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Abstract: Problems of digital processing of Poisson-distributed data time series from various coun-
ters of radiation particles, photons, slow neutrons etc. are relevant for experimental physics and
measuring technology. A low-pass filtering method for normalized Poisson-distributed data time
series is proposed. A digital quasi-Gaussian filter is designed, with a finite impulse response and
non-negative weights. The quasi-Gaussian filter synthesis is implemented using the technology of
stochastic global minimization and modification of the annealing simulation algorithm. The results
of testing the filtering method and the quasi-Gaussian filter on model and experimental normal-
ized Poisson data from the URAGAN muon hodoscope, that have confirmed their effectiveness,
are presented.

Keywords: Poisson data; time series; quasi-Gaussian filter; digital filtering; optimization; global
minimization; annealing simulation algorithm

1. Introduction

The article proposes a low-pass filtering method for Poisson-distributed data time
series, based on a specially developed digital low-pass filter with finite impulse response
(FIR filter), with gain equal to one at zero frequencies and non-negative weighting factors.

Here, low-pass filtering is applied in order to reduce noise in Poisson-distributed
data to ensure the recognition of emerging fluctuations of mathematical expectations in
them. Poisson-distributed, or Poisson data are found in various physical systems, for
example, related to the heliosphere and magnetosphere of the Earth; the fluctuations of
mathematical expectations of these data may contain information regarding the structures
and characteristics of these systems.

A particular feature of the Poisson data origin is that they contain sufficient noises; it
is known, for example, from [1] that their variance is numerically equal to mathematical
expectation. Noise reduction in Poisson data can be achieved using common FIR filters [2,3],
to which, within the framework of this article, we refer the filters based on commonly used
windowing techniques, frequency sampling and inverse Fourier transforms [4,5]. However,
there are a number of scientific and technical problems for which their application is not
fully effective, for example, (1) recognition of small (in size and duration) mathematical
expectation fluctuations in Poisson datasets; (2) digital processing of Poisson data with
small mathematical expectation values.

Common FIR filters can potentially be used for the mentioned tasks, and their syn-
thesis can be implemented according to given dimensions and cutoff frequencies. The
synthesis procedures for common FIR filters are, in essence, the variants of approximation
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procedures for the specified species frequency response (FR) types; the accuracy of the FR
approximations depends on the specified dimensions for the synthesized filters. Obviously,
at large dimensions, the accuracy of these approximations is high and the errors in the
resulting cutoff frequencies are small. For the case of small dimensions, the approxima-
tion accuracy turns out to be low and, as a consequence, cutoff frequencies are realized
with significant errors which prevent low-pass filtering. We can assume that the filtering
procedure proposed here should be performed by filters with low dimensions and cutoff
frequencies and with gain values equal to one in order to avoid mathematical expectation
distortions, and with non-negative weight factors in order to provide non-negativity of
filtering results taking into account the Poisson property of the data.

The indicated problem leads to the need to formulate the synthesis problem for a
special digital low-pass FIR filter, which takes into account the requirements—restrictions
on dimensionality, cutoff frequency, gain at zero frequencies, and weighting factors.

Here, a FIR filter is proposed, which is further denoted as a quasi-Gaussian filter, the
frequency response of which is formed on the basis of approximating a Gaussian function
and ensuring the implementation of the mentioned constraints conditions using a special
optimization method.

Gaussian filters, the frequency response of which is implemented based on the approxima-
tion of the Gaussian function, are widely used in modern scientific and technical practice [6,7].
However, as a rule, the known variants of Gaussian filters with the approximation of the
frequency response do not take into account the above-mentioned conditions (restrictions).

Problems of digital processing of Poisson data time series from muon counters in
muon detectors and telescopes [8], counters of elementary particles of alpha-beta-gamma
radiation, photon counters, slow neutrons, etc. [9], taking into account their specificity,
are relevant for experimental physics. Digital processing of Poisson data, including the
Gaussian filtering application, can be outside of experimental physics, for example, in
medical technology for imaging blood vessels and tumor therapy with particle beams, in
measuring technology for tribological studies of the surfaces of metal parts, in astronomy
for gamma telescopes, in muon tomography for recognizing cavities in rocks, and building
structures and many other applications.

