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Featured Application: The following paper is applied in the field of nuclear safety and radia-
tion protection.

Abstract: The topic of Nuclear Safety Culture touches several different aspects with contributions
from the main organizations involved in nuclear projects and belonging to vendors, utility and
regulators. Two nuclear safety directives issued by the European Commission emphasize the funda-
mental principle of national responsibility for nuclear safety and are implemented in each member
country’s legislation. An example of fission implementation is highlighted, referring to the Czech
Republic legislation; an example of application in fusion technology is the implementation of the
Nuclear Safety Culture in the ITER project, located in Cadarache, in the south of France. The aim of
the paper is to highlight the importance of this field, pointing out the cross reference between fission
and fusion technology as applied in two countries, with concrete experiences and future prospects
for nuclear technologies.
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1. Introduction

Nuclear safety (NS) refers to all the technical dispositions and the organizational
measures taken to prevent accidents or to limit the effects during the manufacturing, func-
tioning, cessation and disassembly of nuclear installations with ionizing radiation sources,
as well as during the transport of radioactive substances. Nuclear organizations consider
NS the top priority over other competing goals such as time and budget when dealing with
nuclear projects. All the possible measures should be considered to protect the population,
workers and the environment from the harmful effects of ionizing radiation [1–7].

Nuclear Safety Culture (NSC) refers to the core values and behaviors resulting from a
collective commitment by leaders and individuals to emphasize safety to ensure protection
of people and the environment [5]. NSC applies to every stage in the nuclear plant’s life
cycle, including design, construction, operation, shutdown and decommissioning. The
purpose of NSC is to limit the impact of a failure in a nuclear installation on people’s health
and the environment in the long run; hence, the necessity of particular attention being paid
to NS for all installations.

Ensuring NS and a strong NSC is a fundamental expectation of each organiza-
tion involved in nuclear activities, including those that deal with the fission and fusion
fields [1–10].
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The highest level affecting nuclear plant safety is the legislative level, at which the
national basis for NS is set. Safety policies and their implementation, promoted at all
levels within nuclear organizations, create the working environment and conditions for
individual behaviors.

All organizations involved in nuclear activities make their responsibilities well known
and understood to all staff, with the public commitment of the management to NSC.

NSC relies on:

• The management’s commitment to give priority to the safety principles in their decisions;
• The individual responsibility to report with full transparency;
• A questioning attitude (understanding the purposes and knowing the limits of procedures);
• A rigorous and cautious approach for each person—duty of alert exercised;
• The know-how and competences proved by training, accreditation and qualification;
• The person’s motivation for setting goals, recognitions and penalties.

Figure 1 presents the NSC cycle: the top of the NSC structure is the policy level,
secondly managers and finally employees. The structure is presented as a cycle in which
there is a continuous feedback between all the levels, because all levels and their interaction
must be considered; top-down from the managers and bottom-up from the employers.
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Open communication is one of the fundamental aspects of NSC and assures the
interaction inside and between all levels.

The importance to understand safety in order to avoid accidents in nuclear power
plants remains one of the key issues for the international expert community [11]. One
of the main problems, which was underlined during the severe accidents that happened
in the nuclear power plants of TMI [12], Chernobyl [13] and Fukushima Daiichi [14],
was the lack of the NSC represented in obsolete design issues, lack of maintenance or
emergency operation procedures. As already anticipated, according to the IAEA [15], NSC
is the assembly of characteristics and attitudes in organizations and individuals, which
establishes that, as an overriding priority, protection and safety issues receive the attention
warranted by their significance. Although each of the mentioned severe accidents caused
a crisis in building new units or in developing future nuclear technology, they provided
important information to improve the safety culture in each country that hosts these
facilities. For this reason, this topic is in continuous evolution and evaluation worldwide,
increasing the reliability of nuclear installations.

In the following, particular attention is given to the implementation of the NSC
methodologies in fission and fusion installations, where the Czech Republic and ITER [16]
are used as examples.

The Czech Republic is a country where nuclear installations are already used for
electricity production and for research purposes. In addition, new nuclear installations are
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under preparation and construction in order to research in the fission and fusion fields,
to implement additional nuclear power for reducing the number of existing old carbon
power plants and to replace old nuclear power installations. In particular, the Dukovany 5
and 6 (with its expected commissioning after 2037) is planned to be the replacement for
Dukovany 1–4 (with its expected shut down in 2036–2039, in the case of a 50 year lifetime).

