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Abstract: When measuring surface deformation, because the overlap of point clouds before and
after deformation is small and the accuracy of the initial value of point cloud registration cannot
be guaranteed, traditional point cloud registration methods cannot be applied. In order to solve
this problem, a complete solution is proposed, first, by fixing at least three cones to the target. Then,
through cone vertices, initial values of the transformation matrix can be calculated. On the basis
of this, the point cloud registration can be performed accurately through the iterative closest point
(ICP) algorithm using the neighboring point clouds of cone vertices. To improve the automation of
this solution, an accurate and automatic point cloud registration method based on biological vision
is proposed. First, the three-dimensional (3D) coordinates of cone vertices are obtained through
multi-view observation, feature detection, data fusion, and shape fitting. In shape fitting, a closed-
form solution of cone vertices is derived on the basis of the quadratic form. Second, a random
strategy is designed to calculate the initial values of the transformation matrix between two point
clouds. Then, combined with ICP, point cloud registration is realized automatically and precisely.
The simulation results showed that, when the intensity of Gaussian noise ranged from 0 to 1 mr
(where mr denotes the average mesh resolution of the models), the rotation and translation errors
of point cloud registration were less than 0.1◦ and 1 mr, respectively. Lastly, a camera-projector
system to dynamically measure the surface deformation during ablation tests in an arc-heated wind
tunnel was developed, and the experimental results showed that the measuring precision for surface
deformation exceeded 0.05 mm when surface deformation was smaller than 4 mm.

Keywords: point cloud registration; biological vision; automatic registration; cone vertices; deforma-
tion measurement

1. Introduction

Near-space is a connected region of traditional aeronautics and space. Near-space su-
personic vehicles have great potential, but if flown for a long time in an aerothermal
environment, the surface of vehicles can be deformed, which causes functional failure.
Thus, deformation properties of materials in an aerothermal environment need to be ur-
gently explored. An arc-heated wind tunnel is the main device to simulate an aerothermal
environment. There are many methods to reconstruct 3D shape data at different times
during ablation tests, but the alignment of point clouds is difficult, because the overlap is
too small.

Point cloud registration involves calculating a rigid transformation matrix, consist-
ing of a rotation matrix and a translation vector, to minimize the alignment error between
two point clouds, and has been widely used for simultaneous localization and map-
ping (SLAM) [1–3], multi-view point cloud registration [4,5], object recognition [6,7], etc.
The classical iterative closest point (ICP) algorithm is the most widely used in point cloud
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registration [8]. It was proposed by Besel, in 1992, and has been used to solve the regis-
tration problem of free-form surfaces. The basic idea is to search a corresponding closest
point in a test point cloud for each point in a reference point cloud. According to the
set consisting of all the closest points, a transformation matrix is calculated between two
point clouds, resulting in a registration error. If the registration error cannot satisfy the
stopping criterion, the transformed test point cloud is taken as a new test point cloud,
and the above steps are repeated until the stopping criterion is satisfied. In the classical
ICP algorithm, the registration error is presented in two forms, i.e., point-to-point and
point-to-plane. In general, the ICP algorithm based on the point-to-plane registration
error converges at a faster rate [9]. Using the classical ICP algorithm as a foundation,
there have been many variants proposed by researchers [10–14]. The key step of these
methods involves searching the set of closest points. However, in a real scenario of surface
deformation, it is very difficult to accurately determine the closest points without any
prior information. Moreover, these methods are very sensitive to the initial values of the
transformation matrix. If the quality of initial values is not good enough, these methods
easily suffer from local minima. Another way to solve the point cloud registration problem
is by using probabilistic methods. The core idea is to transform the registration problem
of point clouds into an optimization problem of probability model parameters [15–20].
As compared with ICP and its variants, these methods perform more robustly with respect
to noise and outliers, but their computational complexity is high. Similar to ICP methods,
these methods can only be used to align point clouds with large overlaps, whereas an initial
value of the transformation matrix with high quality is also required. In the application
of surface deformation measurement, the overlap between point clouds is small and the
quality of initial values cannot be guaranteed. Thus, if the above methods are directly used
to align point clouds, the registration error is large.

