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Abstract: This work develops a novel automatic irrigation system to implement the customized and
accurate watering for an individual seedling. The system integrates the modules of visual recognition
of the stem-leaf junction, identification of the stem-root junction as the watering point, and control of
the spraying nozzle. The model of YOLOv3 is employed to screen the stem-leave junction of an orchid
seedling, whose depth map then acquired by the method of Semi-Global Block Matching (SGBM)
extracts the three-dimensional (3D) coordinates of the junction center. Next, the concept of leaf vector
is introduced to identify the stem-root junction of the orchid seedling as the accurate watering point,
which the spraying nozzle is controlled to reach for supplement of the specific amount of water. A
number of experiments were conducted to verify the proposed irrigation system for orchid seedlings
at different locations with various heights. The experimental results show that the rates of successful
watering are 82% and 83.3% for the uni-pot and multi-pot orchid seedlings, respectively.

Keywords: automatic irrigation system; orchid seedling; object detection; stereo vision; depth map

1. Introduction

Phalaenopsis are high-price plants, which need to be cautiously taken care of before
they are sold. The orchid seedlings are traditionally irrigated by individually watering
according to their growth condition. However, intensive manpower must be required for
in-person watering, which would limit the massive production capacity of orchid seedlings,
especially under the shortage of labors in some countries. For this intrinsic topic, the so-
called sprinkler irrigation is one of the most popular and economical irrigation systems for
the greenhouse, where the seedlings are watered automatically by means of showerheads
installed over the assembly line. As being advantageous on watering a large area, with the
addition of the machine vision, various schemes of global irrigation systems were proposed
to locate and water the seedlings in the greenhouse [1,2]. Nevertheless, a high volume of
water is poured onto the top of the seedlings, which then suffer overmuch moist leaves,
uneven watering, or yet a deluge of water at the root. Consequently, Phalaenopsis plants
would be diseased.

To solve this problem, this work aims at an effective vision-based watering approach to
prevent plants on the assembly from being often mis-irrigated. In contemporary researches,
the emergence of deep-learning based computer vision has contributed to detect and
inspect the abnormal incidents in rather wide fields. For instance, a rapid recognition
method was presented to examine the defects of electronic components [3]. Moreover,
traffic conditions can be monitored by the computer vision techniques based on YOLOv3
(You Only Look Once version three) and spatial pyramid pooling (SPP) [4,5]. A low-
cost swine surveillance system was accomplished by an automated vision-based object
detector, for husbandmen to manage a large-scale swine farm in a cost-effective manner [6].
Additionally, even the machine vision with deep learning becomes more and more popular
for the object detection in several agricultural applications, e.g., the coffee beans and the
orchid seedlings [7–11].
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Over the past decade, a plenty of deep-learning based techniques have been launched
for the object detection and recognition. For example, the region-based convolutional
neural network (R-CNN) [12] was proposed by Girshick et al. to succeed in applying the
deep learning on the object recognition, where a convolutional neural network (CNN) and a
selective search for region proposals were hybridized for object detection and classification.
Fast R-CNN [13] advanced the computational efficiency by utilizing the region of interest
pooling (RoIpooling) to create the feature map for only single computation on the same
region proposal, which was repeatedly computed in the classical R-CNN.

Even though Fast R-CNN is superior to R-CNN in computational efficiency, both
of them spend much time to acquire the region proposals by taking the same strategy—
the selective search (SS). For this reason, the region proposal network (RPN) was firstly
implemented in Faster R-CNN [14], to obtain the region proposals in an image frame by
using neural networks to search positive and negative anchors, which then were classified
by a softmax function and were positioned more accurately by an optimal bbox regression.
Despite satisfactory accuracies of the R-CNN based methods, high computational cost
would be required to result in a low detection speed when using general computers, e.g.,
desktops and laptops.

To conquer the above-mentioned trouble, a new deep learning framework coined
YOLO [15] was invented by Redmon et al. Unlike Faster R-CNN, YOLO considers the
object detection as a regression problem and detects all interested objects of an entire
image within the same period by the CNN, so it can perform better than R-CNN on the
aspect of the computational efficiency. Soon afterwards, Redmon and Farhadi proposed
YOLOv2 [16], which specialized in better speed and accuracy for the object detection and
recognition. The algorithm of YOLOv2 obtained the aspect ratio of the image border by
introducing the idea of anchor box in Faster R-CNN and applying the k-means clustering,
replaced the dropout strategy with the batch normalization, and turned the CNN into
the darknet-19. Later in 2018, to further raise the performance of YOLOv2, Redmon and
Farhadi developed YOLOv3 [17], being involved with the following improvements. Firstly,
the darknet-53 with deeper layers is substituted for the darknet-19. Secondly, the classifier
is achieved by the logistic regression, instead of the softmax function. Moreover, the Feature
Pyramid Network (FPN) is also introduced to realize the multi-scale inspections. Figure 1
proves that YOLOv3 spends only 22 ms to detect objects, and performs more accurate
recognition than a large portion of other detection methods.
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Figure 1. YOLOv3 competes with other detection methods for comparable performance, under the
platform either an M40 or Titan X, with essentially the same GPU [17].

