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Abstract: Skin lesion segmentation is one of the pivotal stages in the diagnosis of melanoma. Many
methods have been proposed but, to date, this is still a challenging task. Variations in size and color,
the fuzzy boundary and the low contrast between lesion and normal skin are the adverse factors
for deficient or excessive delineation of lesions, or even inaccurate lesion location detection. In this
paper, to counter these problems, we introduce a deep learning method based on U-Net architecture,
which performs three tasks, namely lesion segmentation, boundary distance map regression and
contour detection. The two auxiliary tasks provide an awareness of boundary and shape to the
main encoder, which improves the object localization and pixel-wise classification in the transition
region from lesion tissues to healthy tissues. Moreover, concerning the large variation in size, the
Selective Kernel modules, which are placed in the skip connections, transfer the multi-receptive field
features from the encoder to the decoder. Our methods are evaluated on three publicly available
datasets: ISBI2016, ISBI 2017 and PH2. The extensive experimental results show the effectiveness of
the proposed method in the task of skin lesion segmentation.

Keywords: medical image segmentation; skin lesion; multi-tasking network; selective feature engineering

1. Introduction

Skin lesions could be recognized as patches with darkened pigment or redness com-
pared to the overall skin appearance. In most cases, they are harmless, but they may be
indications of melanoma, which is a type of skin cancer. Although melanoma is among the
most common cancers, the survival rate is high, at 92% [1], as long as it does not reach the
late stage of cancer. The severity of melanoma is proportional to the detection time from
the emergence of skin lesion or its metastasis to other organs, such as the lung or brain.
Therefore, early-stage diagnosis of melanoma is critical for success in cancer treatment. The
conventional method of removing the malignant lesions from the skin is surgical excision.
Before the main treatment, skin lesion’s condition is recorded as dermoscopic images,
which visualize the impaired skin area in high resolution and detail. Subsequently, this
image is scrutinized in order to locate the accurate area of lesion and diagnose whether it
is dangerous. The preparation step was carried out manually in the past by experienced
dermatologists, but this was time-consuming and the clinical inspections from individuals
were subjective and inconsistent. There are requirements for an automatic inspection
system that has the knowledge and follows the standard rules of skin evaluation, and
could deal with an increasing number of dermoscopic images. Recently, computer-aided
diagnosis (CAD) systems have been built up as human assistance and shown a promising
ability in both skin lesion segmentation and classification.

Skin lesion segmentation is a key step, prior to the skin problem categorization. In the
past, researchers came up with solutions based on classical techniques like thresholding,
clustering, edge and region detection [2-8]. They are able to deal with many apparent
cases of different types of skin, but there are existing impediments that these methods
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could not overcome. Hence, for the past decade, CAD systems for this task have favored
the efficiency of deep learning methods, contributing a lot of novel approaches and pos-
itive results [9-17]. The architecture of the deep-learning methods used to separate the
concerned area from healthy skin generally consists of an encoder and a decoder. The
former extracts both the low-level and high-level features, while the latter exploits the
latent representation and interprets it as a desirable outcome. Despite the undisputed
capacity, deep learning methods still encounter some of the intrinsic and artificial problems
of skin lesion segmentation, as briefly shown in Figure 1. The first one is the variability in
the size of lesions in dermoscopic images. Some skin lesions are too small compared to
the whole image and some occupy the entire image, with little unaffected skin remaining.
Another problem is the heterogeneity of the shape and color. Skin pigmentation ordinarily
differs from one person to another, and so do the pigments of lesions. In some cases, the
contrast between lesion and healthy skin is insignificant and suffers from artifacts and
obstructions such as hair, artificial marks and air bubbles. Furthermore, lesion detection
becomes entangled with the capricious annotation from experts. There is no agreement
among dermatologists, so the lesion delineation could either be loose or excessively de-
tailed, causing deep learning methods to achieve the same performance over the dataset.
The aforementioned characteristics of dermoscopic images make this task challenging,
even with the impressive discriminative abilities of deep neural networks.

Figure 1. Challenging skin lesion samples. First column: Large variation in size. Second and third columns: Lesions

with artifacts (mark, hair, bubbles). Fourth column: Low contrast compared to background. Fifth column: loose and

detailed annotation.

