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Featured Application: A mathematical decomposition method based on the Auxiliary Problem
Principle is applied to formulate and solve in a decentralized architecture a practical optimiza-
tion problem, which determines the active and reactive powers injected/absorbed by Distributed
Energy Resources to achieve the optimal voltage profile in an electric distribution system.

Abstract: This paper addresses the problem of optimizing the voltage profile of radially-operated
distribution systems by acting on the active and reactive powers provided by distributed energy
resources (DERs). A novel voltage optimization procedure is proposed by adopting a decentralized
control strategy. To this aim, a centralized voltage optimization problem (VOP), minimizing the
distance of all the nodal voltages from their reference values, is firstly formulated as a strictly-
convex quadratic program. Then, the centralized VOP is rewritten by partitioning the network
into voltage control zones (VCZs) with pilot nodes. To overcome the lack of strictly convexity
determined by the reduction to the pilot nodes, the dual centralized VOP working on the augmented
Lagrangian function is reformulated and iteratively solved by the method of multipliers. Finally, a
fully-distributed VOP solution is obtained by applying a distributed algorithm based on the auxiliary
problem principle, which allows for solving in each VCZ a quadratic programming problem of small
dimension and to drive the VCZ solutions toward the overall optimum by an iterative coordination
process that requires to exchange among the VCZs only scalar values. The effectiveness and feasibility
of the proposed method have been demonstrated via numerical tests on the IEEE 123-bus system.

Keywords: distribution networks; distributed energy resources; decentralized voltage optimization;
distributed algorithms; auxiliary problem principle

1. Introduction

In distribution networks, the large penetration of distributed energy resources (DERs),
such as distributed generators (DGs), storage systems, electrical vehicles, and controllable
loads, has a significant impact on voltage control. Then, the proper selection of the voltage
control strategy and architecture, the adequate settings of local controllers and, in the
near future, the coordination of the transmission system operators (TSOs) and distribution
system operators (DSOs) are the many challenges that need to be faced for voltage control
in smart grids [1].

Presently, the voltage control strategies can be divided into four categories on the
basis of communication: local, centralized, distributed, and decentralized [2].

Optimizing the voltages of the distribution networks in a centralized way would seem
the most natural approach to solve the problem of the voltage regulation as it projects the
method used in the transmission system into the distribution ones. Centralized controls
consist of collecting measurements from the field, solving a constrained optimization prob-
lem using a distribution management system (DMS) and sending the optimal set-points
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to the local voltage control devices. Conventional devices employed for voltage control
in distribution networks are: on-load tap changer (OLTC) of the transformer in HV/MV
substation, step voltage regulators (SVRs), and capacitor banks (CBs); innovative devices
are inverter-interfaced DERs, which can respond much faster than the previous ones by
varying their active and/or reactive generation and consumption. Although the centralized
approach provides the optimal global solution to the problem, it is expected to encounter
technical obstacles resultant from the distributed nature of the electrical system. In fact,
the high number of nodes, the increasing integration of DERs, and their participation in the
voltage regulation reflect on a large number of measurements to be acquired from the field,
sent to, and processed by the DMS as well as on many signals to be dispatched to the con-
trol devices. It results in a high cost of investments for advanced measuring technologies,
high-speed two-way communication infrastructures, and a powerful computing facility
with high computation efficiency [3]. Furthermore, a centralized control architecture is
unable to quickly respond to adverse events becoming vulnerable in the face of cyber and
physical attacks to the DMS [4].

To mitigate the drawbacks of centralized strategies, a great potential is offered by de-
centralized controls. The basic idea is, firstly, to decompose the large distribution network
into smaller voltage control zones (VCZs), in which the nodes are strongly coupled from
an electrical point of view; and, then, to achieve the regulation of the voltage profiles of
the entire distribution network through intra VCZ control and inter VCZ coordination.
In particular, inside a VCZ, a centralized control optimizes the voltages of its cluster of
nodes acting on only its local voltage control devices; among VCZs, a distributed control,
consisting of a data exchanges among specified nodes of VCZs, is used to drive the VCZ
solutions to the global optimization of the whole distribution system. By reducing the size
of the problem to be solved in each VCZ, computing facilities will process a limited amount
of data; furthermore, information exchange and communication infrastructure will cover
limited network areas with the great advantage of lower investment costs and higher re-
silience to faults and cyber attacks. Despite of these undoubtable advantages, decentralised
approaches provide a sub-optimal solution with respect to the centralized one.