Accordingly, based on the object detection techniques of YOLOv3, this work develops
a novel automatic irrigation system to implement the customized and accurate watering
for an individual seedling, via the following ways: 1. Orchid seedlings are visually
identified and selected by YOLOv3. 2. Orchid seedlings are accurately positioned in
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three-dimensional (3D) space. 3. The stem-root junction is deemed the watering target to
avoid damp leaves. 4. Intelligent control is introduced to adjust the watering amount.

The remaining parts of this work are listed as below. The system design and method-
ology are detailed in Section 2. The feasibility of the proposed system is verified through a
number of experiments, as described in Section 3. Finally, Section 4 concludes this research
and provides possible extensions.

2. System Design and Methodology

The proposed irrigation system for the orchid seedlings consists of several modules,
such as the visual recognition, the construction of the 3D coordinate system, the positioning
of the watering point, and the control for the system process, as shown in Figures 2 and 3.
The framework of YOLOv3 is used for the visual recognition to identify and frame the
seedlings. The 3D coordinate system is established through the depth maps corresponding
to the output images of YOLOv3 for localization of the seedlings in the 3D space. The
desired watering point is the stem-root junction of the seedling, which can be positioned
and watered accurately by the spraying nozzle. The system process control takes into
account the sequential control of automatic watering process.
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2.1. Objecti Detection System

In order to accurately identify the location of each seedling to be watered and to
distinguish the characteristics of each seedling from overlook view, this study frames the
junction between the stem and leaf of the seedling, and collects hundreds of seedling
over-view images to train the learning model of YOLOv3.

Firstly, this work manually frames the image datasets for junctions between stems and
leaves of all seedlings via the software LabelImg. Secondly, the image datasets are divided
into a high ratio of training, accompanied with a low ratio of validation and testing sets.
Finally, the tactic of cross validation is selected to train the YOLOv3 model. The training
and validation sets are used, respectively, to training the model and to prove the prediction
accuracy of the trained model, which is followed eventually by the step that the use of the
testing set is to provide an objective evaluation on a final model fitting the training set.

2.2. Construction of the 3D Coordinate System

The binocular visual system is established for the 3D coordinate system in this work.
The distribution principle is to retrieve images of an object from different positions based
on the binocular (dual lens). As illustrated in Figure 4, the true distance Z, between the
object and the lens, can be calculated as follows:

Z =
b ∗ f

XL − XR
=

b ∗ f
d

(1)

where d = (XL − XR) is the disparity, XL and XR are the x-coordinates on the left and right
images, respectively, b is the length of the base line (distance between the optical axes of
both cameras), and f is the focal length of the camera.
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The image coordinates (u, v) can be reprojected to the world coordinates (X, Y, Z)
through the 4 × 4 reprojection matrix (Q) in order to obtain the actual 3D coordinates,
which can be related according to Equation (2).

Q


u
v
d
1

 =


X
Y
Z
W

 (2)

where d is the disparity and W is the distance parameters of homogeneous coordinates.
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The most widely used algorithm to match the feature point is Semi-Globe Block
Matching (SGBM) [19–21], which obtains the Sum of Absolute Differences Window (SAD)
to calculate the cost [22], as well as takes the left-camera image as the reference and the
right-camera image as the target to perform pixel feature matching on the same epipolar
line. Finally, the obtained parallax is also utilized by the SGBM algorithm to carry out the
stereo vision. In this work, the left- and right-camera images are processed in grayscale,
and then the feature matching is performed through the SGBM algorithm.

In the OpenCV function library [23], the function cv2.StereoSGBM_create() performs
the execution of the SGBM algorithm. There are no fixed values for the parameters of SGBM
to output the grayscale depth map, which further requires cv2.reprojectImageTo3D() to get
the true 3D coordinates corresponding to the active pixel. After inputting the grayscale
depth map and the reprojection matrix Q, the function cv2.reprojectImageTo3D() can output
a depth map, each pixel of which tells 3D coordinates in the workspace with respect to the
origin, i.e., the optical center of the left lens in Figure 4.

In order to make it convenient to observe the outputted depth map, the original noisy
gray-scale depth map is converted into the pseudo-color depth map, which reduces the
noises using the weighted least square (WLS) filter. It is a kind of edge-preserving filter that
can smooth the whole image at the same time. OpenCV provides the cv2.applyColormap()
function to convert gray-scale graphs to 12 color maps. Here, COLORMAP_JET mode is
selected for the conversion process. On this mode, Figure 5 displays a pseudo-color map,
where pixels with deeper red and deeper blue colors hold higher and lower gray values,
respectively, in the original grayscale graph. Moreover, at the same pixel, the deeper red the
color is, the closer the physical point is from the optical center of the left lens in Figure 4.
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2.3. Positioning of the Watering Point

The established identification and depth map of YOLOv3 will be merged. According
to actual requirements, when seedlings appear within the field of view of binocular lens,
the following processes are executed: 1. Apply YOLOv3 to identify whether there is a
target in the image (the junction between stems and leaves) through the left lens; 2. if the
target object is detected, the coordinates of pixels at the upper-left and lower-right corners,
on the prediction box in Figure 6, are, respectively, (xmin, ymin) and (xmax, ymax), which
are returned to calculate the central position of the prediction box; 3. input the center
position to the map to obtain the corresponding real 3D coordinates.