To tackle those problems, CAD systems must comprehend not only the pigmented
areas, but also the adjacent regions of healthy tissues. They must grasp the discriminative
features that could convey the foreground and background and the contextual information
that could reproduce the structure of the lesion. In this paper, we propose a new deep
neural network based on the U-net architecture [15] for the skin lesion segmentation. Our
model contains three outputs: lesion detection as the main task, and signed distance
map regression and contour delineation as the auxiliary tasks. The auxiliary tasks are
operated with self-generated ground truth maps from the provided lesion ground truth,
conveying the information of the boundary and the pattern of the lesion to the encoder.
The structural information brings spatial awareness to the backbone model, broadening
the predicted areas if the anticipated boundary covers bigger areas and vice versa. This
also improves the localization of skin lesions since the spatial information is lost after
sequences of pooling layers in the downsampling path. Considering the variation in size,
we integrate Selective Kernel (SK) modules [18] into the skip connections to locate the
receptive fields correlated with the scale of the lesions. The application of this module is
based on its original concept, which dynamically adjusts the receptive field in harmony
with the size of the target objects. While the atrous convolutional layer [19] enlarges the
receptive field and then aggregates multi-scale features from different kernels, the Selective
Kernel module evaluates the combination of information from multiple kernels and selects



Appl. Sci. 2021, 11,4528

3o0f14

effective spatial scales. Furthermore, we attach the deep supervision module to each layer
of the decoder with the purpose of multi-scale feature fusion, improving the decision of
the last score map.

Our architecture is trained and used for end-to-end prediction. The contributions of
our paper are described as follows:

e  We evaluate the effectiveness of the two auxiliary tasks that are integrated into the
decoder of U-Net architecture [15] for skin lesion segmentation. By feeding the
information of the boundary and shape constraints of the lesions to the backbone
model, we improve the pixel-wise classification and localization ability of the network;

e  We develop a new skip connection which contains a Selective Kernel module [18] for
learning and adopting multi-scale features from the encoder. This module accumulates
information from different kernel sizes and yields only beneficial features from the
global and comprehensive representation.

The remainder of the paper is organized as follows. In Section 2, we provide an
overview of the related literature in the field of skin lesion segmentation. The details
of our neural network are analyzed and discussed in Section 3. Section 4 displays the
achievements of our model through experiments on some public datasets. The conclusion
is presented in Section 5.

2. Related Works

Skin lesion segmentation has been an intriguing matter of research for a long time.
Traditional algorithms in this field revolved around three concepts: thresholding [3,4],
clustering [5,6] and deformable contour model [7,8]. Thresholding methods discrimi-
nate lesions and background by estimating the pixel intensity through image histogram.
Clustering methods separate the two classes by learning the differences in the extrinsic
characteristics. Deformable models initiate a curve surrounding the lesion and the curve
evolves into the boundary of the object by mapping the chromatic changes. These methods
extract low-level features like pixel values, color or contextual structure, which face the
weakness of the variation in the appearance of skin lesions. It is arduous for clustering
methods to deal with non-skin related noises or for thresholding, and for deformable
methods to not be affected by the inconspicuous transition from pigmented region to the
healthy skin tissues. The fact that they could not derive the semantic information from
dermoscopic images restricts the skin lesion localization ability and the generalization on
larger or partially dissimilar datasets.

With the latest surge in deep neural networks, methods based on deep learning have
been widely preferred thanks to the of semantic and latent feature acquisition ability and
superior performance in myriad types of projects. Great success has been ascertained in
medical image analysis such as optic disc segmentation [20], blood vessel segmentation [21],
lung segmentation [22] and brain segmentation [23], and so is the task of skin lesion
segmentation [9-17]. Bi et al. [9] applied a fully convolutional network (FCN) [10] with
a multistage learning method that, in the early-stage FCN, extracted the coarse low-level
information and, in the late stage, learned the subtle characteristic of lesion boundaries.
Yuan et al. [11] optimized their FCN with Jaccard distance loss. To obtain high-resolution
predictions, Li et al. [12] proposed a dense deconvolutional network to learn rich features
from local and global contextual information. Yu et al. [13] extracted multiscale features
from the layers of a residual network and aggregated them. Lin et al. [14] compared the
skin lesion segmentation performance between U-Net [15] and clustering, which observed
the advantage of the former. Considering the global context feature extraction, SkinNet [16]
integrated the dilated convolutions into the encoder branch of U-Net. In SLSDeep [17],
the author introduced an encoder-decoder network with dilated residual and pyramid
pooling networks for the coarse and fine representation of dermoscopic images.