To formulate and solve the voltage optimization problem (VOP) in a decentralized
manner, first of all, the VOP must be formulated according to a centralized approach.
Typically, it is a constraint optimization program that: (i.) minimizes an objective func-
tion (e.g., the deviation of the nodal voltages from their reference values, the network
losses, and/or the DG active power curtailments); (ii.) is subject to equality constraints
(i.e., power flow (PF) equations) and to inequality constraints (i.e., limits on bus voltage
magnitudes, operation range of conventional, and innovative voltage control devices);
and (iii.) determines the optimal set-points of the local controllers (i.e., tap positions of
OLTC/SVRs, optimal status of CBs, active, and or reactive powers of DER local controllers).
The centralized VOP is a mixed-integer nonlinear programming. It is difficult to solve
for two reasons: firstly, it is not convex due to the quadratic relationship between bus
voltages and powers; then, it is of large dimension in dependence on the size of the network
and the number of variables to be controlled [5]. To make the VOP convex and reduce
its complexity, linearization techniques [6–8], semi-definite relaxation (SDR) [5,9], and
second-order conic (SOC) [10,11] programming have been proposed. Once the non-convex
centralized VOP is transformed into a convex one, to some extent, it is easier solving it
also according to a decentralized approach. To this aim, the original centralized VOP is
decomposed into a number of simple optimization sub-problems (equal to the number
of VCZs obtained by the network partitioning); the consistency between centralized and
decentralized optimization is assured by the local information exchanges among VCZs;
this coordinating action can be implemented in various ways. In [12], the voltage of the
dynamic subcommunity that presents the worst violations of the nodal voltage boundaries
is independently controlled by employing a particle swarm optimization method; then,
to address the interaction between different sub-communities, an overall network power
flow calculation is conducted: if all the network nodal voltages are in the allowable range,
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the regulation is stopped; otherwise, the process is repeated for all the subcommunities.
Despite of the limited processing time at subcommunity level, such an approach requires
a heavy centralized coordination. In [13], a distributed sequential quadratic program-
ming is used for optimizing DGs in each zone; coordination is based on a master–slave
approach and requires an iterative boundary data exchange and power flow recalculation;
the drawback is that no convergence conditions are provided. One of the most popular and
effective method to perform a distributed optimization control between clusters is based
on the alternating direction method of multipliers (ADMM) [7,8,14–19]. The solution is
based upon a cluster-based optimization process, where a limited amount of information is
exchanged between neighboring clusters; the main benefits of ADMM are the absence of
centralized coordination or load flow recalculation, and robust convergence characteristics.

Recently, in [20], a new method for the decentralized voltage optimization of balanced
active distribution systems with radial topology has been proposed. Firstly, a centralized
VOP, minimizing the distance of the voltages from their reference values, is formulated
as a strictly-convex constrained quadratic program to determine the optimal set-points of
the reactive power controllers of DGs. To this end, a new linearized model formulation
of the DistFlow equations is exploited [21]. Then, the centralized VOP is reformulated by
partitioning the network into two VCZs with pilot nodes (PNs); the PN voltage variation
best represents the variation of the voltages in the VCZ [22]. However, the new objective
function, accounting only for voltage magnitude at PNs, keeps the centralized VOP convex
but not in a strict sense. Therefore, for overcoming the lack of strict convexity, a dual
approach is considered; the dual VOP works on the augmented Lagrangian function
(ALF), and it is iteratively solved by the method of multipliers (MM) [14]; this latter
is a two-level iterative method which solves at each step the VOP to obtain the values
of the optimization variables that are used in the second level to update the Lagrange
multipliers. Unfortunately, quadratic terms in the ALF make the VOP still not separable
among the VCZs. Eventually, the VOP is solved in a fully decentralized form by using
the auxiliary problem principle (APP) [23,24]. Generally speaking, the APP involves
linearizing the non-separable terms in the ALF and adding convex terms which can be
chosen to be separable [25], so as to decompose the VOP into zone VOPs. In each iteration
step, the zone VOPs are solved in parallel, each one by the solver assigned to the related
VCZ; then, an information exchange allows for updating the Lagrange multipliers so as
to re-formulate the zone VOPs for the next step. The iterative process continues until
convergence is reached. In general, the APP technique has convergence conditions [26] and
a better convergence behavior than the ADMM in the case of non-convex problems [27].
According to the authors’ best knowledge, this is the first time that APP has been applied
to the decentralized voltage optimization of distribution networks by varying active and
reactive powers of DERs.