In order to solve the problem of surface deformation measurement, a complete solu-
tion is proposed. Figure 1 shows the flowchart. Firstly, fix the target to a mounting bracket
with at least three cones. Secondly, a cone vertex detection algorithm is deduced to extract
feature points. Thirdly, accurately align the point cloud before deformation to the point
cloud after deformation using neighboring point clouds of each cone vertices which are
not deformed during ablation tests through an automatic registration algorithm. Then,
surface deformation can be obtained. This paper is organized as follows: In Section 2,
we introduce the detection principles of cone vertices in detail; in Section 3, we derive an
automatic registration algorithm for point clouds; in Section 4, we introduce the research
methodology, including cone vertex detection, automatic registration, and surface deforma-
tion measurement; in Section 5, we present the research results, and in Sections 5.1 and 5.2
we present the accuracy and robustness of the cone vertex detection algorithm and auto-
matic registration algorithm, respectively; in Section 5.3, we provide the results of surface
deformation measurement; in Section 6, we discuss the research results; and, in Section 7,
we conclude with the contributions of this study and next steps in research.
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Figure 1. A flowchart of surface deformation measurement using the proposed method. 
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can be taken as an example, as shown in Figure 3a. 
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2. Cone Vertex Detection

As shown in Figure 2, the perception of geometric features in a 3D scene for human
beings relies on multi-view observation and data fusion, which confer the advantages
of high detection accuracy and robustness to noise. The detection process is executed in
several steps. Firstly, a target is independently observed from different viewpoints. Its 3D
point clouds are projected onto the retina, and corresponding 2D images are generated.
Secondly, the features of interest in each 2D image are extracted. All 2D feature points
are reprojected onto the surface of the target, and the corresponding 3D feature points
are obtained. Thirdly, all 3D feature points observed from different viewpoints are fused,
and the fake 3D feature points (e.g., fake vertices) are deleted according to the analysis
made by the brain. Lastly, the target’s corresponding geometric shape is fitted using the
neighboring point cloud of each 3D feature point on the surface of the target in order to
improve the precision of the detected 3D feature points.
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2.1. Multi-View Observation

Since the measured space is three-dimensional, in order to carry out the all-round
observation of a target, three base planes need to be selected as observation planes, for ex-
ample, XOY, YOZ, and ZOX planes. In each observation plane, the target can be observed
from different viewpoints. Without loss of generality, the XOY observation plane can be
taken as an example, as shown in Figure 3a.

Appl. Sci. 2021, 11, 4538 4 of 17 
 

   
(a) (b) (c) 

Figure 3. Multi-view observation. (a) Observations from different viewpoints; (b) image binariza-
tion under constraints; (c) binary image. 

At viewpoint I, the observed 3D point is notated as ( )( )1 1 1 1, , 1, 2,..., 1,i i i iP x y z i n n= = − , 
where n is the number of points. Its corresponding 2D projection point on the YOZ plane 
is notated as ( )1 1 1,i i ip x y=   . 

1 1

1 1
i i

i i

x y
y z

 =


=




 (1)

The center point of the 2D point cloud is notated as ( )1 1 1,c c cp x y=   . 

1

1 1

n

i
i

c

p
p

n
==
 

 . (2) 

The width w1 and height h1 of its corresponding minimum enclosing rectangle 
(MER) are calculated as follows: 𝑤 max, ,..., , 𝑥 min, ,..., , 𝑥ℎ max, ,..., , 𝑦 min, ,..., , 𝑦 . (3) 

In the YOZ plane, the imaging process of the retina can be simulated to generate a 
binary image 1I  with width W1 and height H1 as: 

v 1 1

1 1

, 1
W kw

k
H kh

=
≥ =

, (4) 

where k is a zoom coefficient. 
Then, the pixel coordinate of the center point ( )1 1 1,c c cI x y=  of the image can be cal-

culated as follows: 

( )
( )

1
1

1
1

1 / 2

1 / 2
c

c

x W

y H

 = −


= −
. (5) 

Then, the 2D point cloud 1
ip  can be shifted to the image pixel coordinate system as: 

1 1 1 1
i i c cp p p I= − +  ,  (6) 

where 1
ip  is the corresponding point of 1

ip  in image 1I . If the grayscale of 1
ip  is di-

rectly set to 255 and that of the other pixels is set to 0, the target area in the binary image 
becomes only a set of discrete pixels but not a connected domain, which cannot be used 
to detect corners. 

Figure 3. Multi-view observation. (a) Observations from different viewpoints; (b) image binarization
under constraints; (c) binary image.



