotherapy is
combined with anticancer nanomedicine, it may be able to safely and effectively enhance
the anticancer immune response, as well as increase the sensitivity of patients’ responses to
immunotherapy [13,14]. There are two important goals of developing cancer treatments:
improved selectivity and enhanced cancer cell destruction. With the recent development
of nanotechnology, gold nanoparticles (GNP) are being used for cancer treatment, as this
material shows potential for achieving these two goals [13,15].

The combination of antibodies and nanomaterials has been found to have potential
for selectively targeting cancer cells. In addition, the treatments using GNP have shown
promising outcomes in the early clinical trials. GNP can also be used for photothermal
therapy due to their high atomic number [16]. In a previous study, gold photothermal
therapy was found to increase both the B- and T-cell populations while decreasing the
myeloid-derived suppressor cells of immunosuppression, indicating that synergistic control
is possible not only in the primary site but, also, in untreated distal tumors [17-19].

Within this context, we investigated whether nonthermal plasma (NTP) can amplify
the anticancer effects of GNP conjugated to the antibody. NTP itself works effectively
on head and neck squamous cell carcinoma cells [20], and recently, it has been reported
that it has a remission effect when applied clinically [21]. Additionally, previous studies
have attempted to create a cooperative anticancer effect on cancer cells by combining GNP
with NTP [22-24]. As a result, it was confirmed that the cell cycle of cancer cells was
stopped, and cell death was induced. These results indicate that NTP is an ideal auxiliary
anticancer treatment method, whose combination with other treatments (chemotherapy
and nanoparticle therapy) may regulate the microenvironment of cancer cells and inhibit
cancer cell growth via cooperative action [25,26]. Here, NTP was used to amplify the
effect of the GNP conjugated to the PD-L1 antibody to induce selective action. The results
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presented in this study suggest that the use of combination therapy is an effective treatment
for the treatment of advanced oral cancer.

2. Materials and Methods
2.1. Reagents

Gold nanoparticles (30-nm gold colloid) were purchased from BBI solutions (Cardiff,
UK). Monoclonal mouse antihuman GAPDH, PARP, cleaved caspase-3, apoptosis-inducing
factor (AIF), cytochrome C (cyt C), and p-actin antibodies were purchased from Santa
Cruz Biotechnology (Dallas, TX, USA). The polyclonal rabbit antihuman PD-L1 antibody,
5% bovine serum albumin (BSA), and Nunc™ Glass Bottom Dish (diameter 40 mm) were
purchased from Thermo Fisher Scientific (Waltham, MA, USA). Dulbecco’s modified Eagle’s
medium and F-12 (DMEM/F-12), penicillin/streptomycin (100 pg/mL), and fetal bovine
serum (FBS) were purchased from Gibco (Brooklyn, NY, USA). 11-mercaptoundecanoic
acid (11-MUA), ethyl-dimethylaminopropyl carbodiimide (EDC), N-hydroxy succinimide
(NHS), sulforhodamine B (SRB) sodium salt, RIPA (radio-Immunoprecipitation assay)
buffer, and Tris-buffered saline with 0.1% Tween®-20 detergent were purchased from
Sigma-Aldrich (Seoul, Korea). The LIVE/DEAD™ Viability / Cytotoxicity Kit, Alexa flour
488 goat antirabbit IgG, and SYTO 13 were purchased from Invitrogen (Carlsbad, CA,
USA). The Bio-Rad Protein Assay was purchased from Bio-Rad Laboratories (Hercules, CA,
USA). Advanced enhanced chemiluminescent (ECL) Western blotting detection reagents
were purchased from Merck Millipore (Darmstadt, Germany).

2.2. Culture of Cells

Human squamous cell carcinoma lines from the tongue, SCC-25 cells, were culti-
vated in mixture of Dulbecco’s modified Eagle’s medium and F-12 (DMEM/F-12) with
L-glutamine (4 mM), heat-inactivated 10% FBS, and penicillin/streptomycin (100 ug/mL).
HaCaT cells (nonmalignant human keratinocytes) were cultured in DMEM. Both cells were
cultured in a humidified incubator at 37 °C with a 5% CO, atmosphere.