ITER [16] is located near Cadarache in southern France, in a huge complex of research
infrastructures hosting several institutions, such as CEA and IRSN. France is the country
with the highest NPP number in Europe. ITER represents the biggest worldwide experi-
ment developed in order to assess and to investigate the possibility to implement fusion
for energy production purposes.

Starting from these examples, the aim of this paper is to give some examples of the
application of NSC implementation in Europe with a particular emphasis on legislation
issues. The paper would like to point out the importance of gained experience from the
existing facilities for future new nuclear installations cross-referring between fission and
fusion technologies.

2. Nuclear Safety Culture in Fission
2.1. Czech Republic Nuclear Power Plants and Research Reactors

The Czech Republic is characterized by a large density of nuclear facilities located in
the whole country, as shown in Figure 2. It hosts six NPP units placed in the Temelin [17]
and Dukovany sites. The two in Temelin are VVER 1000/320, while in Dukovany four
VVER 440/213 units EDU [18] are placed. In addition, in both the Temelin and Duko-
vany sites, the future construction of new units is planned based on future tenders. The
sites of Temelin and Dukovany can host two new units each, with an installed power of
approximately 2400 MWe in each site [19,20].
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Several research facilities have been built in order to perform research activity and
isotope production. In Husinec Rez, the CVR hosts two research reactors, LVR-15 [21]
and LR-0 [22]. The first one is one of the main suppliers of isotopes in Europe, also
used for several different campaigns for material testing under radiation damage, for
Boron Neutron Capture Therapy research and it hosts several different loops and an
irradiation channel built into the framework of the SUSEN project, supported by the
European Commission [23]. The LR-0 is scaled 1:1 radially of VVER 440 and VVER 1000. It
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is used for neutronic benchmarking activity, codes validation and neutron flux experiments
on activity detection. An additional research reactor, VR-1 [24], is located inside Prague
in the Faculty of Nuclear Engineering and Physics (FJFI). This 0-power research reactor is
used mainly for experimental activities and student/training programs.

In the Czech Republic, future new experiments are under preparation. The FJFI is
building a new sub-critical experiment called VR-2 [25]. Certain interest is also being given
in the Czech Republic to the new fusion research facility, which is going to be designed and
constructed in the Institute of Plasma Physics—Czech Republic (IPP-CR) [26] and named
COMPASS-U [27].

Nuclear energy is well accepted by the public in the Czech Republic [28]. In addition
to the growing interest in energy self-sufficiency, this phenomenon may also be based on
the fact that this is a well-established energy source and a traditional research field in the
Czech Republic. Nuclear research in the Czech Republic has been going on since the 1950s
(the first research institute in the field of nuclear energy and NS was established in 1955
and the first nuclear research reactor was commissioned in 1957 [29]).

Additionally, the fact that science is perceived positively in the Czech Republic in the
long term may be a contributing factor. On the other hand, the construction of a new NPP
is a delicate topic in the Czech Republic, given that it is not only a question of nuclear safety,
energy self-sufficiency or strategically selected national energy mix, but also a burning
issue in the political scene.

2.2. NSC in Fission: The Czech Republic Implementation

The continuous upgrading of nuclear perspectives in the Czech Republic has lead to
continuous updates of the current legislation also, based on the information and harmo-
nization acquired from the international community [1,30,31]. NSC is an important and
long-developed topic at the international level, supported by the activities of the largest
international organizations in the field of NS (IAEA, EC, OECD, NEA, etc.). Due to this, it
has been given relevant importance in the Czech Republic for the last two decades.

NSC is not only a topic related to NPP and its license holder and its subcontractors, but
also to other related stakeholders. The requirements for the establishment and development
of NSC also apply to the license holders of other nuclear facilities in the field of research,
nuclear material handling, etc. Likewise, other organizations are involved in the system
of the establishment and development of safety culture: the nuclear regulatory body and
its technical support organization, universities and research and engineering companies,
whether private or established by the state. Certain contributions to the system are also
made by the state through its support of science, research and development in the field of
nuclear safety through organizations such as TAČR [32], GAČR [33], etc.