Appl. Sci. 2021, 11, 4538 4 of 16

At viewpoint I, the observed 3D point is notated as P1
i =

(
x1

i , y1
i , z1

i
)
(i = 1, 2, . . . , n− 1, n),

where n is the number of points. Its corresponding 2D projection point on the YOZ plane is
notated as p̃1

i =
(

x̃1
i , ỹ1

i
)
. {

x̃1
i = y1

i
ỹ1

i = z1
i

(1)

The center point of the 2D point cloud is notated as p̃1
c =

(
x̃1

c , ỹ1
c
)
.

p̃1
c =

n
∑

i=1
p̃1

i

n
. (2)

The width w1 and height h1 of its corresponding minimum enclosing rectangle (MER)
are calculated as follows: w1 = max

i=1,2,...,n−1,n

(
x̃1

i
)
− min

i=1,2,...,n−1,n

(
x̃1

i
)

h1 = max
i=1,2,...,n−1,n

(
ỹ1

i
)
− min

i=1,2,...,n−1,n

(
ỹ1

i
) . (3)

In the YOZ plane, the imaging process of the retina can be simulated to generate a
binary image I1 with width W1 and height H1 as:

v
{

W1 = kw1
H1 = kh1

, k ≥ 1, (4)

where k is a zoom coefficient.
Then, the pixel coordinate of the center point I1

c =
(

x1
c , y1

c

)
of the image can be

calculated as follows: {
x1

c = (W1 − 1)/2
y1

c = (H1 − 1)/2
. (5)

Then, the 2D point cloud p̃1
i can be shifted to the image pixel coordinate system as:

p1
i = p̃1

i − p̃1
c + I1

c , (6)

where p1
i is the corresponding point of p̃1

i in image I1. If the grayscale of p1
i is directly set to

255 and that of the other pixels is set to 0, the target area in the binary image becomes only
a set of discrete pixels but not a connected domain, which cannot be used to detect corners.

As is shown in Figure 3b, A, B, and C are three vertices of an arbitrary triangle
patch Tj(j = 1, 2, . . . , t− 1, t) on the target surface, and its corresponding triangle in the
image is notated as T j, where t is the number of triangle patches. Both Tj and T j are
connected domains. The coordinates of A, B, and C are notated as P1

A, P1
B, and P1

C, re-
spectively. The coordinates of A, B, and C in the image are notated as p1

A, p1
B, and p1

C,
respectively. Qk is an arbitrary pixel in image I1, and its coordinates are notated as q1

k ,
where (k = 1, 2, . . . , m− 1, m), and m is the number of pixels in image I1. Then, the follow-
ing vectors can be obtained: 

Qk A = p1
A − q1

k
QkB = p1

B − q1
k

QkC = p1
C − q1

k

. (7)

The sum of angles between vectors is notated as β j, as:

β j = ∠AQkB +∠BQkC +∠CQk A

= arccos
(

Qk A×Qk B
|Qk A||Qk B|

)
+ arccos

(
Qk B×QkC
|Qk B||QkC|

)
+ arccos

(
QkC×Qk A
|QkC||Qk A|

)
(8)
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If Qk is inside T j or lying exactly on the border of T j, then β j must be equal to 360◦.
On the basis of this, the image binarization under geometric constraints can be executed
according to the following equation:

I1(Qk
)
=


255, i f min

j=1,2,...,t−1,t

(∣∣β j − 360
∣∣) = 0

0, i f min
j=1,2,...,t−1,t

(∣∣β j − 360
∣∣) 6= 0

. (9)

The function I1(Qk
)
= g means that the grayscale of the pixel Qk in image I1 is set to

g. Figure 3c shows the result of image binarization under geometric constraints, where the
first observation has been completed.

As shown in Figure 3a, the point cloud P1
i =

(
x1

i , y1
i , z1

i
)

can be rotated by α degrees
around the Z-axis; then, the point cloud P2

i =
(
x2

i , y2
i , z2

i
)
(i = 1, 2, . . . , n− 1, n) observed at

position II can be obtained according to Equation (10) as:

P2
i = RZ(α)P1

i . (10)

From Equations (1)–(9), the simulated image I2 at position II can be generated. In the
same way, all simulated images Iu(u = 1, 2, . . . , s− 1, s) can be obtained, where s is an
integer obtained as:

s =
360
α

. (11)

When the XOY, YOZ, and ZOX planes are taken as the observation planes, then 3s
simulated binary images Iu(u = 1, 2, . . . , 3s− 1, 3s) can be achieved in total.