2.3. Nonthermal Atmospheric Pressure Plasma Supplier

The NTP machine used in this study was developed by Feagle Company (Yangsan-si,
Kyeongsangnam-do, Korea). The machine consisted of 1 dielectric and 2 electrodes. The
inner electrode was composed of stainless steel with a 10-mm-wide alumina cylinder. The
external electrode was wrapped with copper tape. Argon gas was passed between the
internal electrode and the alumina cylinder at a flow rate of 2 standard L/min. The NTP
was produced between the inner and outer electrodes, and the plasma flow temperature
at the electrode was kept below 35 °C for 10 min. The ultraviolet rays emitted by the
device were not detected by the ultraviolet (UV) sensor, but the plasma produced was
mainly composed of OH radicals. Previous studies [23] have reported the comprehensive
chemical characteristic of the NTP produced by this machine. To avoid indiscriminate
cell death, the voltage was monitored and maintained at the corresponding value. Cells
were cultured in Nunc™ Glass Bottom Dish (diameter, 40 mm) to treat SCC-25 or HaCaT
cells (0.5 x 10° cells/mL) with nonthermal plasma. The plate containing the cells was
positioned under the end of the plasma jet. The distance between the cell and the machine
was 10 mm. Plasma treatment was maintained for 5 min. A day prior to the plasma
procedure, cells were cultivated in growth medium without or with PD-L1 antibody + GNP.
Immediately prior to treatment, the dishes were rinsed with PBS to eliminate the unbound
and nonselectively bound PD-L1 antibody + GNP (Figure 1) [26-28].
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Figure 1. The figure of the NTP device used.

2.4. Preparation of PD-L1 Antibody-Conjugated Gold Nanoparticles

We mixed gold colloid suspension with 0.1-mg/mL 11-MUA solution and incubated
it overnight to conjugate an antibody with GNP. After coating the surface of GNP with
11-MUA, it was reacted with 1-mM EDC as a crosslinker. Then, 1-mM NHS solution was
added for 20 min at 4 °C to formulate an activated amine. Amine-activated GNPs were
formed and coupled to the amine group on the PD-L1 antibody (1:10) and to the carboxyl
groups on 11-MUA for 1 h at 4 °C with phosphate-buffered saline (PBS) (1 mM, pH 7.0) [23].

2.5. Cell Viability Assay

The SRB assay was used to evaluate the cell viability. Briefly, 0.5 x 10° cells/mL
were seeded onto 24-well plates. After treatment with the GNP-PD-L1 antibody and a 2-h
incubation period, SRB reagent (10 uL) was added to each well. After 2 h, the absorbance at
450 nm was measured using a microplate reader. This analysis was performed in triplicate.

2.6. LIVE/DEAD™ Viability/Cytotoxicity Assay

The LIVE/DEAD™ Viability / Cytotoxicity Kit was used to evaluate the cell membrane
integrity and cytoplasmic function by assessment of the cytoplasmic esterase activity.
This kit contains two fluorescent dyes. The first, calcein AM, passes through the cell
membrane; after which, it is hydrolyzed by cytoplasmic esterase in living cells, appearing
luminous at 515 nm (green color). The second, ethidium homodimer, fluoresces at an
emission wavelength of 617 nm (red color) and binds to DNA in cells with disrupted cell
membranes. This assay was performed using a Nunc™ Glass Bottom Dish. Briefly, cells
(0.5 x 10° cells/mL) were inoculated, conjugated for 2 h, and analyzed after NTP treatment
and a 2-h incubation period. Cells were rinsed twice with PBS and examined using the
LIVE/DEAD™ kit according to the product’s protocols [29,30].

2.7. Immunocytochemistry

Cells were mixed with PD-L1 ab + GNP in a 1:1 ratio for 2 h. The treated cells were
washed 3 times with PBS for 5 min and then fixed with 4% paraformaldehyde for 10 min.
The cells were then blocked with 5% bovine serum albumin (BSA) in PBS for 1 h. After
incubation for 1 h with Alexa Flour 488 goat antirabbit IgG at 37 °C, the cells were washed
3 times with PBS, followed by incubation with SYTO 13 for 10 min at 37 °C. After washing
3 times with PBS, the fluorescence staining was examined using a confocal microscope.

After the treatment of NTP or PD-L1 ab + GNP + NTP, the cells were fixed in 4%
paraformaldehyde for 10 min. Fixed cells were incubated with AIF and cyt C antibody,
respectively, for 1 h at 37 °C. After washing 3 times each with PBS, the cells were incubated
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with Alexa Flour 488 and 594 antibodies at 37 °C for 1 h. Fluorescent images were observed
and analyzed under a confocal microscope.