One of the applications of the designed filter proposed here is the digital processing
of the data from the URAGAN muon hodoscope (MH) designed by NRNU MEPhI [10,11].
The MH is a computerized measuring device that estimates the intensities of muon fluxes
by counting the number of elementary particles—muons—registered in its detector for a
set of solid angles with a set time step. Within the framework of this article, MH can be
interpreted as a distributed set of muon counters, consisting of primary and secondary
information converters.

From each primary MH transducer, the initial Poisson data—time series of random
non-negative integers N(Tk)—the quantities of Poisson-distributed events recorded in
a given solid angle at time intervals (T(k− 1), T(k− 1) + T0k), k = 1, 2, . . . , k0, where
T = 1 minute. Due to the features of the MH design, registration intervals T0kare random
with a uniform distribution law in the range T0 min ≤ T0k ≤ T0 max < T.

From each secondary MH transducer, the 1-minute-sampled normalized Poisson data
Y(Tk) are generated for a given solid angle by reducing to one second and calculating the
averaged normalized Poisson data Y(T0n) with an hourly discreteness according to the
following relations:

Y(Tk) = N(Tk)/T0k, Y(T0n) =
1

60

k=60n

∑
k=1+60(n−1)

Y(Tk), n = 1, 2, . . . , T0 = T · 60. (1)

Data resulting from (1) are produced for the whole set of solid angles; next, they are placed
into time series of matrix MH data in the database [12].
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2. Method
2.1. Quasi–Gaussian Digital Low-Pass Filter
2.1.1. Statement of the Problem

One-dimensional FIR filter synthesized here is built according to the following differ-
ence equation:

X(T0n) =
s0

∑
s=0

asY(T0(n− s)), n = 1, 2, . . . , (2)

where r0 = s0 + 1 is the FIR filter dimension, aT = (a0, a1, . . . , as0) is a weight factors vector,
X(T0n) is the output time series, Y(T0n) is the FIR filter input—the hourly normalized
Poisson data time series from MH according to (2), which begins from the values Y(T0(1−
s0)), Y(T0(1− s0 + 1)), Y(T0(1− s0 + 2)), . . .. Transfer function (TF) H(jωT0, a) for filter (2)
is defined as follows:

H(jωT0, a) =
s0

∑
s=0

ase−j2πωT0s. (3)

Here ω is the TF frequency parameter. For (3), a normalized fequence is introduced,
w, ωT0 = wπ, 0 ≤ w ≤ 1.0, and its discrete values are calculated: wl

dw = 1.0/L0, wl = dw(l − 1), l = 1, . . . , L, L = L0 + 1. (4)

The frequency response (FR) H(wl , a) = |H(jwl , a)|, considering (3), is the following:

H(wl , a)2 = H2
1(wl , a) + H2

2(wl , a),

H1(wl , a) =
s0

∑
s=0

as cos(2πwls),

H2(wl , a) =
s0

∑
s=0

as sin(2πwls)

(5)

for discrete normalized frequencies wl , l = 1, . . . , L according to (4). The cutoff frequency
wc for FR (5) is found based on the equality |H(jwA, a)|2 = 0.5.

For a low-frequency FIR filter synthesis, the FR of the prototype filter is used, based
on a Gaussian function H0g(w, wc0)

H0g(w, wc0) = exp(−(w/wc0)
2). (6)

2.1.2. Synthesis Requiements

The problem of synthesis of the supposed FIR filter is solved based on the approxima-
tion of the FR function H0g(wl , wc) (6) in discrete points wl , l = 1, . . . , L with a FR function
Hg(wl , 0) according to (5). A functional S(H0g, a, wc) is formed:

S(H0g, a, wc) =
L

∑
l=1

[(
s0

∑
s=0

asCs(wl))
2 + (

s0

∑
s=0

asSs(wl))
2 − H2

0g(wl , wc)]
2. (7)

Obviously, the FR (5) represents a function which is polyharmonic in frequency wl . In
case the prototype filter FR frequency derivative has discontinuities or is subject to strong
alternations, e.g., if FR is a trapezoidal function, then the FR of the synthesized FIR filter,
obtained based on approximation, will contain fluctuations due to the so-called Gibbs effect.
Elimination and reduction of these fluctuations are usually achieved by choosing a suitable
smooth prototype filter FR function. The smoothness requirement is largely satisfied by the
Gaussian function (6).It should be noted that the Gaussian function is naturally suitable for
the FR of a low-pass filter, since its values (6) practically differ from zero only in the region
of low frequencies.