2.2. Cone Vertex Recognition

The Harris operator can be used to detect corners in all simulated images Iu(u = 1, 2,
. . . , 3s− 1, 3s). Qu

v(u = 1, 2, . . . , 3s− 1, 3s)(v = 1, 2, . . . , ru − 1, ru) represents the detected
v-th corner in image Iu. Its pixel coordinates are notated as qu

v , where ru is the number
of all detected corners in image Iu. Then, its corresponding point q̃u

v in 2D space can be
calculated according to Equation (12) as:

q̃u
v = qu

v − Iu
c + p̃u

c . (12)

The closest point p̃u
hu

v
can be searched for q̃u

v in the 2D point cloud.

hu
v = min

i=1,2,...,n−1,n
dis(q̃u

v , p̃u
i ), (13)

where hu
v is the index of p̃u

hu
v
, in 2D point clouds.

Since the corresponding relationship of the points remains unchanged during the
projection process from a 3D point cloud to a 2D point cloud, the corresponding point in
the 3D point cloud of q̃u

v can be written as P1
hu

v
.

The clustering of
{

P1
hu

v

}
is executed on the basis of Euclidean distance according to

the following steps:

(a) η is notated as the number of categories.

η =
3s

∑
u=1

ru + 1 (14)

ru is the number of all detected corners in image Iu, 3s is the number of all simu-
lated images.

(b) dij represents the distance between the centers of Ci and Cj. Ci and Cj is the i-th
and j-th category. If the minimum of

{
dij
}

is smaller than the distance threshold λ,

cluster
{

P1
hu

v

}
into η-1 categories and η = η-1.
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(c) Repeat step (b) until the minimum of
{

dij
}

is equal to or greater than λ.
(d) The coordinate of each clustering center can be obtained by calculating the mean

value of members in its corresponding category.

ψi represents the number of members of Ci. Since the cone vertex is a robust feature
point, it should be observed from the most viewpoints. Thus, all values of Ci that satisfy
ψi ≤ κ should be deleted, as shown in Figure 4c, where κ is a threshold set for the number of
observations. Figure 4d shows the rough localization result of a cone vertex. The detected
cone vertex is notated as χi(i = 1, 2, . . . , ρ− 1, ρ), where ρ is the number of all detected
cone vertices.
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2.3. Shape Fitting

Without loss of generality, χ1 can be taken as an example. In this case, P1
i =(

x1
i , y1

i , z1
i
)
(i = 1, 2, . . . , ξ − 1, ξ) represents the neighboring point cloud of χ1, where ξ

is the number of neighboring points. The quadratic form of the conic surface can be
written as:

a1

(
x1

i

)2
+ a2

(
y1

i

)2
+ a3

(
z1

i

)2
+ a4x1

i y1
i + a5x1

i z1
i + a6y1

i z1
i + a7x1

i + a8y1
i + a9z1

i + a10 = 0 (15)

Then, Equation (14) can be rewritten in matrix form, where

Eϕ = 0. (16)
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The matrices of E and ϕ are as follows:

E =



(
x1

i
)2 (

y1
i
)2 (

z1
i
)2 x1

i y1
i x1

i z1
i y1

i z1
i x1

i y1
i z1

i 1(
x1

i
)2 (

y1
i
)2 (

z1
i
)2 x1

i y1
i x1

i z1
i y1

i z1
i x1

i y1
i z1

i 1
...

...
...

...
...

...
...

...
...

...(
x1

i
)2 (

y1
i
)2 (

z1
i
)2 x1

i y1
i x1

i z1
i y1

i z1
i x1

i y1
i z1

i 1(
x1

i
)2 (

y1
i
)2 (

z1
i
)2 x1

i y1
i x1

i z1
i y1

i z1
i x1

i y1
i z1

i 1


ϕ =

(
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

)T

E can be decomposed using a singular value decomposition (SVD)

E = UEDEVT
E . (17)

Then, ϕ becomes the last column of VE. The quadratic form of the conic surface can
be rewritten in matrix form as:(

x1
i y1

i z1
i 1

)
F
(

x1
i y1

i z1
i 1

)T
= 0, (18)

where

F =


a1 a4/2 a5/2 a7/2

a4/2 a2 a6/2 a8/2
a5/2 a6/2 a3 a9/2
a7/2 a8/2 a9/2 a10


F can be decomposed using an SVD.