This paper extends and improves the method outlined in [20]. First of all, the proposed
decentralized VOP is generalized to the case of a distribution systems partitioned into an
appropriate number of VCZs. Moreover, since, in distribution networks, the nodal voltage
magnitudes are often fairly sensitive to variations of active rather than reactive power
injections; in this paper, the VOP determines not only the reactive power generation of DGs
but also the active and reactive powers provided by electric storage systems. Finally, since
DER controllers are much faster then conventional voltage control devices, the optimal
setting of the slow time-scale actuators are evaluated a priori and assigned as parameters
in the formulation of the VOP linearized around a particular initial operating point [8].

The main features of the proposed decentralized VOP are summarized hereafter.

– In the centralized formulation of VOP, the linearized DistFlow equations, based on
a Jacobian method proposed in [21], assures an improvement of the accuracy of
the results with respect to other linearization techniques. In fact, the adoption of
a peculiar set of variables for the analytical derivatives does not require to neglect
or to approximate as constants the nonlinear terms of the DistFlow equations as
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in [7,8,16,19]. Consequently, the adoption of such technique limits the approximation
of the solution with respect to classical VOP using nonlinear PF equations.

– To decompose the centralized VOP into subproblems, the adopted partitioning method
takes into account the dependence of the nodal voltages on both active and reactive
powers injected in all the nodes of the grid [22,28]; in such a way, the network partition-
ing considers the R/X ratio which characterizes the distribution networks. The method
is based on the definition of the electrical distance, which is evaluated by using once
again the linear model in [21] that provides in a closed form the sensitivity of the
voltage magnitudes to the power variations; consequently, the partition is extracted
from structural characteristics of the network independently from the number and
position of the DERs in a specific configuration.

– The reformulation of the VOP that accounts only for PNs, allows for acquiring a
reduced number of voltage measurements from the field (i.e., one for each VCZ) and
does not require a system state-estimation; consequently, it can be easily implemented
in practice. As a drawback, not all the network voltages are optimized, and, from
the theoretical point of view, it is not guaranteed that a nodal voltage could exceed
normal operating bounds. However, if the number of VCZs is large enough to
adequately represent the network by the PNs and the number of DERs involved in the
optimization is large enough to effectively control the voltages, this latter possibility
is extremely reduced.

– The decentralized VOP obtained by applying APP allows for: i. solving in each VCZ
a constrained quadratic programming problem of small dimension which presents a
global minimum; and ii. to exchange among the VCZs only scalar values. Thanks to
these two features, the distributed iterative algorithm guarantees convergence with a
limited number of iterations. Finally, it is worth noticing that, differently from other
APP applications [27,29], neither fictitious nodes nor overlapping variables among
interconnected VCZs are introduced to obtain the fully-distributed VOP solution, due
to the adoption of PNs in VCZs.

The paper is organized as follows: Section 2 illustrates the centralized formulation of
the proposed VOP. In Section 3, the VOP is revisited to get its decentralized formulation,
highlighting the main steps of the proposed approach that are network partitioning, MMs,
and APP. Finally, in Section 4, a case study is developed referring to a 123 node distribution
test feeder with 15 DERs; detailed analysis of the results are presented in various operating
conditions and a different number of VCZs, giving evidence of the effectiveness of the
proposed decentralized VOP and comparing its performance with centralized VOP.

2. Centralized Voltage Optimization Problem: Recalls

Let’s start from the centralized VOP formulation. It is a linearized optimal power flow
(OPF) that: (i.) minimizes the sum of the squared distances of the squared nodal voltages
from their reference values; (ii.) is subjected to the linearized PF equations and to operating
limits of both nodal voltages and DERs; and (iii.) determines the set-points of active and
reactive controllers of DERs. Assigned an initial operating point, it is possible to rewrite
the centralized VOP in a matrix form as follows:

min
x

1
2

yTy + yT
refy (1)

subject to

y = Γx
ymin ≤ y ≤ ymax

xmin ≤ x ≤ xmax
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with

y = ΓP xP + ΓQ xQ (2)