The requirements listed in the Introduction lead to formalized requirements:
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a. Ensuring that the gain at zero frequencies is equal to one:

1 = H(0, a) =
s0

∑
s=0

as, a ∈ A1, A1 = {a : (1 =
s0

∑
s=0

as)}; (8)

b. Ensuring non-negativity of coefficients:

a ∈ A0, A0 = {a : (0 ≤ as, s = 0, 1, . . . , s0)}; (9)

For the synthesis procedure, it is assumed to set a small value r0, based on the a priori
known duration of fluctuations, and some small cutoff frequency value wc for a prototype
filter. The quasi-Gaussian filter synthesis procedure, consisting of finding the optimal coef-
ficients a◦s , s = 0, 1, . . . , s0, taking into account the requirements a,b, Equations (8) and (9)
the predefined r0and wc, is performed on the basis of the approximation problem, which
reduces to the implementation of conditional minimization:

a◦(wc) = arg{ min
a∈A0,a∈A1

S(H0g, a, wc)}. (10)

For a given small dimension r0 of the synthesized quasi-Gaussian filter and a given
small cutoff frequency wc for a prototype filter, the value for cutoff frequency to be found
for a quasi-Gaussian filter is wcg, and the filter FR for the frequencies wl is denoted as
Hg(wl , wcg, a◦), l = 1, . . . , L .

The minimization of (10) could be performed based on modified direct zero-order
optimization methods, taking into account the restrictions (8) and (9). However, because
the (7) functional is multi-extremal, traditional modified direct methods, for example, using
the coordinate descent method, the Hook–Jeeves method, the random descent method,
etc. [13] do not provide successful minimization. The listed methods, as a rule, lead to
“getting stuck” with search procedures in local minima.

2.2. Quasi–Gaussian Filter Synthesis Procedure

We can synthesize the quasi-Gaussian filter based on the technology of stochastic
global minimization of the (7) functional with the constraints (8) and (9) using the opti-
mization algorithm for annealing simulation [14,15]. To implement it, we will use the
simulannealbnd.mat software module from the Matlab Global Optimization Toolbox [16].

Let us form a parallelepiped of constraints A0 of dimension r0 with boundaries
ar, r = 1, . . . , r0—a ∈ A0, A0 = {a : (0 ≤ ar ≤ ar, r = 1, . . . , r0)} and a new—with
respect to (7)—functional S(H0g, a) with a penalty term taking into account the constraint
equality (8). Let us implement the global minimization of S(H0g, a) taking into account A0
using [16].

Let us set the initial vectors for the first iteration a1(I) ∈ A0, uniformly distributed
in A0, I—a single descent procedure , I = 1, 2, . . . , I0, I0—a total number of descent
procedures. Let us assume that each descent procedure consists of m0—a total number
of iterations, m—a single iteration, m = 1, 2, . . . , m0. During descent, we assume that the
initial value of the vector of parameters for (m + 1)-st iteration is equal to the calculated
optimal value for the vector of parameters for m-th iteration—am+1(I) = a◦m(I) . In
each iteration, we perform n0 descent steps, n is a descent step number, n = 1, 2, . . . , n0.
Next, we will calculate the sequence of the functional S(m0, I)= S(H0g, a◦) values and
the corresponding optimal vectors a◦(m0, I), I = 1, 2, . . . , I0. For global minimization, we
search for the optimal index I◦ corresponding to the minimum of the S(m0, I) functional,
and the optimal vector a◦ using brute force:

I◦ = arg( min
1≤I≤I0

S(m0, I)}, a◦ = a◦(m0, I◦).

