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1. Introduction

Nanotechnology is a key enabling technology bringing together chemists, biologists,
physicists, and materials science engineers, among others [1–6]. It has been proposed for ad-
dressing societal challenges due to its vast range of applications, such as on nanomedicine,
food, nanoelectronics, energy, packaging, composite materials, coatings, construction,
agriculture, water treatment and environmental remediation [5,7,8]. Not surprisingly, the
use of nanostructured materials has been raising health and environmental safety con-
cerns [5,9,10], favoring the expansion of a sub-field dedicated to green and safe-by-design
solutions [1,2,6]. Novel solutions should minimize environmental and human health risks
of nanomaterials during their lifetime, e.g., through the replacement of toxic products or
current processes by suitable eco-friendly alternatives [2,11]. Green nanotechnology relies
on the principles of green chemistry towards a sustainable design, manufacture, use, and
end-of-life of nanomaterials [11,12].

2. Latest Innovations and Insight on the Domain of Green Nanotechnology

This Special Issue, spread through five original research articles [2–6], aggregates
innovative applications, products, technologies and processes beyond the state-of-the-
art in several scientific green nanotechnology-related fields (e.g., drug delivery systems,
antifouling nanoadditives and coatings for optical applications) as well as identifying
some knowledge gaps on this domain. Research on sustainable production of nanoma-
terials based on safe-by-design approaches and (eco)toxicological assessment of novel
nanomaterials was also provided (Figure 1).

Gemini surfactants are being proposed as promising eco-friendly replacements of
state-of-the-art surfactants, for instance, to synthesize greener nanomaterials. In this do-
main, Brycki et al. [3] proposed an ecofriendly synthesis of AgNPs stabilized by gemini
surfactants produced with a solvent-free method. The smallest AgNPs were obtained using
the surfactant 16-6-16 as a stabilizing agent, molar ratio nAg:nGemini = 5 and with an excess
of reductant [3]. In the same rationale, Kaczerewska and co-authors suggested that it is pos-
sible to use novel gemini surfactants to synthetize greener silica mesoporous nanocapsules
(SiNC) [2]. SiNC is a widely used nanomaterial that has been raising some environmental
concerns due to the use of the cationic surfactant N-hexadecyl-N,N,N-trimethylammonium
bromide (CTAB) that remains inside the nanostructure before being released over time
when dispersed in seawater [5,9,10,13–16]. Thus, Kaczerewska et al. [2], used 1,4-bis-[N-(1-
dodecyl)-N,N-dimethylammoniummethyl]benzene dibromide (QSB2-12) as a low toxicity
template agent to replace CTAB [11]. Newly developed silica nanocapsules were quite
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similar to the conventional ones and exhibited significant reduction in the toxicity of such
nanomaterials in marine microalgae and microcrustaceans [2].
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Another interesting topic is the development of safe and multi-purpose nanostructured
lipid carriers, which have been widely proposed for pharmaceutical applications. The
use of natural lipids is desirable for drug-delivery systems. Galvão et al. [4] assessed the
influence of carvacrol in the crystallinity of solid natural lipids (stearic acid, beeswax and
carnauba wax) to synthetize greener nanostructured lipid carriers. The authors showed that
the higher the carvacrol content, the lower the crystallinity of the solid bulks of targeted
lipids, demonstrating the promising properties of this monoterpenoid phenol towards the
development of green drug delivery systems based on lipid nanoparticles [4].

Green nanotechnology has also been applied to the coatings industry through the
replacement of toxic compounds [6], or their immobilization and controlled release over
time [5,9,13]. Mennucci et al. [6] demonstrated that nanostructured nickel black surfaces
can have good corrosion resistance and can be a great replacement for chromium finish,
which is widely used in optical and solar applications, but also for decorative purposes.
On the other hand, recent advances demonstrated that the nanoencapsulation of anti-
fouling biocides (e.g., DCOIT, Zn and Cu pyrithiones within in SiNC or other engineered
nanomaterials), widely used in maritime coatings, can significantly decrease their toxicity
and hazard on marine species [9,10,13–16]. Santos et al. [5] demonstrated for the first
time that the SiNC-DCOIT has high anti-fouling efficacy towards target early life stages
of the tropical mussel Perna perna, while it is less toxic than free DCOIT during the larval
development stage. This novel insight reinforces the benefits of the encapsulating toxic
chemicals in nanocarriers.

3. Future Perspectives

Nowadays, science and technology are moving at a rapid pace and crossing scientific
frontiers. Articles published in this Special Issue showed different directions for further
progress in green nanotechnology. Future perspectives are dictated not only by new
scientific ideas but largely by today’s societal challenges, such as environmental regulations,
and the need to increase innovation and sustainability in the industrial processes and
decrease the loss of ecological biodiversity due to the combination of pollution and climate
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changes, among others, in the framework of the sustainable development goals (Agenda
2030) defined by the United Nations. As an example (Figure 2), and to avoid the repetition
of past mistakes, the upcoming generation of nanomaterials must be truly environmentally
friendly. For that purpose, synthesis should prioritize no/low toxic products, obtained
from sustainable sources, and new nanomaterial must be carefully assessed in terms of
environmental behavior, fate, effects, and hazard in the aquatic and terrestrial ecosystems,
whenever possible. Efforts must be made to bridge the gap between industry and academia
towards the development of green added-value and innovative nano-based solutions for
real problems (e.g., corrosion, biofouling, water remediation, agrochemicals).
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Figure 2. Future perspectives on the field of green nanotechnology.
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