ΓT =
(

ΓT
P ΓT

Q

)
xT =

(
xT

P xT
Q

)
where y, yre f and x are the vectors of the variations, respectively, of the squared amplitude
of the nodal voltages, of the squared nodal voltage reference values, and of the set-points
of the active and reactive powers for the DERs controllers; [ymin, ymax] and [xmin, xmax]
are the admissible ranges of variation of, respectively, y and x. Equation (2) refers to the
linearized DistFlow equations of radially-operated distribution systems presented in [21];
in particular, Γ is the sensitivity matrix that provides the closed-form analytical expressions
of the sensitivity coefficients that linearly relate the variations of the squared nodal voltages
to the variations of the powers injected by all the DERs connected to the grid.

The VOP (1) is a strictly-convex constrained quadratic programming problem provid-
ing the global minimum.

3. Decentralized Voltage Optimization Problem

In the following, VOP (1) is revisited to get its decentralized formulation. The main
steps are summarized in the following:

1. The centralised VOP is rewritten for a network partitioned in VCZs with PNs. At this
step, the centralized VOP cannot be fully distributed into a set of reduced-size sub-
problems since there are terms coupling VCZs in the linearized DistFlow equations.
Moreover, the centralized VOP changes into a convex constrained quadratic program-
ming because of the new objective function that accounts only for the voltages of
the PNs.

2. To overcome the lack of strict convexity, a dual centralized VOP working on the ALF
is formulated and iteratively solved by MM. Although the duality transformation
permits to find the global minimum at each iteration, the presence of quadratic terms
in the ALF makes the VOP still not separable among the VCZs.

3. To formulate and solve the VOP in a decentralized form, the dual centralized VOP
is split into a set of reduced-size separable subproblems to be solved in each VCZ
and the subproblem solutions are driven toward the overall optimum by an iterative
coordination process by applying the APP approach.

3.1. Centralized VOP for Network Partitioned in VCZs

By adopting the network partitioning method in [22], the distribution grid is divided
into Nz VCZs; then, for each VCZ, a PN is identified [30]. The VOP (1) can be split into a
set of reduced-size subproblems written for each VCZ according to

min
xi

i=1,...,Nz

Nz

∑
i=1

1
2

y2
i + yiref yi (3)

subject to

yi = γiixi +
Nz

∑
j=1
j 6=i

γijxj i = 1, ..., Nz

yimin ≤ yi ≤ yimax i = 1, ..., Nz

ximin ≤ xi ≤ ximax i = 1, ..., Nz

where yi and yiref are the variations of, respectively, the voltage and the voltage reference
value at the PNi; xi the vector of the variations of the set-points of the active and reac-
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tive powers controllers of the DERs connected to VCZi; [yimin , yimax ] and [ximin , ximax ] are
the admissible ranges of variation of, respectively, yi and xi; γii and γij are submatrices
of Γ that relate the squared nodal voltage at PNi to the powers injected by DERs con-
nected, respectively, to the same VCZ (i.e., VCZi) and to the other VCZs (i.e., VCZj with
j = 1, . . . , Nz and j 6= i).

Although the objective function in (3) has a form that trivially allows its distribution
among VCZs, equality constraints present terms that cannot be assigned to a single VCZ
since they couple VCZi with the other control zones. To easier management of coupling
constraints, overlapping variables wij coupling VCZi with VCZj are introduced, and the
VOP (3) is rewritten by introducing supplement equality constraints (wij = γijxj) that
ensure the problem consistency and help the VOP to be solved in a distributed manner
that is

min
xi

i=1,...,Nz

Nz

∑
i=1

1
2

y2
i + yiref yi (4)

subject to

yi = γiixi +
Nz

∑
j=1
j 6=i

wij i = 1, ..., Nz

wij = γijxj i, j = 1, ..., Nz, j 6= i

yimin ≤ yi ≤ yimax i = 1, ..., Nz

ximin ≤ xi ≤ ximax i = 1, ..., Nz

Finally, VOP (4) can be rewritten in a matrix form by substituting the linearized model
of the network in the objective function and by introducing the new vectors of controllable
variables zT

i =
(
xT

i wij
)

with i, j = 1, ..., Nz and j 6= i, as

min
zi

i=1,...,Nz

Nz

∑
i=1

1
2 zT

i Aizi+ bT
i zi (5)

subject to

eT
iizi + eT

ijzj = 0 i, j = 1, ..., Nz, j 6= i

yimin ≤ cT
i zi ≤ yimax i = 1, ..., Nz

zimin ≤ Dizi ≤ zimax i = 1, ..., Nz

Expressions of matrices and vectors in (5) are in Appendix A.
VOP (5) cannot be distributed among VCZs because the equality constraints are

not yet separable. Furthermore, with respect to the VOP (1), it is turned into a convex
constrained quadratic programming problem providing local minimum points; this is
due to the objective function that, considering only PNs, remains convex but not in a
strictly sense.