In the previous legislation (dated 1990s), NSC was not yet determined. Safety culture
implementation and development was required by the national regulatory body based on
§ 17 par. 1 of Act 18/1997, as amended [34]. According to that requirement, the license
holder had to systematically assess NS at the present state of the art level, which in the
field of safety culture in practice was considered in particular IAEA documents (some of
them also translated into Czech [35–37]) and the WENRA document [38], part C7.

In the current legislation, the NSC topic is addressed inside the Czech Atomic Act [39]
and subsequent 20 decrees. In the Atomic Act, from authorization, the license holder is
obliged to implement the safety culture principles directly in the management system.
Through it, the management must continuously develop and evaluate the characteristics
and attitudes of persons performing activities related to the use of nuclear energy. Such
attention is referred to as the “safety culture” and the extent and manner of ensuring the
development and evaluation of the safety culture is stipulated in the subsequent decree.

In order to endorse the NSC, the main requirements are addressed in [40]. The NSC
should be addressed in a continuous development of the management system via ensuring
the management system understanding, explaining, improving and collecting effective
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information and sharing it with both managers and employees, and ensuring that safety
culture principles are comprehensible to both managers and employees.

Due to these requirements, the subject which is implementing the management system
(e.g., the license holder) must ensure that the managers contribute to the continuous
improvement and development of the safety culture and carry out regular self-assessment
of the safety culture according to their procedural role.

The regular evaluation of the safety culture must be carried out at least once a year and its
results and the measures to mitigate the non-conformities must be documented. In addition,
the results of the safety culture assessment must be communicated to each employee.

Safety culture must be taken into account also in other activities: according to [41],
the license holder must, among other issues, evaluate the impact of the safety culture on
the operational event as part of an operational incident and accident investigation. In
addition, periodic safety assessments must be performed [42], among others, in the area of
organization and management, with particular attention paid to the overall level of safety
culture. In addition, this includes the human factor [42], and whether the human factor
does not increase the risk of the initiation event, including an assessment of whether the
overall personnel policy and its management are in accordance with the requirements of
the safety culture [43,44].

Safety culture is also the subject of State Office for Nuclear Safety Czech Republic
(SONS) inspections. All nuclear safety inspectors participate in the inspection, collecting
findings related to the safety culture (so-called safety culture characteristics) from license
holders and their subcontractors during their daily work (e.g., other inspections, docu-
mentation assessment, administrative proceedings). The used methodology is based on
observing personnel behavior, discussion and argumentation, problem and issue solv-
ing, working atmosphere, quality of work and documentation assessment and overall
working observation. Each single finding is collected including its context and must be
independently understandable by all participants.

The safety culture characteristics are marked using four grades:

• A—positive manifestation of safety culture;
• B—expected condition;
• C—non-compliance with the healthy safety culture attribute;
• D—denying of the healthy safety culture attribute.

Findings are collected using a database. Specialized inspectors process them to form
the output for inspection purposes (Inspection Report), and for the benefit of the license
holder. The license holder obtains, four times a year, information about the safety culture
assessment: the report and the periodical meetings between the management and the
SONS underline the main positive and negative findings, which are explained to the
license holder.

In the processing, data are strictly anonymized (also from the language and communi-
cation style point of view) to avoid and prevent worries of personnel or inspectors with
regard to expressing freely their concerns, opinions and attitudes.

Some methodologies are widespread worldwide to assess safety culture. The most
generally known are the US NRC methodology [45] and GRS [46], but some other method-
ologies [47] have been developed in other countries, too.

SONS describes the process of collecting safety culture characteristics in its internal
document [48]. Findings are collected in 10 areas using the “10 Traits” reference framework
created by the US NRC [45] and also recommended by the IAEA [49].