There are several networks that have been proposed in terms of enlarging the receptive
field. Zhao et al. [24] proposed the pyramid pooling module in the Pyramid Scene Parsing
network to obtain the global contextual prior along with the sub-region context and then
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concatenate different levels of features as the final global feature. In DeepLab [25], atrous
convolution pyramid pooling analyzed the convolutional layers with filter at multiple
sampling rates and effective fields-of-view, encoding the target object and the context of
the image at multiple scales. In later years, the authors of [25] upgraded their paper to
DeepLabv3+ [26], integrating the depthwise separable convolution into the atrous spatial
pyramid pooling for faster and stronger network and reconsidering the decoder module
for better object boundary recovery. The Dynamic Filter network [27] produced filters
based on the input, and output the generated parameters to the next input, learning both
spatial and photometric changes. To model the geometric transformation, Deformable
Convolutional network [28] included deformable convolution which enables free-form
deformation of the 2D sampling grid by the knowledge of preceding feature maps, and
deformable ROI pooling, which enables the adaptation of object localization to different
shapes. Different from the above methods, to obtain denser information from multiple
kernel sizes, we capitalize on the SK Network from [18]. The light weight of the module
and its great capacity to enlarge the receptive field support the adaptation of the main
model to different sizes of lesion. Moreover, we built the model with the multitasking
approach, which uses the label information of the distance map and the contour of skin
lesion. Utilizing auxiliary tasks helps to guide the process of feature extraction and make
the model aware of the boundary constraint and the shape of the unsettled appearance of
the lesion.

3. Proposed Method

Even though deep neural networks produce a superior quality of object segmentation
to classical and machine learning methods in skin lesion segmentation, there are some
problems regarding the inhomogeneous appearance that the recent methods still suffer
from. In this paper, we tackle the two problems of skin lesion segmentation, which are
the variation in sizes and the fuzzy boundary of the target object. For the first problem,
we propose the application of the SK Network [18] in the skip connections of the U-Net
model [15]. The lightweight module captures and delivers the features from a larger
receptive field and adaptively selects relevant features from different sizes of the lesions.
When analyzing the contextual structure of the human skin, we notice that the lesions,
in most cases, converge into a unified mass and in one dermoscopic image, there is only
one lesion. Hence, provided that we comprehend the exterior constraint of the lesion, the
desired object should be laid inside the surround mark. Based on this observation, we
attach an additional decoder for both distance map regression and contour generation.
The multitask learning approach feeds the model on the awareness of the boundary of the
lesion and the gradient shift in skin pigments from impaired to healthy tissues. Details of
our model are demonstrated in the following sections.

3.1. Baseline Model

The proposed model is demonstrated in Figure 2. The architecture of our auto encoder-
decoder is based on the U-Net model [15]. For skin lesion segmentation, we choose
DenseNet [29] as the backbone of the U-Net in order to counter the diverse skin appearance
and the low contrast between the lesion and the background. The down-sampling and
pooling operations in the conventional encoder cause the reduction in spatial information
and affect the efficiency of object localization. The loss of detailed features also impedes
the ability to discriminate the ambiguity of the obscure target inside the background. In
DenseNet, the connectivity among low and high layers reserves more features from the
last layers and has richer patterns so that the top layers gain features from all complexity
levels. To further improve the convergence rate and the regularization, we employ the deep
supervision block at the decoder. The outputs of the decoder’s layers are fused with the last
prediction. Since our whole network is pretty heavy in terms of the number of parameters,
while we only provide the cues at the last output to make the model learn the semantics in
skin lesion, the model may miss meaningful information during the gradient propagation



Appl. Sci. 2021, 11, 4528

50f 14

Input Image

| Encoder DenseNet 169

| Deep Supervision Block

Skip connection
Conv layer
- Deconv layer
e Conv 1x1 + sigmoid

“ Selective Kernel module

from the head layer to all of the lower layer. Deep supervision helps the gradients, not
only from the last block but from every block, flow straight back to the low-level layers,
avoiding the effect of gradient vanishing. This technique not only cuts down the training
time but also increases the accuracy.
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Figure 2. Architecture of the proposed model.