3.2. Method of Multipliers

To overcome the lack of strict convexity, in place of (5), the dual optimization problem
is considered; it works with the ALF associated with the equality constraints and is itera-
tively solved by the MMs [14]. It consists of a two-level iterative method which solves at
each step the following not constrained VOP
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min
zi

i=1,...,Nz

ALF =
Nz

∑
i=1

ALFi(z1, . . . , zNz , λ1 2, . . . , λNz−1 Nz)

where

ALFi =
1
2 zT

i Aizi+ bT
i zi +

Nz

∑
j=1
j 6=i

λij(eT
iizi + eT

ijzj) +
c
2

Nz

∑
j=1
j 6=i

(eT
iizi + eT

ijzj)
2 (6)

subject to

yimin ≤ cT
i zi ≤ yimax i = 1, ..., Nz

zimin ≤ Dizi ≤ zimax i = 1, ..., Nz

to obtain the values of the variable zi that are used in the second level to update the
Lagrangian multipliers λij according to (The symbol ∗ indicates the value assumed in the
previous step.)

λij = λ∗ij + ρ(eT
iizi + eT

ijzj) i, j = 1, ..., Nz, j 6= i (7)

where c is the penalty parameter and ρ is an arbitrary positive parameter. Unfortunately,
due to the presence of the quadratic terms in the ALF, the VOP (6) and (7) still cannot be
distributed among VCZs and the problem cannot be solved per area.

3.3. Auxiliary Problem Principle

The APP [23,26] is used to decompose VOP (6) and (7) into separable subproblems to
be solved in each VCZ and to coordinate the solutions of subproblems toward the solution
of the overall problem.

The basic idea of the APP is to iteratively solve an auxiliary minimization problem,
which is built around an auxiliary function (AF). To this aim, APP minimizes at each step a
new objective function composed of:

- the AF = ∑Nz
i=1 Ki(zi) which is strictly convex and additive with respect to the decom-

position variables;
- the first-order linearization of the ALF = ∑Nz

i=1 LAi(z1, . . . , zNz , λ1 2, . . . , λNz−1 Nz) around
the solution at the previous step; and

- the first-order derivative of AF = ∑Nz
i=1 Ki(zi) around the solution at the previous step.

The new auxiliary minimization problem is formulated according to

min
zi

i=1,...,Nz

Nz

∑
i=1

Ki(zi) +
Nz

∑
i=1
〈〈〈ε(ALFi(z1, . . . , zNz , λ1 2, . . . , λNz−1 Nz ))

′|z∗i ,λ∗ij − (Ki(zi))
′|z∗i , zi〉〉〉 (8)

subject to

yimin ≤ cT
i zi ≤ yimax i = 1, ..., Nz

zimin ≤ Dizi ≤ zimax i = 1, ..., Nz

followed by updating the Lagrange multipliers λij as

λij = λ∗ij + ρ(eT
iizi + eT

ijzj) i, j = 1, ..., Nz, j 6= i, (9)

where ε is a positive parameter and 〈〈〈·, ·〉〉〉 stands for scalar product. The choice of an AF
strictly convex assures the existence and uniqueness of the solution of (8) and (9). Moreover,
the additive properties of AF together with the first-order linearization of ALF (in particular



Appl. Sci. 2021, 11, 4509 8 of 24

of the ALF quadratic terms) permit to split (8) into independent subproblems. Furthermore,
it is easy to prove that such an auxiliary problem converges to a solution which forces the
same first-order conditions of the original VOP (6) and (7). Finally, it is worth noticing that
convergence characteristics of (8) and (9) are strictly related to the choice of the parameters
ε, ρ (together with c, which is present in the expression of the ALFi in (6)) [26].