On Figure 1, the example plots of the minimized S(m, I) functionals are displayed,
depending on iteration number m and the descent procedure number I. Functionals are
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shown starting with m = 2, since for m = 1 their values are very large. Here, m0 = 20;
as the iteration number increases, the values of the functionals decrease. During the
optimization process, a movement is made in a r0-dimensional space from one local
minimum to another.

2 4 6 8 10 12 14 16 18 20
0.03

0.035

0.04

0.045

Iteration number, m

S
(m

,I
)

Figure 1. Plots of descent procedures—minimization of functionals S(m, I), I = 1, 2, . . . , I0, m =

1, 2, . . . , m0.

Let us consider an example of quasi-Gaussian FIR filter synthesis. Based on the
analysis of hourly experimental MH data from [12], it was found that the durations of
possible fluctuations of the mathematical expectation in them were, on average,≈10 ÷ 20 h
and more. The dimension value r0, that could possibly allow the recognition of such
fluctuations in mathematical expectations, was equal to 8. For a prototype filter FR (6), the
parameter wc0 was related to the assigned cutoff frequency wc based on (6)

(0.5)1/2 = exp(−(wc/wc0)
2), wc0 = wc/(0.5 · ln 2)1/2.

We assign the cutoff frequency wc = 0.1, find wc0 and define H0g(w, wc)—the proto-
type filter FR. By defining L we set the number of discrete normalized frequencies wl of
calculations of the functional (7) for 0 ≤ wl ≤ 1.0, let us assume that L = 100 in our calcu-
lations. The polyharmonic FR function |H(jw)| (5) is formed from components performing
1, 2, . . . , s0 fluctuations in this interval. For the accepted values L and r0, one period of
the polyharmonic component with the maximum frequency corresponding to the number
s0 in (5), accounted for ≈15 sampling points of normalized frequencies wl , l = 1, . . . , L,
which fully provided a fairly accurate calculation of the functional (7) necessary for direct
search.

Let us calculate the vector of factors a◦, form the synthesized quasi-Gaussian filter FR
Hg(w, wcg, a◦) and define the cutoff frequency wcg = 0.175 .

For the comparison, let us synthesize a common FIR filter using the fir1.mat module [3].
For the dimension r0 = 8 and the assigned cutoff frequency wc = 0.1 we find out the final
cutoff frequency wc f = 0.275; let us denote the FR as H f (w, wc f ). On Figure 2, the FR plots
for H0g(w, wc), Hg(w, wcg, a◦), H f (w, wc f ) are displayed. It is seen that, in case of low r0 ,
the quasi-Gaussian filter FR was characterized by a better approximation to the prototype
filter FR than the one of the common FIR filter.
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Figure 2. FR plots: H0g(w, wc) (line 1), Hg(w, wcg, a◦) (line 2), H f (w, wc f ) (line 3).

Note that the proposed FIR filter, with the same dimension as the common FIR
filter, made it possible to provide a lower value of the cutoff frequency than the realized
cutoff frequency for the common FIR filter. The calculated cutoff frequencies of resulting
FRs for common FIR filters synthesized using frequency sampling method and Fourier
transforms [3,4] insignificantly (by ≈5–7% ) differ from the cutoff frequency wc f = 0.275.
This gives a reason to make a conclusion about the advantages of a quasi-Gaussian filter
over standard FIR filters.

3. Results
3.1. Testing the Method and the Quasi–Gaussian Filter on Model Normalized Poisson Data
3.1.1. Testing on Model Hourly Data Using Statistical Modeling

Testing of the proposed method and quasi-Gaussian filter was carried out on model
hourly normalized data using statistical modeling [17]. For this purpose, on the basis of
the Matlab module exprnd.mat [18], exponentially distributed model random numbers
τi, i = 1, 2, . . . were generated, with their mean value τM0 , and the evenly distributed
random registration time intervals T0k, k = 1, 2, . . . within the range T0 min ≤ T0k ≤ T0 max.
The number of Poisson model events NM(Tk) was counted on the registration time intervals
T0k. Finding NM(Tk) was carried out by solving the conditional maximization problems:

NM(Tk) = arg{max NM}i > 0, (11)

providing that T0k −∑NM
i=1 τ, where for T0k, k = 1, 2, . . . k0 the range bounds T0 min = 57 s,

T0 max = 59.5 s were assigned (see the Introduction section). Initial model 1-minute-
sampled and normalized Poisson-distributed data were constructed according to (11) and
the calculation of relations NM(Tk), similar to (1):

NM(Tk) = NM(Tk)/T0k, k = 1, 2, . . . k0. (12)

The modulation of the average number of Poisson events in order to model decreases
(increases) in the mathematical expectation was carried out by specifying the mean value
function τM0(Tk) on the intervals (T(k − 1), Tk) for k from (12). For this, the relative
modulation function µ(Tk), k = 1, 2, . . . , k0 was formed and the initial temporal index of
the modulation decrease ka, the duration of the decrease dka and the depth of the relative
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decrease dµ ;. The function µ(Tk) was represented by the relations µ(Tk) = 1− dµ for
ka ≤ k ≤ ka + dka, µ(Tk) = 1 for 1 ≤ k < ka, ka + dka + 1 ≤ k ≤ k0.

For the calculation example, the average number of Poisson model events per minute
was set NM0 = 25, normalized average NM0 = NM0/T, modulated normalized
mean NM0(Tk) = NM0µ(Tk) = NM0µ(Tk)/T, k = 1, 2, . . . , k0 and the parameter
τM0(Tk) = 1/(NM0(Tk)− 1) was calculated.

Based on [18], random exponentially distributed numbers with τM0(Tk) and random
evenly distributed values with T0 min = 57s, T0 max = 59, 5s were generated, with the
use of which by (11), model Poisson data NM(Tk) and by (12)—normalized Poisson data
NM(Tk) were calculated. Further, similarly to (1), a time series of averaged model hourly
normalized Poisson data was formed:

YM(T0n) =
1

60

k=60n

∑
k=1+60(n−1)

NM(Tk), n = 1, 2, . . . , n0, n0 = ent( k0/60). (13)

For modeling, we assumed k0 = 6000, which corresponded to the model minute data pro-
duced during 4.166 days. For the modulation function, the values ka = 1920, dka = 1440
and dµ = 0.02 were taken. Model hourly averaged data YM(T0n) for (13) with n0 = 100,
na1 = 32, na2 = n1 + dna dna = 24.

Figure 3 shows an example of statistical modeling results: the jagged light gray line
with index 1 displays the YE(T0n) plot; the solid line with index 2 denotes the fragment of
XEG(T0n) which is the result of filtering the model dataset using a quasi-Gaussian filter;
for comparison, the dashed line with index 3 denotes the fragment XEF(T0n) which is
the result of filtering the model dataset using the software module fir1.mat [3]. Model
piecewise constant modulating function YM0(T0n) = NM(T0n), represented by a dotted
line (index 4), m0 + dm = YM0(T0n) = 0.4165 for 1 ≤ n < na1, na2 ≤ n < n0,
m0 = YM0(T0n) = 0.4087 for na1 ≤ n ≤ na2, where the value of dm = 0.833× 10−2

corresponded to the predefined 2% decrease. The plots show that the result of the quasi-
Gaussian filter application (line 2) is a better approximation to the model piecewise constant
modulation (line 4) than the result of a common FIR filtering (line 3).
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Figure 3. Fragments of model datasets YM(T0n) (line 1), filtering results XMG(T0n) (line 2), XMF(T0n)
(line 3) and model modulating function YM0(T0n) (line 4).