The “10 Traits” reference framework is applied to different structures (organization,
work groups, supplemental personnel and independent oversight organizations) and at
different levels for organizational roles and positions (individuals, leaders, executives,
managers, senior managers, supervisors, individual contributors), as shown in Figure 3.
The assessment is focused on them, their relations and communication from a different
perspective. The “10 Traits” assessment method brings complex and simple ways to
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evaluate the existing safety culture and its manifestation in an organization. The “10 Traits”
consist of attributes, for which there is some example or description.
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The traits and their content can be described as follows [45] (see also Figure 3):

1. “Leadership Safety Values and Actions”—whether leaders demonstrate their commit-
ment to safety in decision making and behavior;

2. “Problem Identification and Resolution”—whether issues, which can potentially
impact safety, are promptly identified, evaluated, addressed and corrected commen-
surate with their safety significance;

3. “Personal Accountability”—whether all individuals take personal responsibility
for safety;

4. “Work Processes”—whether the process of planning and controlling work activities is
implemented to maintain safety;

5. “Continuous Learning”—whether emerging opportunities to learn about ensuring
safety are sought out and taken;

6. “Environment for Raising Concerns”—whether a healthy environment exists for
personnel feel free to raise safety concerns without fear;

7. “Effective Safety Communication”—whether communication maintains a focus on safety;
8. “Respectful Work Environment”—whether the organization trusts and respects indi-

viduals;
9. “Questioning Attitude”—whether individuals avoid complacency and continuously

reconsider existing conditions and activities in order to identify discrepancies;
10. “Decision making”—whether decisions that support or affect nuclear safety are

systematic, rigorous and thorough.

The importance of NSC can be demonstrated by the example of the following event:
in 2015, a leak from a welded joint of the emergency water supply pipeline of the steam
generator was identified at EDU Unit 4. The unit was shut down and the cause was
investigated. The welded joint was inspected in 2014 and no damage was found, which did
not correspond to the mechanism of the failure, which had to have developed for a longer
time. During the investigation of the event, it was found that inconclusive inspections
of welded joints on non-essential pipelines of smaller diameters had been carried out
for some time. A subcontractor performed inspections of welded joints and the license
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holder’s control of the result was insufficient [50]. The causes of the event identified by the
regulatory body include, in particular:

- Satisfaction with the favorable assessment for both NPPs, even on an international
basis, e.g., in the framework of a number of reports and conclusions from missions
carried out by IAEA or WANO;

- Prevailing emphasis placed on technical aspects of the operation, at the expense of
the interest of the personnel leading and the management and cooperation between
particular organizational units, with little emphasis placed by top management on
enforcement of appropriate behavior;

- non-conceptual efforts to reduce costs also had an influence [51].

Thus, these are typical signs of a weakened safety culture. The event led to a six-month
shutdown of Units 2 and 3, with the extension of the planned outages of other Units lasting
several months. The license holder calculated the total financial loss at EUR 100 million [48],
even if the event was rated as an INES 0 [50].

3. Nuclear Safety Culture in Fusion
3.1. ITER Project in the French Nuclear Context

France is characterized by a large number of nuclear fission power plants and of nu-
clear facilities located in the whole country. France also hosts the largest fusion experiment
for peaceful purposes in the world, named ITER. ITER is an acronym for International
Thermonuclear Experimental Reactor and is built in the framework of a wide international
collaboration in the Provence region in southern France, next to the French Alternative En-
ergies and Atomic Energy Commission CEA Cadarache facility in Saint-Paul-lès-Durance.
Another much smaller fusion tokamak device, named Tore Supra, has been working since
1988 in the CEA Cadarache laboratories in the framework of a collaboration between CEA
and Euratom (European Atomic Energy Community).

ITER is the largest among more than one hundred fusion research facilities built
worldwide since the 1950s, and is a major step to demonstrate the scientific and technologi-
cal feasibility of fusion for possible future energy production. The project is funded and
run by the following seven members that represent the 35 countries directly or indirectly
participating in the project: Euratom (representing the European Union), the US, Russia,
China, India, South Korea and Japan.

ITER will not produce electricity but it will pave the way for its successor, the DEMO
fusion reactor meant for electric energy production in an experimental environment. Future
commercial reactors are envisaged only when full-scale electricity-producing fusion power
stations are built after DEMO [9,10].

Nuclear safety is always a priority in activities with ionizing radiation, and France
demonstrates outstanding records with important and wide experience in mastering nu-
clear science and technologies in all their numerous aspects, applying it also in the field of
fusion energy.

The practical implementations of nuclear safety concepts in fusion and fission reactors
present some fundamental differences due to the physical and technological characteristics
of each. However, the main concepts of NSC that are adopted in fusion reactors are also
based on those of other types of installations with radioactive materials, especially from
nuclear fission power plants.