2.8. Western Blot Analysis

After treatment, the cells were cultivated for 4 h and then rinsed twice with PBS. Cells
were harvested on ice after mixing with the RIPA buffer-containing phosphatase inhibitor.
After collecting the lysates in a tube, the cells were centrifuged at 14,000 rpm for 20 min at
4 °C. The resulting supernatant was separated and used for the quantification of the lysates
at 30 pg using the Bio-Rad Protein Assay. The solution was then boiled at 95 °C for 5 min.
SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) (8-15% gel) was
used to resolve the cell lysates (30 pug) and transfer them to the polyvinylidene difluoride
(PVDF) membranes. After transference, the gel was blocked using 5% skim milk and
Tris-buffered saline supplemented with 0.1% Tween®-20 detergent (20 mM-Tris, 150-mM
NaCl, and 0.1% Tween-20) for 1 h. The membrane was incubated with antibodies against
PD-L1 (1:500), PARP (1:1000), and cleaved caspase-3 (1:1000). After washing with PBS,
the membrane was incubated with a labeled secondary antibody (1:500) for 2 h at room
temperature. Advanced ECL Western blotting detection reagents were used to identify the
bands. A B-actin antibody (1:1000) was used as the loading control.

2.9. Statistical Analysis

Each experiment was repeated in triplicate, with the standard deviations plotted as
error bars. Experimental groups and a control group were compared using the paired
t-test in Excel (Microsoft, Redmond, WA, USA). Statistical significance was determined as
p <0.05.

3. Results
3.1. Comparison of PD-L1 Expression between Oral Squamous Cell Carcinoma Cells and
Nonmalignant Keratinocyte Cells

To confirm that PD-L1 is a selective marker for squamous cell carcinoma (SCC) cells,
the expression of PD-L1 in SCC and HaCaT cells was confirmed by Western blotting.
Higher levels of PD-L1 expression were observed in cancer cells compared to HaCaT cells
(i.e., nonmalignant keratinocyte cells). Among the four oral SCC cell lines, SCC-25 cells
expressed the highest levels of PD-L1 (Figure 2).

Oral SCC cell lines

HaCaT HSC-3 YD10B YD15 SCC-25

PD-L1

GAPDH

- - - . - .. s—

Figure 2. Western blot assay of the PD-L1 expression in oral squamous cell carcinoma cells. PD-L1 expression was the

highest in SCC-25 cells.
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3.2. The Binding of PD-L1 Antibody + GNP in SCC-25 Cells

An immunofluorescence analysis confirmed the binding of PD-L1 ab + GNP. As shown
in Figure 3, PD-L1 ab + GNP stained red in SCC-25 cells after 2 h of treatment, primarily in
the cytoplasmic area. In contrary, no localized and stained areas were observed in normal
cells (HaCaT cells).

SCC-25 HaCaT

SYTO 13

PD-L1 ab

Merge

—

Scale bar = 10pm

Figure 3. Cellular expression of PD-L1 and uptake of PD-L1 ab + GNP. Green spots represent a
cell nucleus. Red spots represent PD-L1 ab + GNP bound on SCC-25 cells. Abbreviations: NT,
nontreatment; ab, antibody; GNP, gold nanoparticle.

3.3. Selective Induction of Cancer Cell Death by PD-L1 ab + GNP and Nonthermal Plasma

The SRB analysis was performed to determine how PD-L1 ab + GNP and specific
thermal plasma affect the survival of the SCC-25 and HaCaT cells. When the SCC-25 cells
were processed with GNP, PD-L1 ab, or NTDP, their viability changed to 92.59%, 110.05%, and
91.01%, respectively. However, the treatment had little effect on the survival rate of the HaCaT
cells. When all three treatments were combined, the viability of the SCC-25 cells decreased by
59.96%, compared to that of HaCaT cells, which decreased to 88.14% (Figure 4).
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Figure 4. Effect of PD-L1 ab + GNP + NTP on the cell viability of SCC-25 cells and HaCaT cells. (A) According to the SRB
assay, SCC-25 cells overall showed lower cell viability compared to HaCaT cells. Least number of cells were observed after
PD-L1 ab + GNP + NTP treatment. (B) Data shown represent three independent experiments. * p < 0.05, statistical difference
using a paired t-test. Abbreviations: NT, nontreatment; ab, antibody; GNP, gold nanoparticle; NTP, nonthermal plasma.

The LIVE/DEAD™ Viability /Cytotoxicity assay was used to evaluate the shape and
viability of cells. Dead cells that emitted a red fluorescence once with ethidium bromide
were bound to intracellular DNA. The treatment with PD-L1 ab + GNP + NTP significantly
increased the number of dead cells in SCC-25 cells compared to the other treatments. In
contrast, the survival rate of the HaCaT cells were barely affected by different combinations
of treatments (Figure 5).