Choosing an AF

AF =
Nz

∑
i=1

Ki(zi) =
Nz

∑
i=1

1
2 zT

i Kizi (10)

where Ki are suitably-chosen positive-definite matrices, and recalling the form (8)–(9),
the following two-level iterative auxiliary VOP is obtained

min
zi

i=1,...,Nz

Nz

∑
i=1

1
2 zT

i Kizi+ kT
i zi

where

kT
i = ε(z∗i

TAi + bT
i ) + ε

Nz

∑
j=1
j 6=i

{[λ∗ij + c(eT
iiz
∗
i + eT

ijz
∗
j )]e

T
ii + [λ∗ji + c(eT

jjz
∗
j + eT

jiz
∗
i )]e

T
ji} − z∗i

TKi (11)

subject to

yimin ≤ cT
i zi ≤ yimax i = 1, ..., Nz

zimin ≤ Dizi ≤ zimax i = 1, ..., Nz (12)

followed by

λij = λ∗ij + ρ(eT
iizi + eT

ijzj) i, j = 1, ..., Nz, j 6= i (13)

VOP (12)–(13) can be split into Nz subproblems that can be solved in parallel by each
VCZ. In particular, at each iteration, the i-th VCZ solves at the first level the following
constrained quadratic programming problem of small dimension

min
zi

1
2 zT

i Kizi+ kT
i zi (14)

subject to

yimin ≤ cT
i zi ≤ yimax

zimin ≤ Dizi ≤ zimax

which presents a global minimum; then, the values of the variable zi obtained from
the solution of (14) together with solutions of the other VCZ optimization problems
(zj with j = 1, . . . , Nz j 6= i) should be used at the second level to obtain the new values
of the Lagrangian multipliers as

λij = λ∗ij + ρ(eT
iizi + eT

ijzj) j = 1, ..., Nz j 6= i (15)

λji = λ∗ji + ρ(eT
jjzj + eT

jizi) j = 1, ..., Nz j 6= i (16)

Actually, a distributed algorithm, highlighted in Figure 1, implements the fully-
distributed solution of VOP (14)–(16) to obtain the overall solution by exchanging only
scalar variables among PNs of each VCZ. The main steps of such an algorithm are described
in the following:
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Figure 1. Distributed APP algorithm procedure.

i. Initialize the step counter h = 0, together with zi = 0, λij = 0, λji = 0 with
i, j = 1, . . . , Nz and j 6= i; choose ε, c, ρ and fix the tolerance τz;

ii. h = h + 1;
iii. VCZi evaluates kT

i according to (11);
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iv. VCZi solves the minimization problem (14), obtaining the vectors zi(h) ;
v. VCZi evaluates the scalar values eT

iizi(h) and eT
jizi(h) with j = 1, . . . , Nz and j 6= i;

vi. VCZi provides the scalar values eT
jizi(h) to the other VCZs and receives from them

the scalar values eT
ijzj(h);

vii. VCZi calculates the values of λij(h) and λji(h) according to (15) and (16);
viii. VCZi checks if the variations of the elements of zi(h) with respect to the previous

iteration are smaller than τz, and if the variations of the elements λij(h) and λji(h)
with respect to the previous iteration are smaller than τλ; if false, go back to step ii.;
otherwise stop.

4. Case Study

To verify the feasibility and the effectiveness of the proposed VOP, numerical studies
are carried out on the IEEE 123-bus system [31], shown in Figure 2. A 115/4.16 kV
substation supplies a main feeder, branching off into several laterals and sublaterals,
with unbalanced loads, voltage regulators, shunt capacitor banks, and switches. To apply
the proposed approach, the test distribution system is changed into a three-phase balanced
network. In particular, at each node, the unbalanced loads have been replaced by balanced
loads with the same rated three-phase power, modeled as constant shunt impedances;
for each line, the single-phase equivalent pi-model has been adopted, assuming, for its
parameters, the average values of the three-phase model parameters. The total balanced
rated load connected to the network is equal to about 3.49 MW and 1.17 MVAr. Furthermore,
the action of the voltage regulators has been disabled, that is, constant ratios have been
fixed, and the status of the switches has been assumed in the basic configuration.

Figure 2. The IEEE 123-bus system including 15 DERs.