After the 2D coordinates of the central point of the prediction box are obtained, its
actual 3D coordinates can be obtained by feeding the 2D coordinates and the depth map to
cv2.ReprojectimageTo3D().

To refrain from diseases caused by directly watering on the leaves, the direction vector
of the leaves (called leaf vector elsewhere), acquired by image processing, is defined as the
fitted straight-line vector of the two main contours of leaves, as shown in Figure 7. After
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the leaf vector is calculated, the desired watering point is locked to the stem-root junction
of the seedling, as depicted in Figure 7.
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After selecting the junction position between the stem and the leaf through the
YOLOv3 frame, the image of the center point of the prediction box is cropped, as provided
in Figure 8. As different image sizes will induce redundant adjustments during the follow-
ing erosion and expansion processes, the shorter length (or width) of the cropped image is
set to be constant by the OpenCV function cv2.resize() to simplify the image processing.
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Then, to reduce noises, the function cv2.cvtColor() is used for grayscale processing
of the cropped image. Moreover, the function of Gaussian blur, cv2.GaussianBlur() is
utilized to blur the noises, such as spots, and finally the function cv2.Canny() is applied for
edge detection. The effects of grayscale processing, Gaussian blur and edge detection are
demonstrated in Figure 9a–c, respectively.
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In order to merge the effective line segments at the edge of the main body, the contour
is expanded using the function cv2.dilate(), as shown in Figure 10a. As the corner of the
line segment may influence the calculation process of the leave vector, i.e., the folding of
the line segment may reduce the single directionality of the contour area, the function
cv2.erode() is invoked to properly erode the expanded contour, as illustrated in Figure 10b.
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Figure 10. Effects of dilation and erode processes.

The function cv2.findContours() is utilized to calculate the areas of all blocks, the largest
ones of which, selected through the function sorted(), represents the contour-of-interest
of the image. As represented in Figure 11a, the area marked in red is the largest part,
for which the function cv2.fitLine() is used to get the unit vector of the fitting line, clearly
overlapped on the original image, as depicted in Figure 11b.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21 
 

Then, to reduce noises, the function cv2.cvtColor() is used for grayscale processing of 
the cropped image. Moreover, the function of Gaussian blur, cv2.GaussianBlur() is utilized 
to blur the noises, such as spots, and finally the function cv2.Canny() is applied for edge 
detection. The effects of grayscale processing, Gaussian blur and edge detection are 
demonstrated in Figure 9a–c, respectively. 

   
(a) (b) (c) 

Figure 9. Edge detection effect: (a) grayscale process; (b) Gaussian blur; and (c) edge detection. 

In order to merge the effective line segments at the edge of the main body, the contour 
is expanded using the function cv2.dilate(), as shown in Figure 10a. As the corner of the 
line segment may influence the calculation process of the leave vector, i.e., the folding of 
the line segment may reduce the single directionality of the contour area, the function 
cv2.erode() is invoked to properly erode the expanded contour, as illustrated in Figure 10b. 

  
(a) Dilation (b) Erosion 

Figure 10. Effects of dilation and erode processes. 

The function cv2.findContours() is utilized to calculate the areas of all blocks, the larg-
est ones of which, selected through the function sorted(), represents the contour-of-interest 
of the image. As represented in Figure 11a, the area marked in red is the largest part, for 
which the function cv2.fitLine() is used to get the unit vector of the fitting line, clearly over-
lapped on the original image, as depicted in Figure 11b. 

  
(a) (b) 

Figure 11. Fitted line effect: (a) Marked largest area; (b) fitted line. Figure 11. Fitted line effect: (a) Marked largest area; (b) fitted line.

The desired watering point on the stem-root junction is calculated after obtaining
the actual 3D coordinates of the center point and the leaf vector. Through the customized



Appl. Sci. 2021, 11, 4531 8 of 20

function, the original fitted line vector is inputted to compute the vertical unit vector by
the inner product. Since the vertical unit vector can be represented in two directions, the
system watering is set to water from the target with a smaller X-coordinate to the one with
a larger X-coordinate, in order to reduce the total moving distance of the motor. Then,
the distance between the new watering and central points for the seedling plant is set
and multiplied by the selected unit vector to obtain the corrected distance in the X- and
Y-directions. According to the size of the seedling plant, the new targeted watering point
will be 1.5 to 2.5 cm far from the center of the seedling plant, which is on the straight line
of the leaf growth, as illustrated in Figure 12.
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Figure 12. Elaboration on correction process of targeted watering point (stem-root junction).