3.2. Selective Kernel Module

Skin lesions come in a wide range of sizes. In some cases, they occupy less than one
percent of the total area of the image and, in other cases, the remaining background is so
small that the algorithm could not find enough reference points to discern the two classes.
Furthermore, the convolutional kernel of DenseNet [29] or other convolutional neural
networks are built with a stable size (3 x 3). This makes conventional deep learning
networks unable to extract features from larger receptive fields. Nonetheless, to some
extent, large receptive fields do not equal adequate outputs. The appropriate receptive
field should reconcile the object localization with the contextual information extraction.
The accuracy of localization decreases in relation to the excessive size of the receptive field,
while the ability to capture the contextual information is confined to the undersized one.
Based on that observation as well as the variation in size of the skin lesions, we opt for the
SK module [18] which is exceptional at incorporating local and global information into the
receptive field.

This module is constructed with the ideas of an automatic selection operation and
a lightweight design. The architecture is illustrated in Figure 3 and could be briefly
described with three steps, in the following order: Split, Fuse and Select. At first, a
group of two or three depthwise convolutional blocks (with Batch Normalization [30] and
ReLU Activation [31]) with different dilation sizes are applied to the prior feature map
X € RE * W x H This can extend to multiple branches with bigger kernel sizes to cover a
larger receptive field. In our case, the combination of kernel 3 x 3 and kernel 5 x 5 achieves
the best result. Subsequently, in the Fuse process, an element-wise sum function assembles
information from Uz and Us (U = U3 + Us). To embed global spatial information into the
channel, a global average pooling function Fgp is placed, which generates channel-wise
statistics for s, followed by is a fully- onnected layer F. which performs the guidance for
the precise and adaptive selections. The feature map z contains the encoded attention
weights for features in different scales. At the Select stage, the channel selection weights
are computed by a classification layer based on their correspondence with the split feature
maps in the beginning. We choose sigmoid as the classification function on an exchange
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with the softmax function in the original paper, since the task is binary classification in our
method. The softmax function will be in charge when more than two data branches are
generated in the Split stage. The learned parameters are applied to each feature map that is
derived from the beginning, and all of them are then aggregated to be a new feature map.
The new feature map is

X = Ug, —0—[.75 =a-Us +b- Us, 1

where Us and Us are the selected feature maps of the kernel size 3 and 5, respectively. a and
b, in the following order, are the attention weight vectors for each feature map in which the
sum of the elements with the same order from two vectors is 1.

>x>

a

sigmoid
b

Figure 3. Selective Kernel module.

SK modules are embedded into the skip connections of U-Net, as shown in Figure 2.
The corresponding level features from the encoder are adaptively selected before passing
to decoder. In recent papers about object segmentation, researchers focused on the spatial
attention and channel attention [32-34] to guide the learning process towards only relevant
local representation, reducing the distraction from unnecessary features and improving
the representation power. However, in the skin lesion task, where objects have great
fluctuations in appearance, there are limitations to the attention mechanism. The global
contextual information is often disregarded, as the mechanism is biased towards the target
object. In addition, the attention mechanism is not constructed with the involvement
and process of multi-scale features. According to the predefined problem, we prefer the
advantage of the SK module for our network.

3.3. Structural Awareness Module

In the architecture of convolutional neural networks, low-level layers extract the
features such as edges and curves and are then accumulated to generate high-level features
in order to perceive the context in image. Through this process, the spatial information is
dissipated and partially transformed, which causes a lack of confidence in predicting the
thin edge around the target object. Skin lesions which have unclear borders may degrade
the performance of pattern classification, while conventional segmentation methods and
loss functions designed for this task do not regard the shape information of the target objects.
In this paper, we equip our model with boundary distance map regression task and contour
regression task to better distinguish the lesion and non-lesion pixels at the boundary
area, enhance the localization accuracy and further improve the whole segmentation
performance. The maps for these two tasks are inferred from the masks of skin lesions.
Since the contour map regression task could easily suffer from the imbalance problem, the
boundary distance map task is used at the same time to deliver more insightful appearance
constraints to the encoder. Both types of map are generated by an additional decoder. They
share the information at half of the decoder and split into separate heads at the other half.
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Features in the adaptive skip connections are still transferred to the additional decoder
to strengthen the regression performance. When predicting, the second decoder could be
detached to reduce the total parameters.