The calculation of approximate estimates of filtering errors for the quasi-Gaussian filter
and fir1-filter was performed by calculating the root-mean-square (RMS) errors according
to the following formulas for datasets YM0(T0n), YMG(T0n), YMF(T0n):

σ2
MG = 1

n0
∑n0

n = 1(YM0(T0n)−YMG(T0n))2, σ2
MF = 1

n0
∑n0

n = 1(YM0(T0n)−YMF(T0n))2. (14)
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Results of a large number of tests performed for (14) showed that the σMG error values
for XMG(T0i) regarding YMG(T0n) are, on average, 15–30% less than the corresponding σMF
error values for XMF(T0i). An overview of model XMG(T0i) and XMF(T0i) (Figure 3) made
it possible to ensure that the minimum duration of the interval, within which recognition
for the decrease dµ = 0.02 can be performed, is 12–24 h.

The proposed method and the quasi-Gaussian filter provided more noise reduction
than a common FIR filter. Consideration of the results of statistical modeling made it
possible to draw a conclusion about the efficiency of the quasi-Gaussian filtering method.

3.1.2. Estimation of Mathematical Expectation and Its Root Mean Square Errors

Testing of the method and quasi-Gaussian filter for estimating the mathematical
expectation and the RMS of its errors depending on dna—the duration of decreases and
dµ—the relative decrease value were carried out using statistical tests [17]. Random
datasets YM(s, T0i), XMG(s, T0i), XMF(s, T0i) , s = 1, 2, . . . , M, where s is the number of
the dataset, M is the total quantity of datasets. The estimates of mathematical expectation
m◦g(dna, dµ) and RMS values σ◦g (dna, dµ) for XMG(s, T0i) for a set of values dna and dµ

m◦g(s, dna, dµ) =
1
na

na1+dna

∑
n = na1

XMG(s, T0n), m◦g(dna, dµ) =
1
M

M

∑
s = 1

m◦g(s, dna, dµ),

σ◦g (s, dna, dµ) =
1

na − 1

na+dna

∑
n = na

(XMG(s, T0n)−m◦g(s, dna, dµ))2,

σ◦g (dna, dµ) =
1
M

M

∑
s = 1

σ◦g (s, dna, dµ).

(15)

The coefficients of relative errors ε◦gm(dna, dµ), ε◦gσ(dna, dµ) of the quasi-Gaussian filter as
ratios of errors m◦g(dna, dµ)−m0 and RMS σ◦g (s, dna, dµ) to the values of dm reductions are
the following:

ε◦gm(dna, dµ) = (m◦g(dna, dµ)−m0)/dm, ε◦gσ(dna, dµ) = (σ◦g (dna, dµ))/dm . . . (16)

The coefficients ε◦gm, ε◦gσ, calculated for dna, dµ, characterized the recognition capabilities of
quasi-Gaussian filtering model decreases. Similarly, using (15) and (16) m◦f (dna, dµ) and
σ◦f (dna, dµ) for XMF(s, T0n) and the coefficients ε◦f m(dna, dµ), ε◦f σ(dna, dµ). On Figure 4,
the results of statistical tests are displayed, where M = 500. The ε◦gm(dna, dµ) coefficients
plots are the solid lines with indices 1, 2, and the ε◦f m(dna, dµ) plots are the dashed lines
with indices 3, 4. The coefficients ε◦gm, ε◦f m are given depending on the duration with the
values dna = 12, 24, 48, 72 h and relative decreases in dµ, taking the values of 0.01 (indices
1, 3) and 0.03 (indices 2, 4).

The effect of quasi-Gaussian filtering was determined based on the calculation of
δε◦f g,m—the rates of errors with respect to the mathematical expectations:

δε◦f g,m(dna, dµ) = (ε◦f m(dna, dµ)− ε◦gm(dna, dµ))/ε◦gm(dna, dµ) (17)

The results of the δε◦f g,m calculations according to (17) for some dµ and dna values are:

1. δε◦f g,m = 0.115 (11.5%) for dna = 24 and dµ = 0.01;

2. δε◦f g,m = 0.196 (19,6%) for dna = 24 and dµ = 0.03.

Analysis of the error values showed that the ε◦gm rate values appeared to be about
10–30% lower than the ε◦f m values. The nature of the dependencies of the estimates of
the error coefficients for the ε◦gσ and ε◦f σ root mean square values for the same dna and
dµ parameters is almost the same: the ε◦gσ are also ≈10–30% lower than the ε◦f σ. This
means that, for the recognition of decreases small in duration and magnitude, the use of a
quasi-Gaussian filter is more preferable than the use of a common FIR filter.
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Figure 4. Results of calculating the coefficients of relative errors ε◦gm, ε◦f m.