The fusion process is considered inherently safe and fission-type meltdown is not
possible. The fusion reaction relies on a continuous input of a limited amount of fuel while
any perturbation in the fusion reaction process will stop it immediately. The amounts of
tritium fuel radioelement considered for some fusion facilities are of the order of only a few
grams during plasma pulse, and its confinement measures are one of the most important
safety objectives.

Even in case of total loss of cooling, the confinement barriers conceived for fusion
facilities would not be affected, keeping their safety function without reaching the melting
temperatures of the materials.
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A system of multiple independent and redundant layers or barriers is designed also
for fusion reactors to protect against any possible radioactive releases into the environment.
This is the basis of the so-called Defense in Depth (DiD) concept that is adopted for both
fission and fusion applications, with the same objective of protecting the health and safety of
the public, workers and environment. The purpose of multiple barriers is to compensate for
any possible potential mechanical or human failures so that no single layer, no matter how
robust, is exclusively relied upon. In fusion reactors, the Vacuum Vessel (VV) represents
the first confinement barrier while the buildings are the second level barrier. Where tritium
is handled, there is also the need for an advanced detritiation system for the recovery of
tritium from gas and liquids and to inhibit the outward diffusion of tritium; therefore, an
efficient second dynamic confinement barrier with air pressure cascading in the buildings
is conceived.

3.2. NSC in Fusion: The ITER Implementation

The ITER Organization (IO) is the nuclear operator of the ITER facility and the overall
integrator of the project with cooperation among its members. The IO strictly observes the
French nuclear safety regulations, since ITER is classified as a basic nuclear installation or
INB (Installation Nucléaire de Base in French) similarly to all the nuclear fission power
plants and other nuclear facilities. ITER is identified by the number “INB no. 174” in France.
For this reason, ITER receives controls and inspections from the country’s regulatory body,
Autorité de Sûreté Nucléaire (ASN), and its technical support organization, the Institute of
Nuclear Safety and Radioprotection (IRSN), like any nuclear installation in France.

ITER is the first fusion device that has passed the full nuclear licensing process and
that is considered as a basic nuclear installation in France. ITER safety studies started in
the mid-1990s and were later adapted to the present location in Cadarache (France) [9,10].

The objective of ITER is to demonstrate the scientific and technical feasibility of
fusion energy for peaceful purposes, an essential feature of which is the achievement of
sustained fusion power generation. Nevertheless, the IO’s first priority, over and above
its progress in research activities during ITER operations, is to protect the public, workers
and environment by preventing accidents and by limiting their consequences related to
nuclear safety. The IO had to define safety objectives and functions together with the
correct identification of risks and means to mitigate and minimize them.

The main French regulations applicable to ITER are briefly summarized in Figure 4.
At the top of the regulatory pyramid there is the French Environmental Code.
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The main INB regulation, carefully observed by the IO, is the French Order of 7th
February 2012 that lays down general requirements applicable to basic nuclear installations
(INB) or “Arrêté du 7 février 2012 fixant les règles générales relatives aux Installations
Nucléaires de Base” [52]. This INB order, 2012, harmonizes the practices of three previous
INB orders: the order of the 10th of August 1984 (quality order), the order of the 26th
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of November 1999 (discharges procedures) and the order of the 31st of December 1999
(general regulation of INB risk prevention and limitation).

With Decree No. 2012-1248 dated 9 November 2012, the IO was authorized to create a
basic nuclear facility INB No. 174, called “ITER”.

With ASN Decision 2013-DC-0379 dated 12 November 2013, ITER prescriptions for
the ITER design and construction were established.

With ASN Decision 2015-DC-0529 dated 22 October 2015, ITER requirements were amended.
With ASN Decision 2017-DC-0601 dated 24 August 2017, ITER prescriptions were amended.
The authorization of the creation of ITER was issued only when the IO operator was

demonstrated to have all the needed technical and organizational measures capable of
preventing or sufficiently limiting the risks and inconveniences according to Article L593-7
of the French Environmental Code. The analysis of the risks of incidents or accidents with
or without radiological impact is presented in the ITER Preliminary Safety Report (PSR,
or in French, RPrS, Rapport Préliminaire de Sûreté). The PSR demonstrated that, during
normal operation, the radiological impact of ITER on the population is negligible and even
the most exposed members of the public will receive a dose that is one thousand times
less than natural background radiation. The PSR also indicated that the evacuation of the
population next to the ITER site would never be necessary, even in the case of the worst
accidents, such as a fire in the tritium plant.