F = UFDFVT
F . (19)

The homogeneous coordinates of the cone vertex are represented by the last column of
VF (see proof in Appendix A) and notated as

[
v1 v2 v3 v4

]T. Thus, the χ′1 coordinates
of the cone vertex are as follows:

χ′1 =

(
v1

v4
,

v2

v4
,

v3

v4

)
. (20)

In the same way, all coordinates of cone vertices χ′1 = (xi, yi, zi)(i = 1, 2, . . . , ρ− 1, ρ)
can be obtained.

3. Automatic Registration Algorithm{1χ′i
}
(i = 1, 2, . . . , ρ1 − 1, ρ1) and

{2χ′i
}
(i = 1, 2, . . . , ρ2 − 1, ρ2) are notated as the cone

vertices in the reference and test point clouds, respectively. Since the corresponding relation-
ship is unknown,

{1χ′i
}

and
{2χ′i

}
cannot be directly used to calculate the transformation

matrix between the reference and test point clouds. The transformation matrix consists
of a 3 × 3 rotation matrix R and a 3 × 1 translation vector T. To solve the corresponding
relationship and improve the robustness of the algorithm, a random strategy is used to
calculate the corresponding relationship between

{1χ′i
}

and
{2χ′i

}
.

Two sequences of numbers are constructed in which the probability of each element
obeys a mean distribution.

1Γ = [1, 2, . . . , ρ1 − 1, ρ1]
2Γ = [1, 2, . . . , ρ2 − 1, ρ2]
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Three different elements 1τj(j = 1, 2, 3) and 2τj(j = 1, 2, 3) are taken from 1Γ and 2Γ,
respectively. The corresponding cone vertices are as follows:
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x y z

τ τ τ τ
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χ

χ
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′ =
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The transformation between 1
1

jτχ ′  and 2
2

jτχ ′  can be written as Equation (21) as: 

( ) ( )2 1

T T
2 1

j j
R T′ ′= × +τ τχ χ . (21) 

The matrices 1M  and 2M  can be constructed using { }1
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2
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x y z x y z

M x y z M x y z
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χ χ
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χ χ

       ′ ′
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. (22) 

Their center points can be calculated using Equation (23) as follows: 
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The first item in Equation (27) is the data term used to represent the geometric error of
rotation estimation; the second item in Equation (27) is the constraint term used to limit
the coordinate system to being a right-handed coordinate system; trace(·) is a function
used to calculate the sum of the diagonal elements of the matrix; whereas ζp is a penalty
coefficient. Therefore, 

R = min
Ri

(ei)

T = 2Mc − R× 1Mc
emin = min

i=1,2,...,7,8
(ei)

. (28)

The threshold of the rotation error is notated as εe. If emin < εe, it indicates that the
cone vertices in 1M and 2M are corresponding points and the solution of rotation and
translation is credible. Otherwise, the following steps are repeated until emin < εe or the
number of iterations is greater than a threshold Nmax: (a) take three different elements
from 1Γ and 2Γ, respectively; (b) calculate R, T, and emin according to Equations (22)–(28).
Since the probability of each element obeys a mean distribution, the value of Nmax can be
calculated using Equation (29) as:

Nmax =
A3

ρ1
A3

ρ2

A3
3

=
ρ1ρ2(ρ1 − 1)(ρ1 − 2)(ρ2 − 1)(ρ2 − 2)

6
. (29)

The corresponding point between
{1χ′i

}
and

{2χ′i
}

is notated as
{1χ̂′i,

2χ̂′i
}
(i = 1, 2, . . . ,

nc − 1, nc); thus,
{1χ̂′i,

2χ̂′i
}

should satisfy Equation (29) as:

‖R×
(

1χ̂′i

)T
+ T − 2χ̂′i‖2

≤ δd, (30)

where δd is the distance threshold.{
1Pj

}
(j = 1, 2, . . . , n1 − 1, n1) represents the neighboring point cloud of

{1χ̂′i
}

in the

reference point cloud.
{

2Pj

}
(j = 1, 2, . . . , n2 − 1, n2) represents the neighboring point

cloud of
{2χ̂′i

}
in the test point cloud. On the above basis, taking the solution of Equation (28)

as the initial value, the rotation matrix R̃ and translation vector T̃ can be solved using the
ICP algorithm. Figure 5 shows the flowchart of the automatic registration algorithm.