3.4. Induction of Apoptosis in SCC-25 Cells by the Treatment of PD-L1 ab + GNP + NTP

The Western blot analysis showed that the different treatment modalities displayed
proteins that were typical apoptosis-inducing elements. Compared to the nontreatment
group, the experimental groups showed higher levels of expression for apoptosis-related
proteins, such as cleaved caspase-3 and cleaved PARP. Elevated expression levels of cleaved
caspase-3 and cleaved PARP were observed in the PD-L1 ab + GNP + NTP group. 3-actin
served as the loading control. The experiments were repeated 3 times with similar results.
The expression of cleaved caspase-3 and cleaved PARP was quantified by using Image ]
freeware from the National Institute of Health (Figure 6).
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SCC-25 HaCaT

Merged EthD-1 Calcein Merged EthD-1 Calcein

NT

NTP

PD-L1 ab+GNP+NTP GNP+NTP

Scale bar = 50um

Figure 5. Comparison of the cell viability of SCC-25 and HaCaT cells following treatments using the LIVE/DEAD™
Viability / Cytotoxicity Kit. Green, live cells; red, dead cells. Compared to HaCaT cells, more dead cells were identified in
SCC-25 cells among the experimental groups. Abbreviations: NT, nontreatment; ab, antibody; GNP, gold nanoparticle; NTP,
nonthermal plasma.

A PD-L1 ab PD-L1 ab
NT NTP +GNP+NTP +GNP

Scale bar = 100pm

B PD-L1 ab PD-L1 ab
NT NTP +GNP+NTP +GNP
Cleaved —— — p—
Caspase 3

Cleaved " wo——

B-actin uE—— S TN  S———

Cleaved Caspase 3 Cleaved PARP

_ 35 _ 3
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Figure 6. (A) Microscopic images. (B) Western blot analysis of cleaved caspase-3 and cleaved PARP. (C) Relative expression
levels of cleaved caspase-3 and cleaved PARP protein in SCC-25 cells with NTP, PD-L1 ab + GNP + NTP and PD-L1 ab +
GNP treatments. Abbreviations: NT, nontreatment; ab, antibody; GNP, gold nanoparticle; NTP, nonthermal plasma.
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NT

PD-L1ab
+GNP
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After the PD-L1 ab + GNP + NTP treatment, the mitochondrial apoptosis-related
factors were assessed to verify the subcellular localization as evidence of apoptosis at the
molecular level. The apoptosis-inducing factor (AIF) and cytochrome C (cyt C) in the con-
trol were clustered in punctuate distribution forms. On the contrary, in treated cells, those
proteins were disseminated diffusely at immunofluorescence microscopy, demonstrating
their release from the mitochondria. Especially, in the control cells, AIF was distributed
mostly in the cytosol. On the other hand, AIF was detected in the nuclei of the treated cells
(Figure 7).

Cyt C ab Merged SYTO 13 AIF ab Merged

Scale bar =20 ym

Figure 7. Induction of apoptosis in SCC-25 cells. Upon treatment with PD-L1 ab + GNP + NTP, after 4 h of incubation,
immunocytochemistry visualized the redistribution of cyt C and AIF using an anti-cyt C antibody and an anti-AIF antibody,

respectively. Translocation of cyt C and AIF are indicated with arrows. Abbreviations: NT, nontreatment; ab, antibody;

GNP, gold nanoparticle; NTP, nonthermal plasma; cyt C, cytochrome C; AIF, apoptosis-inducing factor.

4. Discussion

In recent years, research on therapies using nanoparticles has gained popularity,
with the aim of targeting cancer cells more selectively [28]. Strategies have included the
combination of antibody and GNP conjugation increase delivery efficiency, diagnostic
accuracy, and exert anticancer effects using lasers of specific wavelengths [27,29-32]. In
the present study, NTP combined with Ab-conjugated GNP were used with an aim of
increasing the targeting efficiency and enhancing cell death.

As a result, the combination of the PD-L1 antibody to GNP + NTP was found to
exert a synergistic effect due to the antibody’s targeting ability. According to the result of
the SRB assay, this was the most effective when GNP, NTP, and PD-L1 ab were used in
combination. Similar to the previous results [33], although the combination of GNP + NTP
itself produced anticancer effects, the treatment of SCC-25 cells with PD-L1 ab + GNP +
NTP was more effective. Thus, it was possible to implement a targeted treatment more
effectively and selectively for cancer cells [23].