3.4. Loss Function

For the main task, we use the combination of weighted binary cross entropy loss
Lwpce and Dice loss Lp;., due to the skewed distribution of lesion and non-lesion pixels.
The function for Lwpck, Lpices Linask can be represented as below, respectively

1Y dict dict

Lwgce = -~ 2 ‘B.yfrue_ 10g(ylyre ic ) 4 (1 . yf“”)-log(l . ylpre ic ) ?)
i=1
dict
L 28 ey 3
Piee = N true)2 N predict 2 )
Y (™) + T (yi )

Lpask = Lwsce + Lpice 4)

where y!"™¢ indicates the ground truth pixel label and yf "edict jndicates the predicted pixel
label. f is a self-deduced coefficient related to the ratio of the object and background
in the whole dataset. The weighted binary cross entropy loss deals with the pixel-wise
classification while the Dice loss takes care of the intersection of area. Both of them can
reduce the imbalance problem.

For the axillary tasks, we use Log-Cosh loss to regress the distance map and the
contour map. Log-Cosh loss is smoother than the mean squared error loss for regression
tasks and less influenced by irregular incorrect prediction. The Log-Cosh loss function is

written as
N redict true
LLongosh = Z log (COSh (yzp —Yi ) ) ®)
i=1
After all, we have to optimize the total loss L, for our model

Ltotar = M-Lmask + }‘Z'LDistanceJnap + }‘3‘LContour_map (6)

A1, A and A3 are the coefficients for lesion segmentation loss, distance map loss and
contour map loss, respectively. The equal contribution of three tasks to the knowledge
of the encoder is prone to the lack of attention to the main task, leading to the inefficient
lesion segmentation and waste of supplementary data. Hence, we empirically set A1, Ay
and A3 as 1, 0.01 and 0.001 so the network can fully exploit the provided information.

4. Experiments and Results
4.1. Datasets

We test our method on three public benchmark datasets, namely ISBI 2016 [35],
ISBI 2017 [36] and PH2 [37]. The ISBI 2016 and ISBI 2017 datasets are from the annual
challenges organized by the International Skin Image Collaboration (ISIC) in 2016 and 2017,
respectively. The ISBI 2016 consists of 900 training images and 379 test images, while the
ISBI 2017 comprises 2000 training images, 600 test images and a validation set of 150 images.
The test dataset of each of the above datasets is evaluated with results from other existing
methods to prove the efficiency of our method. There are 200 dermoscopic images with
annotation in the PH2 dataset and we only use this dataset for evaluation. All of the
provided dermoscopy images are in RGB format and their corresponding ground truths
are binary masks to delineate lesion and non-lesion areas.
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4.2. Evaluation Criterion

The metrics to evaluate the proposed method are selected from the suggestion of the
ISBI 2017 challenge, which includes Jaccard index (JA), Dice coefficient (DI), Accuracy (AC).
They are defined in the Equations (7)—(9)

TP

JA= Tp P+ EN @)
2TP
DI= 2TP+ FP + FN ®)
TP + TN
AC + )

T TP+ TN+ FPLEN

where TP, TN, FP, and FN correspond to true positive, true negative, false positive, and
false negative, respectively. JA and DI estimate the overlap and similarity between the
prediction area and the ground truth. AC indicates the ratio of correctly segmented area
over the ground truth. All of the metrics follow the rule that the higher, the better.

4.3. Implementation Details

The proposed method is implemented in Python and Keras framework. We employ
the DenseNet169 pre-trained on ImageNet [38] as the backbone of the auto encoder-decoder.
The images in the aforementioned datasets have different resolutions, so the input sizes for
training and testing are uniformly set as 288 in width and 192 in height. To enhance the
generalization ability, we use online data augmentation, which comprises horizontal and
vertical flips, random rotation with low degrees, image scaling and distortion. The annota-
tions for boundary distance map and contour map are not provided, so we self-generate
them based on the ground truth maps of lesions. We adopt the Adam algorithm [39] with
a batch size of 8 to optimize the whole network. The initial learning rate is set at 0.00003
and is dropped by 10 percent after each 20 epochs. The total number of epochs used for
training is 120. During the inference phase, only the main decoder is retained to generate
the lesion mask. We also use Test Time Augmentation (TTA), which includes image flip
and rotation, as a post processing step to improve the prediction accuracy. We do not train
the PH2 dataset. It is evaluated using the model trained on ISBI 2016 and ISBI 2017.