In addition to the corrected distance in the direction of X- and Y- directions, since the
height of the stem-root junction area will be slightly lower than the center of the seedling
plant, an additional offset for the Z-direction height will be taken into account. After
including the tri-axial correction values to relocate the seedling, the original 3D coordinates
can be transferred to the real 3D coordinates for accurately targeting the watering point. If
the leaf vector cannot be found after selecting the prediction box of YOLOv3, the distances
in the X- and Y-directions shall not be corrected. However, for the Z-direction, the collision
between the sprinkler and the center of the seedling shall be prevented by increasingly
adjusting the height for watering via the customized functions. To make clear, the whole
correction process for 3D coordinates of the seedling is described in Figure 13.

2.4. System Process Control

The system process control is divided into four parts: the motor control, the command
control, the triggering process and the automatic watering process.

The three-axis sliding table is driven by three stepper motors with the synchronous
wheel timing belts and screws. Firstly, for the motor control, the computer uses Python and
Arduino to execute the operation instructions of the stepping motor through the Arduino
control board. Secondly, the command control for the stepping motor to accomplish
the specified task is implemented by mutual communications between Arduino and the
computer via the package pySerial of Python. The function mot.write() is used to pass a set
of strings combining letters and numbers (e.g., j0), which stand for the code of the task
type and the relevant parameters, respectively. Afterwards, the functions, Serial.read() and
Serial.Parseint(), are used in the Arduino to receive the commands to control the motor.
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Thirdly, the triggering of the watering process is started to launch the automatic
watering process, as addressed in Figure 14. If the seedlings enter the camera screen and
the YOLOv3 boxes the junctions between stems and leaves to several blocks, the specific
one of which is selected in the picture to trigger the watering process.
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The area that triggers the process is represented as the function rectangle() with a green
line in the real-time image of the left image. The triggering area is located above the center
of the left lens, with a length of 240 pixels and a width of 120 pixels. When the central point
of the prediction box enters into the triggering area, the watering process will be triggered.

Whether the prediction frame firstly enters the triggering area is determined by the
fact that the number of prediction frames is greater than zero and the central points of
all prediction frames are in the triggering area. At this time, the trigger signal is set to
1. If the number of frames is greater than zero, but the central point of the prediction
frame does not enter the triggering area, the trigger signal is set to 0. When the number of
prediction frames equals zero, the trigger signal is also set to 0. When the current trigger
signal is greater than the previous one, the automatic watering process will be triggered.
This approach ensures that the prediction frame staying in the triggering area will not
cause repeated watering problems.

Finally, the watering process is completed by the customized functions, which at
first, defines the moving boundary of each axis motor, and confirms whether each group
of target coordinates exceeds the moving boundary. If any group of target coordinates
exceeds the moving boundary, it will be removed. When the sprinkler reaches the plane
position of the targeted watering point, the Z-axis motor is lowered to the specified height.
Then, the valve is opened with a duration of time to satisfy the preset watering volume
for completing the pouring step. Once the irrigation is accomplished, the Z-axis motor is
raised to the specified height, e.g., 2 to 5 cm, based on the dimensions of the seedlings. The
overall flowchart is detailed in Figure 15.
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2.5. System Setup

The system platform is demonstrated in Figure 16, where an Arduino control board,
a stepper motor drive board, a linear-slider driving system, a solenoid valve, a water
storage container and a stereo camera are all installed on the three-axis motion platform.
This platform is an aluminum extruded structure of 61.6 cm (width) × 61.6 cm (length)
× 40.2 cm (height); the accessory carrier is an aluminum extruded structure of 21.0 cm
(width) × 40.2 cm (length) × 62.5 cm (height). Furthermore, the watering nozzle is at a
height of 22.9 cm from the ground.
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For the image processing, the system employs the binocular cameras, being horizon-
tally downward and parallel to the ground, fixed at a height of 63 cm from the ground.
For the object detection and the obtainment of depth maps with YOLOv3, the left lens
of the stereo camera is used as the main image acquisition device, so the center of the
left lens is placed at the horizontally symmetric axis of the three-axis motion platform.
Figure 17 defines positive directions indicated by yellow arrows labeled as X(+), Y(+) and
Z(+), respectively towards positive directions of X-, Y-, and Z-axes of camera coordinates.
As drawn in Figure 18, the origin of the three-axis motion platform is denoted as (0, 0, 0),
and yellow arrows labeled with X(+), Y(+) and Z(+), representing the positive directions of
X-, Y-, and Z-axes, respectively. Furthermore, the allowable travel lengths of the platform
in the X-, Y-, and Z-directions are 40 cm, 40 cm and 16 cm, respectively.
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3. Results and Discussion
3.1. Model Training Results

There are totally 950 images in the dataset of the frame selection in this work, including
600, 150, and 200 ones in the training, validation, and test sets, respectively. The training
and validation sets were put together into the model training. After the training process,
the accuracy rates (also known as the average precision, AP) of the validation set and
the test set are 92.63% and 86.23%, respectively, which implies that this work is of high
practicability. The object detection results of the partial training set are shown in Figure 19.
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3.2. 3D Localization

There are two conditions for the experiments of 3D localization. Under Condition 1,
the central point of the target is considered the measurement point and departs from the
optical center of the left lens by 40 cm, as displayed in Figures 20 and 21.