3.2. Testing the Method and the Quasi–Gaussian Filter on Experimental Normalized Poisson Data
from the URAGAN Hodoscope

Testing in this section consisted of determining the performance and capabilities of
the proposed method and the quasi-Gaussian filter for recognizing small in duration and
magnitude decreases in time intervals for the experimental hourly normalized Poisson
data registered by the URAGAN hodoscope, taken from [12].

For analysis, a time interval was selected from 09/02/2017, 20:00 UTC to 09/18/2017,
15:00 UTC, with a total duration of 15.6 days. During this interval, the heliosphere was
turbulent due to strong solar coronal mass ejections (CMEs) The CMEs that occurred on
that period, caused intense geomagnetic storms that were discussed, for example, in [19,20].
The emerging CMEs caused modulations of muon fluxes recorded in MH and led to lower
mathematical expectations (including the ones due to Forbush decreases) in Poisson MH
data.

MH data were the matrix series of distribution functions of the intensities of muon fluxes
YE(i, j, T0n), defined in a rectangular region i = 1, . . . ,N1, j = 1, . . . ,N2, N1 = 90, N2 = 76,
n = 1, 2, . . .. Solid angles correspond to azimuth and zenith indices i, j, ϕi = ∆ϕ(i− 1),
ϑj = ∆ϑ(j− 1) , ∆ϕ = 1◦, ∆ϑ = 4◦ in which the registered particles were counted. MH data
YE(j0, i0, T0n) were a time series with indices j0, i0; the considered interval was determined for
nE min ≤ n ≤ nE max, nE min = 5900, nE max = 6275 (counting hours for [12] began from the
first hour of 2017).

Figure 5 shows the results of quasi-Gaussian filtering and interval recognition with re-
ductions in mathematical expectation. The original data YE(T0n) for j0 = 30, i0 = 31 were
denoted by light gray jagged lines (index 1). Fluctuations in data with a period of ≈24 h
and an amplitude of ≈0.0037–0.0040 are due to the daily rotation of the MH with the Earth.
Line with index 2 depicts the data XEG(T0n) filtered based on quasi-Gaussian filter. The
recognized intervals of intensity decrease, intensity recovery and intensity mathematical
expectation decrease were denoted by a piecewise linear spline-like dashed line XES(T0n)
(index 3). Analysis of intervals 5969–6043, 6127–6189 based on XES(T0n) leads to a con-
clusion that the mathematical expectation values of decreases on them were ∆m1 = 0.01,
∆m2 = 0.005 for the relative decrease rates dµ1 = 0.027, dµ2 = 0.020. For YE(T0n)
and XEG(T0n), the mathematical expectations on these intervals were m◦E1 = 0.3505,
m◦E1 = 0.3510, and m◦EG1 = 0.490, m◦EG2 = 0.3520, respectively, on average. The errors of
the mathematical expectations estimates were ∆m◦ = 0.0010−−0.0015, which is 10–30%
from the mathematical expectation values obtained, and this led to successful recognition
of decreases with the relative decrease rates of 0.02–0.03.

Testing on experimental MH data made it possible to draw a conclusion about the
efficiency of the quasi-Gaussian filtering method and its satisfactory capabilities for recog-
nizing small fluctuations of the mathematical expectations.
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Figure 5. Results of quasi-Gaussian filtering and identification of regions with Forbush decreases:
original data (line 1), filtered data (line 2), recognized intervals of various muon flux intensity (line 3).

4. Discussion

The comparison between the model data filtering result obtained using the proposed
filter and the one obtained using the fir1 (plots on Figure 3) shows that the resulting
time series are close to each other; however, the XMG(T0i) seems to be closer to the
initial model. The main quantitative result of testing the method and the quasi-Gaussian
filter on model normalized Poisson datasets included the calculations for (14) for a set of
realizations/ The resulting errors σMG for XMG(T0i), on average, by 15–30% less errors
σMF for XMF(T0i). This means that the proposed filtering method provided better filtering
(noise reduction) than the standard FIR filter. Consideration of the results of statistical
modeling made it possible to draw a conclusion about the efficiency of the method and the
quasi-Gaussian filter.