Appl. Sci. 2021, 11, 4538 10 of 17 
 

( )( )( )( )1 2

3 3
1 2 1 1 2 2

max 3
3

1 2 1 2
6

A A
N

A
ρ ρ ρ ρ ρ ρ ρ ρ− − − −

= = . (29) 

The corresponding point between { }1
iχ′  and { }2

iχ′  is notated as 

{ }( )1 2ˆ ˆ, 1, 2,..., 1,i i c ci n nχ χ′ ′ = − ; thus, { }1 2ˆ ˆ,i iχ χ′ ′  should satisfy Equation (29) as: 

( )T1 2

2
ˆ ˆi i dR T′ ′× + − ≤χ χ δ , (30) 

where dδ  is the distance threshold. 

{ }( )1
1 11, 2.,..., 1,jP j n n= −  represents the neighboring point cloud of { }1 ˆiχ′  in the 

reference point cloud. { }( )2
2 21, 2.,..., 1,jP j n n= −  represents the neighboring point cloud 

of { }2 ˆiχ′  in the test point cloud. On the above basis, taking the solution of Equation (28) 

as the initial value, the rotation matrix R  and translation vector T  can be solved using 
the ICP algorithm. Figure 5 shows the flowchart of the automatic registration algorithm. 

 
Figure 5. Flowchart of the automatic registration algorithm. 

4. Research Methodology 
4.1. Cone Vertex Detection 

The algorithm’s robustness and accuracy can be evaluated by the detection rate DS  
and location error DE  under Gaussian noise with different intensities. DS  is defined as 
follows: 

D
D

T

NS
N

= , (31) 

where DN  is the number of detected cone vertices and TN  is the total number of cone 
vertice. DE  is defined as follows: 

2

1

DN

i
i

D
D

E
E

N
==


, (32) 

where iE  represents the location error of the i-th cone vertex. 
A cone model provided by [21] was adopted to test the algorithm performance. To 

test the influence of noise intensity on the detection of cone vertices, Gaussian noise was 
independently added to the X-, Y-, and Z-axes of each scene point. The standard devia-
tion σGN of Gaussian noise ranged from 0 to 1 mr with a step size of 0.1 mr, where mr 
denotes the average mesh resolution of the models. 

Figure 5. Flowchart of the automatic registration algorithm.

4. Research Methodology
4.1. Cone Vertex Detection

The algorithm’s robustness and accuracy can be evaluated by the detection rate SD and
location error ED under Gaussian noise with different intensities. SD is defined as follows:

SD =
ND
NT

, (31)
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where ND is the number of detected cone vertices and NT is the total number of cone
vertice. ED is defined as follows:

ED =

√√√√√ ND
∑

i=1
E2

i

ND
, (32)

where Ei represents the location error of the i-th cone vertex.
A cone model provided by [21] was adopted to test the algorithm performance. To test

the influence of noise intensity on the detection of cone vertices, Gaussian noise was
independently added to the X-, Y-, and Z-axes of each scene point. The standard deviation
σGN of Gaussian noise ranged from 0 to 1 mr with a step size of 0.1 mr, where mr denotes
the average mesh resolution of the models.

4.2. Automatic Registration

As shown in Figure 6, the reference and test point clouds consisted of five cones.
There exists a rigid transformation between the reference and test point clouds, as expressed
in Equation (21). The ideal rotation matrix and translation vector are notated as R̂ and T̂,
respectively. The calculated rotation matrix and translation vector are notated as R̃ and T̃,
respectively. Rotation and translation errors under Gaussian noise with different intensities
were used to evaluate the algorithm’s robustness and accuracy. The rotation error εr is
defined as follows:

εr = arccos

 trace
(

R̃R̂T
)
− 1

2

180
π

. (33)
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The translation error εT is defined as follows:

εT =
‖T̃ − T̂‖

dres
, (34)

where dres is equal to the average mesh resolution (dres = 1 mr). To test the influence of
Gaussian noise with different intensities on registration performance, Gaussian noise was
independently added to the X-, Y-, and Z-axes of each scene point. The standard deviation
and step size were the same as in Section 4.1. In the experiment, the corresponding Euler
angle of R̂ was [40◦, 40◦, 40◦], and the rotation sequence was “XYZ”. T̂ was [237 mr,
166 mr, −144 mr].