In addition, 15 DERs are connected to the grid at nodes 3, 9, 17, 2, 160, 105, 63, 112,
18, 25, 40, 51, 38, 77, and 87, as shown in Figure 2. In particular, seven DERs are DGs
connected to the grid by inverters with a rectangular capability chart. DGs inject a fixed
active power equal to 200 kW and a reactive power that vary in the range (−100, 100) kVAr,
independently from the value of the active powers; in the absence of any optimization,
DGs inject active power with a power factor equal to 1 that is with null reactive power.
The remaining six DERs are DGs with battery energy storage systems: DGs generate a
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fixed active power equal to 200 kW; the state-of-charge of the storage allows for varying
the active power injected by DER in the range (100, 300) kW. In addition, in this case,
the inverter is equipped with a rectangular capability chart that varies the reactive power
in the range (−150, 150) kVAr; in the absence of any optimization, the injected active power
is equal to 200 kW and no reactive power is injected or absorbed. The admissible range of
variation of the active and reactive powers injected/absorbed by DERs are summarized in
Table 1.

Three different operational cases are considered by varying the amplitude of the nodal
voltage at the HV busbar (slack bus) and the total load connected to the grid:

• Case 1: the voltage amplitude of the HV busbar is fixed at 1.025 p.u.; the loads are
equal to 100% of their rated values;

• Case 2: the voltage amplitude of the HV busbar is fixed at 1.03 p.u.; the loads are equal
to 50% of their rated values;

• Case 3: the voltage amplitude of the HV busbar is fixed at 1.02 p.u.; the loads are equal
to 120% of their rated values.

Table 1. Allowable range of the active and reactive powers injected/absorbed by DERs.

Power DER1 DER2 DER3 DER4 DER5 DER6 DER7 DER8 DER9 DER10 DER11 DER12 DER13 DER14 DER15

Active 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 0.2 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 0.2 ± 0.1 0.2 0.2(MW)

Reactive ±0.15 ±0.1 ±0.15 ±0.15 ±0.15 ±0.1 ±0.1 ±0.15 ±0.1 ±0.15 ±0.15 ±0.1 ±0.15 ±0.1 ±0.1(MVAr)

The linearized DistFlow Equation (2) has been obtained by applying the method
in [21] and assuming the same operating conditions as the ones in Case 1, as far as loads
and slack bus are concerned, but disconnecting all the DERs. The obtained matrix Γ is
the only sensitivity matrix that has been used in all the VOP problems and in all the three
considered cases.

To test the proposed voltage optimization methods, numerical analysis was performed
in MatLab environment through the use of the MatPower package, by a CPU Intel Core
i7-2670QM with 8 GB of RAM.

4.1. Impact of the Linearization on the Centralized VOP

To evaluate the approximations introduced by the linearization of the PF equations,
in this subsection, the results obtained by executing the centralized VOP (1) subject to
the linearized PF equations (referred to as LinearDistFlow VOP) are compared with the
results obtained by a VOP subject to the PF equations (referred in the following to as the
Benchmark VOP).

In the reminder, the performance of the optimization methods is evaluated by a
voltage performance index (VPI) that is calculated as the sum of the squared deviations of
the squared voltages of all the nodes of the MV feeders and subfeeders with respect to the
reference values, fixed at 1.0 p.u. in all the analyzed cases; it is worth noting that the VPI
does not include neither the HV slack bus nor the MV substation busbar.

Table 2 compares the values of the VPI obtained by the LinearDistFlow VOP and
the Benchmark VOP in the three considered cases. From the results reported in Table 2,
it is evident that the VPI values are in the same order of magnitude for the two VOP
methodologies: it is obvious that, in all the three operating conditions, the Benchmark VOP
performs better than the LinearDistFlow VOP. Particularly, in Case 1, the VPI values are only
0.3·10−3 p.u. different one with the other, in Case 2, the distance increases to 0.9·10−3 p.u.,
finally, in Case 3, the performance of the LinearDistFlow VOP is about 3·10−3 p.u. different
from the one of the Benchmark VOP, but the two values are still comparable.
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Table 2. Voltage performance index for Benchmark VOP and LinearDistFlow VOP.

Case Benchmark VOP LinearDistFlow VOP
(10−3 p.u.) (10−3 p.u.)