Further tests of the new method on model data, aimed at estimating the mathematical
expectation and its RMS errors with respect to the durations and magnitudes of model
decreases, showed the method capabilities in disturbance recognitions. It can be seen on
Figure 4 that the coefficients ε◦gm turned out to be less than the values of the coefficients
ε◦f m, on average, by about 10–30%. The nature of the plots of coefficients ε◦gσ and ε◦f σ for the
RMS for the same parameters dna, dµ is almost the same—the coefficients ε◦gσ are less than
the values of the coefficients ε◦f σ, on average, also by ≈10–30%. From the point of view
of recognizing decreases in duration and magnitude, the use of a quasi-Gaussian filter is
more preferable than a common FIR filter.

Finally, tests made on real experimental datasets from a muon hodoscope display the
method application to data processing and recognition of intervals of decreasing and recovering
muon flux intensity. Due to the noise reduction in XEG(T0n), it became possible to clearly see
the intervals of quiet data ( Figure 5), intervals with decreases and recoveries and intervals
with declines in mathematical expectation; all these recognized intervals were denoted by a
line XES(T0n) (index 3 on Figure 5). On the intervals with the boundary points 5900–5954,
6057–6121, 6197–6276 there were quiet data, on the time intervals 5969–6043, 6127–6189 a
decrease in mathematical expectation was observed, the time intervals 5955–5970, 6044–6056,
6122–6126, 6190–6196 corresponded to data with decreases and recoveries. On the intervals
5969–6043, 6127–6189, it is quite possible to recognize relative reductions in mathematical
expectation. The errors of the mathematical expectations estimates were ∆m◦ = 0.0010–0.0015,
which is 10–30% from the mathematical expectation values obtained, and this led to successful
recognition of decreases with the relative decrease rates of 0.02–0.03 and an average duration
of mathrm approx 10 h.

Testing the proposed method and quasi-Gaussian filter for data variants with indices
j0 = 31, i0 = 30, allowed to obtain results that are almost similar to those depicted
on Figure 5); the errors in the estimation of the boundary points of the sections during
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recognition with depressions amounted to δn ≈ 2–5 h. Thus, testing on experimental MH
data allowed us to make a conclusion about the efficiency of the method and the quasi-
Gaussian filter and their satisfactory capabilities for recognizing mathematical expectation
small in duration and magnitude.

5. Conclusions

The proposed filtering method for time series of normalized Poisson-distributed data,
which was based on the developed digital low-pass quasi-Gaussian filter with a finite
impulse response, a gain equal to one at low frequencies and non-negative weighting
coefficients, turned out to be efficient; the FR of the low-frequency quasi-Gaussian filter of
small dimension was characterized by a better approximation to the prototype filter FR
than the FR of common FIR filters.

Testing the filtering method based on the quasi-Gaussian filter for the problems of
recognizing small in duration and magnitude fluctuation decreases (increases) in math-
ematical expectations using statistical modeling and statistical tests have confirmed its
effectiveness:

• The proposed method provided a decrease in errors in the filtered time series in
comparison with the error values for standard FIR filters, by ≈15–30%; the method
made it possible to recognize the mathematical expectation fluctuations with a relative
decrease of 0.02 and duration of ≈12–24 h;

• The proposed method and the developed quasi-Gaussian filter provided relative error
coefficients for mathematical expectation and root mean square values that appeared
to be ≈10–30% less than the error coefficients for common FIR filters.

Testing the method and the low-frequency quasi-Gaussian filter on experimental
Poisson data made it possible to draw a conclusion about its satisfactory capabilities for
recognizing decreases with relative decrease coefficients ≈0.020–0.030.

The proposed method of noise reduction and a quasi-Gaussian filter have favorable
prospects of using radiation particle counters for digital information processing in problems
of experimental physics and measuring technology.
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