This study was designed based on the overexpression of PD-L1 in cancer cells. Al-
though the PD-L1 antibody is widely used in immunotherapy [8], only a few studies deal
with a combination of GNP and nonthermal plasma. Thus, this study aimed to establish a
new combination approach for cancer treatment using antibodies against PD-L1. To this
end, oral squamous cell carcinoma cells expressing high levels of PD-L1 were selected.
Comparing the expression of PD-L1 between the SCC cells and HaCaT cells, a marked
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increase in PD-L1 was observed in SCC cells, with the HaCaT cells weakly expressing
PD-L1. According to our recent studies, the PD-L1 overexpression in oral cancer cells is
associated with a poor prognosis. As such, SCC-25 cells, which showed high levels of
PD-L1 expression, were selected as the primary cells for this experiment (Figure 2).

Immunofluorescence staining was performed to confirm the selective binding of the
PD-L1 antibodies, which was only weakly observed in HaCaT cells. In contrast, SCC-25
cells treated with PD-L1 ab + GNP showed strong red staining in the cytoplasm around the
nucleus (Figure 3). Similar to a previous study [34], higher levels of antibody-GNP uptake
were observed in the cancer cells. These results confirmed the selective binding of SCC-25
cells by the PD-L1 antibody + GNP.

While the treatment with GNP and NTP had no effect on the HaCaT cells, a decrease in
cell viability was observed in the SCC-25 cells. As demonstrated in previous studies [17,27],
both GNP and NTP exert anticancer effects in cancer cells. When only PD-L1 ab was
applied to SCC-25 cells, the cells proliferated to 110.1%, unlike normal cells. Further studies
are required to determine why the cells proliferated after the application of the PD-L1
antibody alone. The survival of the SCC-25 cells treated with PD-L1 ab + GNP + NTP
was markedly reduced compared to the HaCaT cells. This suggests that PD-L1 ab + GNP
specifically attaches to the PD-L1 protein and synergizes with the nonthermal plasma
(59.96% in SCC-25 cells), strongly inducing cell death. These results suggest that this
combination method is effective for the selective treatment of cancer cells (Figure 4).

An analysis using a LIVE/DEAD™ Viability / Cytotoxicity Kit also showed similar
results compared to the SRB assay. The former analysis enabled the differentiation between
dead and living cells using different levels of fluorescent staining. Upon treatment with a
combination of GNP + NTP and PD-L1 ab + GNP + NTP, higher levels of red cells (dead
cells) were observed in SCC-25 cells compared to HaCaT cells (Figure 5).

The results of the Western blot analysis indicated that, compared to the nontreatment
group, the treatment groups expressed higher levels of active apoptotic proteins—namely,
cleaved caspase-3 and cleaved PARP (Figure 6), which indicates that the treatment with
PD-L1 ab + GNP + NTP induced apoptosis in SCC-25 cells. In addition, cyt C and AIF
are known as proteins that migrate from the mitochondria to the cytosol during apoptosis.
Through immunofluorescence staining, cyt C and AIF migrated from the mitochondria
to the cytoplasm and nucleus after the treatment of PD-L1 ab + GNP + NTP. Therefore,
through these results, it can be assumed that the cell death is caused by apoptosis.

One of the limitations of the present study is the fact that PD-L1, which has an
effect on immune cells, cannot be identified in relation to the immune system in the
in vitro experiments. The PD-L1 protein was expressed on the surface of both cancer
and immune cells. Additionally, NTP itself induced stimulation of the macrophage and
immune responses [35,36]. Thus, upon the simultaneous application of the PD-L1 antibody,
GNP, and NTP, in vivo experiments are needed to determine how each will affect the
immune system of a living organism. Furthermore, although the PD-L1 antibody was used
in immunotherapy;, it has yet to be applied clinically in combination therapies with GNP
and NTP. Thus, further research will be needed to verify the results presented in this study.

5. Conclusions

In this study, the therapeutic effects of a new combination of treatment approaches
for oral squamous cell carcinoma were studied. Among the oral cancer cell lines, PD-L1
expression was highest in the SCC-25 cells. The selective binding of gold nanoparticles
conjugated with PD-L1 antibody was greater in SCC-25 cells compared to HaCaT cells. A
combination treatment using GNP conjugated with PD-L1 antibody and NTP markedly
reduced the cell viability of SCC-25 cells and increased the expression of apoptosis-related
proteins. In conclusion, the treatment with a combination of PD-L1 antibody, GNP, and
NTP had a strong therapeutic effect on oral squamous cell carcinoma. Although further
studies will be needed to confirm these therapeutic effects in vivo, this novel modality
could lead the way for a new paradigm for the treatment of oral squamous cell carcinoma.
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