Under Condition 2, a sample potted plant with the diameter of 8 cm, the length of
31 cm and the width of 7 cm, as labeled in Figure 22, is utilized for experiments in several
3D positions. They are given by the four coordinates (10, 30, 13.5), (10, 35, 13.5), (25, 30,
13.5) and (25, 35, 13.5) in the unit of centimeters, which are called Points 1 to 4, respectively,
for the triggering areas in the field of view of the left lens, as demonstrated in Figure 23.
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In the first experiment, Condition 1 provided the measuring method, and the results
of measurement errors were recorded in Figure 24, corresponding to the Z-axis distance
ranging from 20 to 80 cm. When the Z-axis distance ranges from 20 to 35 cm, the error is
obviously large. Until the Z-axis reaches farther than 80 cm, the error starts to rise again,
but negatively. Figure 25 clearly indicates that the best working distance of this binocular
camera is from 35 to 75 cm, within which the absolute values of average, maximum, and
minimum errors are 0.22 cm, 0.42 cm, and 0.02 cm, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21 
 

and (25, 35, 13.5) in the unit of centimeters, which are called Points 1 to 4, respectively, for 
the triggering areas in the field of view of the left lens, as demonstrated in Figure 23. 

 
Figure 22. Target of Condition 2. 

 
Figure 23. The schematic view of Condition 2, there are 4 measurement points in triggering area. 

In the first experiment, Condition 1 provided the measuring method, and the results 
of measurement errors were recorded in Figure 24, corresponding to the Z-axis distance 
ranging from 20 to 80 cm. When the Z-axis distance ranges from 20 to 35 cm, the error is 
obviously large. Until the Z-axis reaches farther than 80 cm, the error starts to rise again, 
but negatively. Figure 25 clearly indicates that the best working distance of this binocular 
camera is from 35 to 75 cm, within which the absolute values of average, maximum, and 
minimum errors are 0.22 cm, 0.42 cm, and 0.02 cm, respectively. 

 
Figure 24. Z-axis error vs. Z-axis distance diagram (20 to 80 cm). 

-5

0

5

10

15

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Z-
ax

is 
er

ro
r (

cm
)

Actual Z-axis distance (cm)

Z-axis error (20 to 80 cm)

Figure 24. Z-axis error vs. Z-axis distance diagram (20 to 80 cm).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21 
 

 
Figure 25. Z-axis error in working range vs. Z-axis distance relationship diagram (35 to 75 cm). 

Additionally, Condition 2 was used for the second experiment. The measurement 
results were addressed in Table 1. The maximum absolute errors of the X-, Y-, and Z-axes 
of the four measurement points are 0.18 cm, 0.2 cm, and 0.32 cm, respectively. On the other 
hand, the minimum absolute errors of the X-, Y-, and Z-axes of the four measurement 
points are 0.1 cm, 0.12 cm, and 0.18 cm, respectively. It is shown that the resulted four 
measurements in Figure 23 deviate from the accurate positions with mm-scale errors, 
which is relatively little in comparison with the nozzle size. Therefore, it can be guaran-
teed that the nozzle still waters on the correct position, despite the presence of the meas-
urement errors presented in Table 1. 

Table 1. Measurement results of seedling center. 

Measurements Point 1 Point 2 Point 3 Point 4 
X-axis average measurement 

(cm) 
10.16 10.18 25.1 25.16 

Y-axis average measurement 
(cm) 

30.2 35.2 30.16 35.12 

Z-axis average measurement 
(cm) 

13.22 13.32 13.2 13.18 

X-/Y-/Z-Axes absolute error 
(cm) 

0.16/0.2/0.22 0.18/0.2/0.32 0.1/0.16/0.2 0.16/0.12/0.18 

3.3. Water Flow Control Experiment of Solenoid Valve 
This research also recorded experimental results in Figures 26 and 27, to relate the 

watering amount (g) with the duty time for valve opening (s). It was measured by the way 
that the duty time for valve opening started from 3 s and increased sequentially with the 
one-second interval. The experimental results are linear in the range between 4 and 11 s; 
hence, the relationship between the watering amount and the duty time for valve opening, 
formalized in Equation (3), is adopted to control the amount of watering. y =  0.2313x +  1.57. (3)

y = -0.0156x + 0.7047
R² = 0.9237

-3

-2

-1

0

1

2

3

30 35 40 45 50 55 60 65 70 75 80

Z-
ax

is 
er

ro
r (

cm
)

Actual Z-axis distance (cm)

Z-axis working range (35 to 75 cm)

mean of absolute error value : 0.22 (cm)
Maximum absolute error value: 0.42 (cm)
Minimum absolute error value: 0.02 (cm)

Figure 25. Z-axis error in working range vs. Z-axis distance relationship diagram (35 to 75 cm).