The French nuclear safety and regulatory authority, ASN, requested particular atten-
tion also to toxic materials, such as beryllium, in order to protect the workers, the public
and the environment from their potential risks. Beryllium is used mainly in the ITER
blanket and as an armor material for the components of the ITER VV that will directly
face the plasma, due to its compatibility, thermal and mechanical properties. Nevertheless,
beryllium is classified as a potential carcinogen, especially if inhaled as dust. In ITER it will
be used as beryllium blocks and measures are being taken to reduce the risks of producing
microscopic particles released into the air during transport, handling and other activities.
Specific control measures are being taken to limit the airborne concentration.

The IO and all its contractors and subcontractors shall ensure that the first priority is
given to nuclear safety, with the objective to prevent accidents and limit their consequences
and protect the workers, the public and the environment in all situations by:

- Implementing a robust Nuclear Safety Culture (NSC) through staff and organizations
involved in the life cycle of the ITER project;

- Implementing safety requirements on Protection Important Components (PICs);
- Identifying the Protection Important Activities (PIAs) related to PICs defined in the

contract requirements;
- Implementing a robust surveillance/Technical Control (TC) of PIAs and Protection

Important Systems, Structures and Components.

According to the INB order 7 February 2012 [40], in every contract involving PICs and
PIAs, disregarding the level in the supply chain of the contracting parties, it must be clearly
stated that Defined Requirements (DR) on PICs and PIAs have to be fulfilled. Defined Safety
Requirements (DRs) are defined in Article 1.3 of the INB order as “requirement assigned to
a protection important component so that it fulfils—with the expected characteristics—the
function provided for in the demonstration mentioned in the second paragraph of Article
L. 593-7 of the Environmental Code, or to a protection important activity so that it fulfils its
objectives as regards this demonstration”. It means that specific requirements have been
assigned to a Protection Important Component or a Protection Important Activity so that
they may perform the function provided for in the safety demonstration.

4. Discussion

The results of this study, in accordance with some of the main theoretical approaches
of the high-risk industry, contribute to characterize the safety culture traits of European
countries, and the implementation of the NSC methodologies in fission and fusion instal-
lations, where the Czech Republic and ITER are used as examples. This study is mainly
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a descriptive study: it is not focused on a theoretical point of view, but on describing
some NSC traits within the EU nuclear context. In this frame it is important to recall
that a European Commission (EC) nuclear safety directive in 2009 [53] emphasized the
fundamental principle of national responsibility for nuclear safety. An amendment to the
safety directive approved by the EU in July 2014 [54] introduces a high-level EU-wide
nuclear safety objective that aims to limit the consequences of a potential nuclear accident
as well as address the safety of the entire lifecycle of nuclear installations (siting, design,
construction, commissioning, operation and decommissioning of nuclear plants), including
on-site emergency preparedness and response. It also introduces a set of rules to support
the independence of national nuclear safety regulators, with a new peer review system.

It is important to underline that the favorable public opinion, the political opinion
and the scientific community’s respect play a fundamental role in the possibility to build
new nuclear units in the Czech Republic, although, despite this favorable situation in the
Czech Republic, construction of new units is still a long process due to the system based
on opening tenders used until recently, and other political and economic issues. Such
a favorable environment, uncommon in the EU, could lead to the development of the
existing technology along with the implementation of new technologies, such as Small
Modular Reactors (SMR) and nuclear fusion installations. In this sense, this stimulates the
improvement of the legislation through continuous updates and harmonizations which,
beyond the present legal obligations of the Czech Republic, implement the most advanced
NSC principles and, more generally, safety and radiation protections according to the inter-
national community (IAEA, WENRA, EC, OECD, etc.) best practices. Indeed, the Czech
situation pointed out some important upgrades from the previous legislation to the actual
one, where such topics are more addressed, also based on WENRA recommendations. As a
consequence of this continuous strengthening of NSC importance, some non-compliances
found during some inspections have evidenced the role of the NSC in the whole process.