4.4. Results
4.4.1. Ablation Studies

To evaluate the effectiveness of the proposed method on skin lesion segmentation, we
conduct the ablation studies on the ISBI 2016 and ISBI 2017 datasets. The DenseNet169
model is set as the baseline benchmark and we subsequently append other configurations
to it, to verify their supportive impact on the baseline model. The detailed quantitative
experimental results for the ISBI 2016 and ISBI 2017 datasets are displayed in Table 1 with
the accompanying methods, namely, the SK module in the skip connections, structural
awareness module as the additional decoder, deep supervision module at the end of the
main decoder and TTA as the post-processing step. By incorporating the new modules,
we observe the increase in JA, DI and AC in both datasets. The baseline model has a
greater boost with the assistance of the structural awareness than with the addition of the
SK module. The former enhances the DI by 0.67 and 1.18, while the latter enhances the
DI score by 0.4 and 0.92 on the ISBI 2016 and ISBI 2017, respectively. The combination
of two aforementioned methods and the deep supervision module achieves the superior
performance to the baseline model, with the DI increase of 0.84 and 1.82 on each dataset.
The post-processing step TTA further improves the performance of our model, obtaining
the final DI results of 92.61 for the ISBI 2016 dataset and 87.61 for the ISBI 2017. In
conclusion, Table 1 proves that the additional modules along with their abilities to extract
the contextual and multi-scale information obtain better segmentation results and the
coordination among auxiliary modules does not conflict each other.
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Table 1. Ablation studies on the ISBI 2016 and ISBI 2017 datasets.
2016 2017
Methods
JA DI AC JA DI AC

Baseline 85.41 91.55 95.80 77.09 85.40 93.94
Baseline + SK 86.20 91.95 96.18 78.23 86.32 93.96
Baseline + structural awareness 86.43 92.22 96.25 78.67 86.58 94.17
Baseline + SK + structural awareness 86.54 92.28 96.31 79.04 86.85 94.32
Baseline + SK + structural awareness + ¢ 92.39 96.39 79.36 87.22 94.41
deep supervision

Baseline + SK + structural awareness + 87,08 961 96.48 79.95 8761 94,55

deep supervision + TTA

We also implement a qualitative analysis on the effectiveness of the proposed methods
on skin lesion segmentation. Figure 4 shows the experimental results of several challenging
cases. Compared to the baseline segmentation results, the SK module clearly expands the
receptive field, since the prediction area is broader while the structure module delineates
the boundary that is closer to boundary of the ground truth. The baseline model could
discern the noticeable discrepancy between the impaired and healthy tissues but the
proposed method gains a deeper understanding of the texture of the lesions. The SK
module may produce the lesion map that excessively spread over a larger region than
expected (Figure 4, second image in third row) but when it is associated with the structural
module, its influence is appropriately weakened to satisfy the two mentioned problems. In
the cases of low contrast, we see that our model performs well in keeping track of the lesion
pattern and produce a satisfactory lesion map (Figure 4, fourth row). The object localization
capability is obviously enhanced in the later implementations, where the prediction areas
outside the lesions are eliminated (Figure 4, last row).

To examine the effectiveness of applying different kernel sizes in the SK module, we
conduct the experiments with four types of kernel combination on the ISBI 2017 dataset, as
shown in Table 2. As we stated in the above section, a large receptive field does not always
promise best performance. Among the kernel size configurations, the combination of
kernel size 3 x 3 and kernel size 5 x 5 produces the best segmentation performance, which
is 87.61 in DI. Surprisingly, the worst segmentation performance is from the combination
of triple kernel size, which obtains a DI result of only 86.71.

4.4.2. Comparison to Other Published Methods

In this section, we analyze the performance of our method on the ISBI 2016, ISBI
2017 and PH2 datasets. Our results are compared to the teams participating in the ISBI
challenges and other published methods. The results are taken from their publications.
Tables 3-5 show the segmentation performance on the ISBI 2016, ISBI 2017 and PH2
datasets, respectively.
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Figure 4. Qualitative segmentation result comparison with different configurations. The green lines indicate the location

and the area of the ground truth of the skin lesion and the red lines demonstrate the prediction of our method on the

same input. From the first column to the sixth columns: the baseline method, baseline + SK module, baseline + structural

awareness, baseline + SK + structural awareness, the proposed method and itself after TTA as post-processing step.