Appl. Sci. 2021, 11, 4531 15 of 20

Additionally, Condition 2 was used for the second experiment. The measurement
results were addressed in Table 1. The maximum absolute errors of the X-, Y-, and Z-axes
of the four measurement points are 0.18 cm, 0.2 cm, and 0.32 cm, respectively. On the
other hand, the minimum absolute errors of the X-, Y-, and Z-axes of the four measurement
points are 0.1 cm, 0.12 cm, and 0.18 cm, respectively. It is shown that the resulted four
measurements in Figure 23 deviate from the accurate positions with mm-scale errors, which
is relatively little in comparison with the nozzle size. Therefore, it can be guaranteed that
the nozzle still waters on the correct position, despite the presence of the measurement
errors presented in Table 1.

Table 1. Measurement results of seedling center.

Measurements Point 1 Point 2 Point 3 Point 4

X-axis average measurement (cm) 10.16 10.18 25.1 25.16
Y-axis average measurement (cm) 30.2 35.2 30.16 35.12
Z-axis average measurement (cm) 13.22 13.32 13.2 13.18
X-/Y-/Z-Axes absolute error (cm) 0.16/0.2/0.22 0.18/0.2/0.32 0.1/0.16/0.2 0.16/0.12/0.18

3.3. Water Flow Control Experiment of Solenoid Valve

This research also recorded experimental results in Figures 26 and 27, to relate the
watering amount (g) with the duty time for valve opening (s). It was measured by the way
that the duty time for valve opening started from 3 s and increased sequentially with the
one-second interval. The experimental results are linear in the range between 4 and 11 s;
hence, the relationship between the watering amount and the duty time for valve opening,
formalized in Equation (3), is adopted to control the amount of watering.

y = 0.2313x + 1.57. (3)
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

 
Figure 26. Relationship of duty time for valve opening (3 to 12 s) and watering amount. 

 
Figure 27. Relationship of duty time for valve opening (4 to 11 s) and watering amount. 

3.4. Experiments of Automatic Irrigation System 
Two respective experiments for the single and multiple seedlings were considered in 

the experimental configuration of the automatic irrigation system. In the configuration for 
the single-seedling experiments, as shown in Figure 28, the triggering area in the identifi-
cation screen was split into five sections, named as Upper left, Lower left, Central, Upper 
right, and Lower right, as denoted in Figure 29. 

 
Figure 28. The configuration for the single-seedling experiments. 

0
5

10
15
20
25
30
35
40
45

2 3 4 5 6 7 8 9 10 11 12 13

W
at

er
in

g 
am

ou
nt

 (
g)

Duty time for valve opening (s)

y = 0.2313x + 1.57
R² = 0.9992

3
4
5
6
7
8
9

10
11
12

5 15 25 35 45

D
ut

y 
tim

e 
fo

r v
al

ve
 o

pe
ni

ng
 

(s
)

Watering amount (g)

Figure 26. Relationship of duty time for valve opening (3 to 12 s) and watering amount.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

 
Figure 26. Relationship of duty time for valve opening (3 to 12 s) and watering amount. 

 
Figure 27. Relationship of duty time for valve opening (4 to 11 s) and watering amount. 

3.4. Experiments of Automatic Irrigation System 
Two respective experiments for the single and multiple seedlings were considered in 

the experimental configuration of the automatic irrigation system. In the configuration for 
the single-seedling experiments, as shown in Figure 28, the triggering area in the identifi-
cation screen was split into five sections, named as Upper left, Lower left, Central, Upper 
right, and Lower right, as denoted in Figure 29. 

 
Figure 28. The configuration for the single-seedling experiments. 

0
5

10
15
20
25
30
35
40
45

2 3 4 5 6 7 8 9 10 11 12 13

W
at

er
in

g 
am

ou
nt

 (
g)

Duty time for valve opening (s)

y = 0.2313x + 1.57
R² = 0.9992

3
4
5
6
7
8
9

10
11
12

5 15 25 35 45

D
ut

y 
tim

e 
fo

r v
al

ve
 o

pe
ni

ng
 

(s
)

Watering amount (g)

Figure 27. Relationship of duty time for valve opening (4 to 11 s) and watering amount.