4.3. Surface Deformation Measurement

A camera-projector system based on the proposed method, shown in Figure 7a,
was developed to measure the surface deformation dynamically during ablation tests
in an arc-heated wind tunnel. The resolutions of the projector and camera images were
1280 × 800 px and 2456 × 2058 px, respectively. The sizes of CCD and CCD pixel were
2/3” and 3.45 × 3.45 µm, respectively. The focal length was 75 mm. The data processing
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platform comprised a Dell laptop with an Intel(R) Core(TM) i7-6700HQ CPU @ 2.6 GHz
and 16 GB RAM. The aim was to evaluate the system’s precision. Firstly, a model with
the size of 40 × 40 × 5 mm was fixed to a special device which had six cones, as shown in
Figure 7b. Secondly, the device was placed on a translation stage, as shown in Figure 7c.
The translation stage’s precision was 0.01 mm. Thirdly, surface ablation could be simulated
by moving the model on the translation stage. The camera-projector system was used to
reconstruct the model surface and the six cones at time 0 and time k, denoting the refer-
ence point cloud and test point cloud, respectively. Fourthly, the reference and test point
clouds were aligned using the proposed registration method, and then the model’s surface
deformation could be measured. Lastly, the measurement result was compared with the
reading from the translation stage, and the measurement error of the camera-projector
system was calculated. Root-mean-square (RMS) was introduced to evaluate the above
measurement error.
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5. Research Results
5.1. Cone Vertex Detection

Figure 8 shows the point clouds of cone models where Gaussian noise was added
with different intensities. Here, “+” represents the detected position of the cone vertex.
Table 1 shows the statistical results of cone vertex detection.
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Table 1. The statistical results of cone vertex detection (mr denotes the average mesh resolution of
the models).

Noise Intensity (mr) Location Error (mr) Detection Rate

0.0 0.00 100%
0.1 0.16 100%
0.2 0.27 100%
0.3 0.45 100%
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Table 1. Cont.

Noise Intensity (mr) Location Error (mr) Detection Rate

0.4 0.75 100%
0.5 1.24 100%
0.6 1.56 100%
0.7 1.85 100%
0.8 2.29 100%
0.9 2.58 100%
1.0 3.13 97%

5.2. Automatic Registration

Figures 9 and 10 show the reference and test point clouds, respectively, where Gaussian
noise was added with different intensities. Here, “+” represents the detected position of the
cone vertex. Figure 11 shows the relationship between registration error and noise intensity.
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5.3. Surface Deformation Measurement

Figure 12 shows the model’s surface deformation at different times. Table 2 shows the
comparison results of readings and measurement results.
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Table 2. Statistical results.

Time (s) Reading (mm) Measurement Result (mm) Error (mm)

0.0 0.000 0.035 0.035
0.5 0.100 0.109 0.009
1.0 0.200 0.196 0.004
1.5 0.300 0.300 0.000
2.0 0.400 0.402 0.002
2.5 0.500 0.492 0.008
3.0 0.600 0.605 0.005
3.5 0.700 0.703 0.003
4.0 0.800 0.795 0.005
4.5 0.900 0.903 0.003
5.0 1.000 1.008 0.008
5.5 1.100 1.106 0.006
6.0 1.200 1.210 0.010
6.5 1.300 1.320 0.020
7.0 1.400 1.433 0.033
7.5 1.500 1.522 0.022
8.0 1.600 1.620 0.020
8.5 1.710 1.742 0.032
9.0 1.810 1.843 0.033
9.5 1.910 1.952 0.042
10.0 2.010 2.056 0.046
12.5 2.500 2.537 0.037
15.0 3.000 3.029 0.029
20.0 4.000 4.035 0.035

6. Discussion

(1) As shown in Figure 8c, when σGN = 1 mr, the conic surface was very rough, but its
vertex could still be detected accurately, which fully proves the robustness of the
algorithm to Gaussian noise. Table 1 shows the statistical results of the detection
rate and location error under Gaussian noise with different intensities. It could be
seen that the location error increased with increasing noise intensity. In general,
detection of the cone vertex was successful if the location error was lower than 5 mr.
Thus, the algorithm can maintain a high detection rate under Gaussian noise with
intensity ranging from 0 to 1 mr.