The safety culture is contained in the Czech legislation and assured by several methods.
One of the most commonly used is the “10 Traits” methodology. This (or a similar)
methodology, at least in principle, can be used to improve the overall implementation of
the safety principles in fusion reactors. In fact, such a methodology has been already used
in other nuclear facilities, which are different from the “classical” nuclear power plant,
such as in the case of Czech research reactors or other nuclear installations.

In the frame of fusion installations, although the consequences of a possible acci-
dent are well researched, the associated probability of occurrence is still a matter under
investigation, due to their complexity and the relatively low experience gained in the
maintenance and operation of existing facilities (such as Joint European Torus (JET) [55],
Axially Symmetric Divertor Experiment (ASDEX) [56] and COMPASS [26]). Nevertheless,
the total risk (expectation value of an appropriate measure of a specified (usually unwel-
come) consequence ∑ = pi·Ci, where pi is the probability of occurrence of scenario or event
sequence i and Ci is a measure of the consequence of that scenario or event sequence [15]),
although not easily quantifiable, should probably not be considered low or negligible. As
an example, a fusion reactor with a beryllium first wall can lead to a significant production
of dust [57] and, therefore, to some specific types of accidents connected with radiological
and chemical hazards. For this reason, the implementation of conservative approaches and
principles (e.g., high safety margins, multiple levels of Defense in Depth, strict functional
diversity, segregation, separation, etc.) for risk assessment and reduction seems to be justi-
fied and appropriate. Many of these principles and approaches have been developed since
the early times of nuclear installation operations, also in the case of limited experience with
these installations, and they are commonly known, well-researched and developed. On the
contrary, an excessively high level of conservatism can bring oversized and unacceptable
measures that hinder the achievement of fusion facility’s goals and require unfounded
resource requests in terms of time, money and effort.
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5. Conclusions

In this paper, two different approaches are presented in order to take into account that
the population and the environment have to be protected against the risks resulting from
the operation of different nuclear facilities. In both cases, NSC is used as an additional
tool to prevent serious consequences. Firstly, an overview of the Czech (fission and fusion)
nuclear facilities is given, along with a description of the NSC principles implemented
in the Czech Republic legislation. Then, a comprehensive picture of the NS procedures
adopted in ITER are presented, focusing on some aspects which can be compared with the
Czech experience.

Based on the experience gained over several years of reactor operation, the paper also
introduces a point of view which can help fusion technologies to update safety culture
implementation as an investment in terms of reduction in chemical hazards and improve-
ment of radioprotection. In fact, using a focused risk approach is beneficial also for fusion
installations in order to better assess the radiological hazards and other risks associated
with normal operation and possible accidents involving facilities and activities. Finally, the
implementation of NSC principles, due to their soft and non-technical nature, should not
significantly increase the costs (in comparison with the implementation of other conser-
vative approaches or with the overall fusion installation’s capital costs) and the benefit of
the approach will be to lead the technology toward a robustness even higher than that of
nuclear fission power plants.
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ASDEX Axially Symmetric Divertor Experiment
ASN Autorité de Sûreté Nucléaire (in French) or Nuclear Safety Authority
CEA Commissariat à l’énergie atomique et aux énergies alternatives (in French) or French

Alternative Energies and Atomic Energy Commission
DiD Defense in Depth
EC European Commission
EU European Union
HLW High-Level Waste
IAEA International Atomic Energy Agency
ICF Inertial Confinement Fusion
INB Installation Nucléaire de Base (in French) or basic nuclear installation
IO ITER Organization
ITER International Thermonuclear Experimental Reactor
JET Joint European Torus
LLW Low-Level Waste
MCF Magnetic Confinement Fusion
MLW Medium-Level Waste
NPPs Nuclear Power Plants
NS Nuclear Safety
NSC Nuclear Safety Culture
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PIA Protection Important Activity
PIC Protection Important Component
PSR Preliminary Safety Report (or in French, RPrS, Rapport Préliminaire de Sûreté)
SMR Small Modular Reactors
TC Technical Check
UN United Nations
US United States
VLLW Very Low-Level Waste
VV Vacuum Vessel
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Interior: Prague, Czech Republic, 2016.

41. Decree 21/2017 Coll., on Assuring Nuclear Safety of a Nuclear Installation. In Sbírka Zákonů České Republiky; 23 January 2017;
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