Table 2. Performance comparison of different kernel sizes in the SK module.

(3 x3) (5 x5) (7 x7) JA DI AC

v 4 79.95 87.61 94.55

v v 78.79 86.82 94.26

v v 79.25 86.97 94.39

4 4 v 78.70 86.74 94.18

Table 3. Performance comparison with other methods on the ISBI 2016 dataset.
Methods JA DI AC

Team-EXB [40] 84.30 91.00 95.30
Team-CUMED [41] 82.90 89.70 94.90
Team-Rahman [42] 82.20 89.50 95.20
Deng et al. [43] 84.10 90.70 95.30
Yuan et al. [11] 84.70 91.20 95.50
Bietal. [9] 84.64 91.18 95.91
Nasr-Esfahani et al. [44] 85.50 91.90 95.70
Xie et al. [45] 85.80 91.80 93.80
iMSCGnet [46] 85.92 91.91 96.08
Proposed method 87.08 92.61 96.48
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Table 4. Performance comparison with other methods on the ISBI 2017 dataset.
Methods JA DI AC
Team-MtSinai [47] 76.50 84.90 93.40
Team-NLP LOGIX [48] 76.20 84.70 93.20
Team-BMIT [49] 76.00 84.40 93.40
PA-Net [50] 77.60 85.80 93.60
SkinNet [16] 76.70 85.50 93.20
Tu et al. [51] 76.80 86.20 94.50
FrCN [52] 77.11 87.08 94.03
SLSDeep [17] 78.20 87.80 93.60
Proposed method 79.95 87.61 94.55
Table 5. Performance comparison with other methods on the PH2 dataset.
Methods Training Data JA DI AC
Goyal et al. [53] ISIC 2017 83.90 90.70 93.80
FrCN [52] ISIC 2017 84.79 91.77 95.08
iMSCGnet [46] ISIC 2017 88.21 93.36 95.71
Proposed method ISIC 2017 88.75 93.67 95.60
DermoNet [54] ISIC 2016 85.30 91.50 -
Xie et al. [45] ISIC 2016 85.70 92.10 94.90
DCL-PSI [55] ISIC 2016 85.90 92.10 95.30
Proposed method ISIC 2016 89.22 94.04 96.01

In the ISBI 2016 dataset, we achieve the best segmentation performance in JA, DI and
AC. Based on the JA and DI results, we see that the proposed method is more capable of
locating the lesion and find the neighboring elements than other methods.

In the ISBI 2017 dataset, we achieve the best segmentation performance in JA and AC
but not in DI. Our results prove that the proposed method is consistent in both datasets.
The ISBI 2017 dataset is more difficult for segmentation, since there are more sophisticated
skin lesions in melanoma cases.

In the PH2 dataset, we conduct two experiments on the pretrained model of the ISBI
2016 and the ISBI 2017, which other methods also followed, because this dataset is small.
We achieve the best performance on the PH2 dataset in both cases. The result on the trained
dataset of ISBI 2017 is expected to acquire a better performance, since the ISBI 2017 dataset
is bigger. However, the trained model on the ISBI 2016 dataset generalizes better on the
PH2 dataset.

5. Conclusions

In this paper, based on the observation that the sizes of the skin lesion are varied
across images and the low contrast between the lesion pigment and the healthy tissues,
we propose the method that could learn the multi-scale information and the structural
constraint simultaneously. We apply the Selective Kernel module into the skip connections
of U-Net to transfer an appropriate and larger receptive field to the decoder, helping the
model deal with the variation in lesion sizes. Moreover, we propose the auxiliary decoder
of distance map delineation and contour detection with the purposed of acknowledging
the skin lesion structure. The qualitative and quantitative results of our method prove
its effectiveness in three public datasets. It can deal with the inconsistent appearance of
skin lesions and solve several image segmentation problems. For future research, the
segmentation result can be integrated to the lesion classification for further diagnosis of the
detailed lesion area or even for prediction of the possible progression of the lesion. Skin
lesion could be benign or malignant and, in the case of malignant tumor, early diagnosis is
greatly recommended to avoid metastasis or even fatality. We will incorporate the clinical
knowledge into the lesion image to automatically diagnose the states of the skin lesion
with high precision.
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