(2) Figures 9–11, indicate that the rotation and translation errors increase with increasing
noise intensity. When σGN = 1 mr, most details on the conic surfaces were lost, but the
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point clouds could still be aligned accurately, which proves the robustness of the
algorithm to Gaussian noise. In general, the point cloud registration was successful if
the rotation error was lower than 5◦ and the translation error was lower than 5 mr.
Thus, the algorithm performs well under Gaussian noise with an intensity ranging
from 0 to 1 mr.

(3) In general, surface deformation of a near-space supersonic vehicle is no more than
4 mm during ablation tests in an arc-heated wind tunnel. Table 2 shows the statistical
results, where it can be seen that the precision of surface deformation measurement
exceeds 0.05 mm when surface deformation is smaller than 4 mm.

7. Conclusions

In order to solve the problem of surface deformation measurement during ablation
tests in an arc-heated wind tunnel, in this study, we proposed an automatic point cloud
registration method. As compared with other registration methods, we provided a com-
plete solution, including two parts: (1) Guarantee high-quality initial values and overlaps
for aligning point clouds which have deformed much. (2) A strategy to automatically
compute rigid transformations between point clouds. Inspired by 2D artificial targets used
to improve precision of camera calibration or photogrammetry, we introduced 3D artificial
targets to obtain accurate registration results, which was the key idea for solving the prob-
lem of surface deformation measurement; most state-of-art approaches only considered
how to align point clouds more accurately and robustly using a big enough overlap. Simu-
lations and experiments were conducted, and the research results indicated the following:
(1) The proposed method performed well under Gaussian noise with an intensity ranging
from 0 to 1 mr. When σGN = 1 mr, rotation and translation error were smaller than 0.025◦

and 1 mr, respectively. (2) The error of surface deformation measurement was smaller than
0.05 mm when deformation was no more than 4 mm. In addition to surface deformation
measurement, the proposed method can also be applied for experimental studying of soft
matter.

However, there are still some aspects that need to be studied: (1) The procedure of
cone vertex detection should be more efficient. As compared with the Harris operator used
in cone vertex detection, Radon or Hough transform may be more simplified [22,23], but the
robustness needs to be evaluated. (2) The 3D artificial target should be more multiple.
An artificial neutral network (ANN) can be adopted to train a classifier. And rotational
projection statistics (RoPS) can be taken as the inputs of the classifier [6]. The classifier
can be used to recognize different geometric features and delete fake features, which can
improve the efficiency of data fusion and decrease the time cost.
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Appendix A

Lemma A1. The quadratic form of the conic surface can be written as:

PT AP = 0, (A1)
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and:

A =


a1 a4/2 a5/2 a7/2

a4/2 a2 a6/2 a8/2
a5/2 a6/2 a3 a9/2
a7/2 a8/2 a9/2 a10

, P =
[

x y z 1
]T.

A can be decomposed using SVD.

A = UADAVT
A . (A2)

Then, the last column of VA represents the homogeneous coordinate of the cone vertex.

Proof. Matrix A can be diagonalized on the basis of eigenvalues and eigenvectors.

A = RDRT, (A3)

where D is a diagonal matrix and R is a transformation matrix. Substituting Equation (A3)
into Equation (34) yields:

PT AP =
(

PTR
)

D
(

PTR
)T

=
(

P′
)TDP′ = 0, (A4)

where (P′)TDP′ = 0 is the standard quadratic form of the conic surface. Equation (A4) is
essentially a transformation between coordinate systems. Through this transformation,
the cone vertex can be shifted to the origin of the new coordinate system, and the axis of
the cone can be made parallel to the Z-axis of new coordinate system. The homogeneous
coordinates of the cone vertex in the new coordinate system can be notated as:

P′v =
[

0 0 0 1
]T. (A5)

Because P′ = RTP, the homogeneous coordinates of the cone vertex in the original
coordinate system can be calculated using Equation (A6) as follows:

Pv =
(

RT
)−1

P′v. (A6)

A is a real symmetric matrix; thus, RTR = λI. I is a 4 × 4 unit matrix; therefore,

AT A = RDRTRDRT = λRD2RT. (A7)

R is a matrix consisting of eigenvectors of AT A. A can be decomposed using SVD.

A = UADAVT
A . (A8)

Thus,
R = VA. (A9)

Substituting Equation (A9) into Equation (A6) yields

Pv =
(

RT
)−1

P′v = VA


0
0
0
1

. (A10)

Therefore, the homogeneous coordinates of the cone vertex become the last column of
VA. The lemma has been proven. �
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