Appl. Sci. 2021, 11, 4531 16 of 20

3.4. Experiments of Automatic Irrigation System

Two respective experiments for the single and multiple seedlings were considered in
the experimental configuration of the automatic irrigation system. In the configuration
for the single-seedling experiments, as shown in Figure 28, the triggering area in the
identification screen was split into five sections, named as Upper left, Lower left, Central,
Upper right, and Lower right, as denoted in Figure 29.
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In order to numerically evaluate the experimental results, three types of indexes are
defined. The first type is the number of correct watering to the stem-root junction, as
depicted in Figure 30. The second type censuses the achievements of watering to the
junction between stems and leaves, as highlighted in Figure 31. The third type stands for
counting the incidents of improper watering to the leaf and colliding of nozzle with the
leaf, as described in Figure 32. Two kinds of the watering effectiveness are formulated by
Equations (4) and (5).

Success watering rate (%) =
(# 1st type + # 2nd type)

(# 1st type + # 2nd type + # 3rd type)
(4)

Perfect watering rate (%) =
# 1st type

(# 1st type + # 2nd type)
(5)

where # 1st type, # 2nd type, and # 3rd type are the resultant counts of watering with the
first, second, and third types, respectively.



Appl. Sci. 2021, 11, 4531 17 of 20

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
Figure 29. Five sections in the triggering area of the camera. 

In order to numerically evaluate the experimental results, three types of indexes are 
defined. The first type is the number of correct watering to the stem-root junction, as de-
picted in Figure 30. The second type censuses the achievements of watering to the junction 
between stems and leaves, as highlighted in Figure 31. The third type stands for counting 
the incidents of improper watering to the leaf and colliding of nozzle with the leaf, as 
described in Figure 32. Two kinds of the watering effectiveness are formulated by Equa-
tions (4) and (5). Success watering rate (%)  = (# 1st type +  # 2nd type)(# 1st type +  # 2nd type +  # 3rd type) (4)

Perfect watering rate (%)  =  # 1st type (# 1st type + # 2nd type) (5)

where # 1st type, # 2nd type, and # 3rd type are the resultant counts of watering with the 
first, second, and third types, respectively. 

 
Figure 30. Demonstration of watering on stem-root junction. 

 
Figure 31. Demonstration of watering on the junction between the stem and leaves. 

Figure 30. Demonstration of watering on stem-root junction.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
Figure 29. Five sections in the triggering area of the camera. 

In order to numerically evaluate the experimental results, three types of indexes are 
defined. The first type is the number of correct watering to the stem-root junction, as de-
picted in Figure 30. The second type censuses the achievements of watering to the junction 
between stems and leaves, as highlighted in Figure 31. The third type stands for counting 
the incidents of improper watering to the leaf and colliding of nozzle with the leaf, as 
described in Figure 32. Two kinds of the watering effectiveness are formulated by Equa-
tions (4) and (5). Success watering rate (%)  = (# 1st type +  # 2nd type)(# 1st type +  # 2nd type +  # 3rd type) (4)

Perfect watering rate (%)  =  # 1st type (# 1st type + # 2nd type) (5)

where # 1st type, # 2nd type, and # 3rd type are the resultant counts of watering with the 
first, second, and third types, respectively. 

 
Figure 30. Demonstration of watering on stem-root junction. 

 
Figure 31. Demonstration of watering on the junction between the stem and leaves. Figure 31. Demonstration of watering on the junction between the stem and leaves.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 21 
 

 
Figure 32. Demonstration of watering on the wrong position (collision of sprinkler with leaves). 

In this experiment, the distance from the optical center of the left lens of the camera 
to the ground is 64.1 cm. The potted plants were placed in five sections, as shown in Figure 
29, and watering will be repeated with ten times. Finally, Table 2 addresses that the total 
successful and perfect watering rates are 82% and 70.7%, respectively. Whether the wa-
tering position is proper could be impacted by the obtainment of an incorrect leaf vector, 
due to surplus dilation and erosion on the framed orchid image. However, among the 
records in Table 2, it can be found that there is a low occurrence ratio for the improper 
watering, which shows that the system can be feasibly applied to practical customized 
watering onto orchids. 

Table 2. Experimental results of automatic irrigation experiments with the same plant but differ-
ent position of seedling. 

Indexes for Single-Seedling 
Lower 

Left 
Lower 
Right Central Upper Right Upper Left Total 

# of watering to stem-root junction 6 7 5 5 6 29 
# of watering to stem-leaf junction 2 3 3 2 2 12 
# of improper watering position 2 0 2 3 2 9 

Successful watering (%) 80 100 80 70 80 82 
Perfect watering (%) 75 70 62.5 71.4 75 70.7 

For the multiple-seedling experiments, four pots of seedlings were placed in a rec-
tangular manner in the pot holder, as displayed in Figure 33, where the seedlings were 
spaced by 9 cm and 18 cm, respectively, for the vertical and horizontal directions. Figure 
34 demonstrates the experimental configuration for placing the four pots of seedlings in 
the triggering area. In addition to the three types of indexes to leverage the watering re-
sults of the single-pot experiments, the fourth-type index is also provided to accumulate 
the failures of watering due to the surplus Z-axis distance error, given by Equation (6). Watering operation rate (%)  = (# 1st type +  # 2nd type +  # 3rd type)(# 1st type +  # 2nd type +  # 3rd type +  # 4th type) (6)

 
Figure 33. The pot holder for the multiple-seedling experiments. 
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In this experiment, the distance from the optical center of the left lens of the camera
to the ground is 64.1 cm. The potted plants were placed in five sections, as shown in
Figure 29, and watering will be repeated with ten times. Finally, Table 2 addresses that
the total successful and perfect watering rates are 82% and 70.7%, respectively. Whether
the watering position is proper could be impacted by the obtainment of an incorrect leaf
vector, due to surplus dilation and erosion on the framed orchid image. However, among
the records in Table 2, it can be found that there is a low occurrence ratio for the improper
watering, which shows that the system can be feasibly applied to practical customized
watering onto orchids.
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Table 2. Experimental results of automatic irrigation experiments with the same plant but different position of seedling.

Indexes for Single-Seedling Lower Left Lower Right Central Upper Right Upper Left Total

# of watering to stem-root junction 6 7 5 5 6 29
# of watering to stem-leaf junction 2 3 3 2 2 12
# of improper watering position 2 0 2 3 2 9

Successful watering (%) 80 100 80 70 80 82
Perfect watering (%) 75 70 62.5 71.4 75 70.7

For the multiple-seedling experiments, four pots of seedlings were placed in a rect-
angular manner in the pot holder, as displayed in Figure 33, where the seedlings were
spaced by 9 cm and 18 cm, respectively, for the vertical and horizontal directions. Figure 34
demonstrates the experimental configuration for placing the four pots of seedlings in the
triggering area. In addition to the three types of indexes to leverage the watering results
of the single-pot experiments, the fourth-type index is also provided to accumulate the
failures of watering due to the surplus Z-axis distance error, given by Equation (6).

Watering operation rate (%) =
(# 1st type + # 2nd type + # 3rd type)

(# 1st type + # 2nd type + # 3rd type + # 4th type)
(6)
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During the multiple-seedling experiments, the distance between the ground and the
optical center of the left lens of the camera is 64.1 cm. The experiment was repeated by
15 times to collect 60 resultant sets. Finally, the statistic results of watering provide that the
rates of operated, successful, and perfect watering are 70%, 83.3%, and 62.9%, respectively.
The experimental statistics are demonstrated in Table 3.
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Table 3. Multiple-seedling experimental results.

Indexes for Multiple-Seedling Results

# of watering to stem-root junction 22
# of watering to stem-leaf junction 13
# of improper watering position 7

# of non-operated watering 18
Operated watering (%) 70
Successful watering (%) 83.3

Perfect watering (%) 62.9

From Table 3, it can be found that there exists a ratio of 30% for no occurrence of
watering, which could be the following two reasons. Firstly, the measurement errors of
the depth map may be caused by insufficient environmental lighting onwards the feature
points. Moreover, the watering process might be cancelled due to wrongly computed
moving distance to the watering point for the nozzle, which thus moved too far to stay
within the working boundary.

4. Conclusions

This work successfully develops an automated orchid irrigation system, which proves
an accurate watering process on the stem-root junction of seedling, to reduce the possibility
of diseases of Phalaenopsis plants. This research employs YOLOv3 for the object detection,
to detect and to frame the centers of orchid seedlings. Then, in accordance with the derived
depth map from the SGBM algorithm, the prediction frame of YOLOv3 is used to compute
the actual 3D coordinates of the stem-root junction to be watered. Finally, the three-axis
motion platform is controlled to move the spraying nozzle to accurately water the orchid
seedlings. A list of vital conclusions are made as follows.

1. Under the total number of 950 training photos, the accuracy of the validation and
test sets for the learning model of YOLOv3 are 92.63% and 86.23%, respectively, and
hence the feasibility of object detection in this work is guaranteed.

2. The experiments show that the error components of the coordinates (X, Y, Z) for
measuring the seedling center are (0.18, 0.2, 0.32) cm maximally, and (0.1, 0.12, 0.18)
cm minimally.

3. According to the experiments, the slice from 4 to 11 s of the duty time for opening the
spraying valve is linearly related to the watering amount for irrigation, which proves
to reliably control the accurate watering amount to irrigate the orchid seedlings.

4. In the validation experiments for the automated irrigation, the successful watering
rates of the single-pot and multiple-pot orchid seedlings are 82% and 83.3%, respec-
tively. Moreover, the perfect watering rates of the single-pot and multiple-pot orchid
seedlings are 70.7% and 62.9%, respectively.

In the future, the prediction accuracy of the model for the object detection can be
raised by enlarging the training sets. As well, the mis-locating of leaf vectors could be
solved by alternative detection algorithms, in order to further improve the successful rate
of watering. In practice, the system can be also employed to similar applications that
require automatic object detection, target positioning, motor control, etc.
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