1 1.9 2.2
2 1.5 2.4
3 2.4 5.6

To further confirm the accuracy of the LinearDistFlow VOP, some statistical parameters
related to the distribution of the voltage amplitudes into the grid have been evaluated
for both Benchmark VOP and LinearDistFlow VOP. Table 3 reports the mean value V,
the standard deviation σ, the maximum value VM, and the minimum value Vm of the
voltage amplitude of all the network nodes, derived by applying benchmark VOP and
LinearDistFlow VOP for the three considered cases. Similarly to the VPI, hereafter, the
statical parameters are evaluated with reference to nodes of the MV feeders and subfeeders,
excluding the HV slack bus and the MV substation busbar. From Table 3, it is apparent
that, for all the three operating conditions, the reported values for the two algorithms are
very close.

Table 3. Statistical parameters of the distribution of the nodal voltage amplitudes.

Case
V (p.u) σ (p.u) VM (p.u) Vm (p.u)

Benchmark LinearDistFlow Benchmark LinearDistFlow Benchmark LinearDistFlow Benchmark LinearDistFlow
VOP VOP VOP VOP VOP VOP VOP VOP

1 1.0001 0.9994 0.0019 0.0020 1.0055 1.0051 0.9957 0.9949
2 1.0001 0.9988 0.0017 0.0018 1.0059 1.0044 0.9971 0.9958
3 1.0001 0.9976 0.0021 0.0023 1.0054 1.0036 0.9946 0.9919

The histograms of the distributions of the network node voltages for the Benchmark
VOP and the LinearDistFlow VOP are reported in Figures 3 and 4, respectively, with reference
to the only Case 3, which is the worst case according to Table 2. Both histograms show bell-
shaped curves; the entire range of values, that goes from 0.99 to 1.01 p.u., is divided into
20 intervals. The peaks of both bell-shape histograms show more or less the same height,
between 30 and 40, which represents the number of voltages falling into the most populated
interval. For both Figures 3 and 4, the largest number of voltages are concentrated in the
range between 0.995 and 1 p.u., slightly closer to 1 p.u. for the Benchmark VOP.

As a final consideration, it is important to underline that, in all the considered cases,
the linearization of the PF equations uses the same matrix Γ, which, as previously explained,
has been obtained in the same operating conditions as Case 1, but in absence of any DER.
It is evident that the larger the difference between the considered case and the operating
conditions in which linearization is performed, the larger the approximation introduced
by the LinearDistFlow VOP; this is the reason why the results in Case 1 are the best and
the ones in Case 3 are the worst. Nevertheless, the reported results give evidence that the
differences between the nodal voltages obtained by the LinearDistFlow VOP with respect to
those obtained by the Benchmark VOP are small and, consequently, the LinearDistFlow VOP
provides a good approximation of the benchmark optimization. Obviously, to reduce such
approximations, it is advisable to evaluate various offline Γ matrices for different operating
conditions of the distribution system; in these applications, the worst condition for the
proposed method has been assumed.
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Figure 3. The histogram of the grid voltage amplitudes in Case 3 for the Benchmark VOP.

Figure 4. The histogram of the grid voltage amplitudes in Case 3 for the LinearDistFlow VOP.

4.2. Impact of the Network Partitioning in the Centralized VOP

The zoning methodology in [22] is applied to obtain a simplified representation
of the distribution network suitable for voltage control. Two partitions of the grid are
performed: the first one considers four VCZs and, the second one, seven VCZs, as shown in
Figures 5 and 6, respectively. They are performed taking into account for the sensitivities
of the nodal voltages to the only reactive power, being in an MV network the reactive part
of the line impedance bigger than its resistive counterpart. Tables 4 and 5 report the PNs
and the DER nodes in the four VCZs and the seven VCZs network partition, respectively.
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Figure 5. The partition of the IEEE 123-bus system in 4VCZs.

Figure 6. The partition of the IEEE 123-bus system in 7VCZs.

Table 4. PNs and DERs nodes in the 4-VCZ partition.

VCZ DER Nodes Pilot Node

1 3, 9, 17 8
2 52, 160, 105, 63, 77, 87 67
3 112 112
4 18, 25, 40, 51, 38 135
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Table 5. PNs and DERs nodes in the 7-VCZ partition.

VCZ DER Nodes Pilot Node

1 3 3
2 9, 17 8
3 52, 160, 105, 63 67
4 112 112
5 18, 25 25
6 40, 51, 38 42
7 77, 87 76

Hereafter, the impact of the different partitioning on the results provided by the
solution of the problem (3) is analyzed.

Firstly, the comparison is carried out by using the VPI values provided by the opti-
mization with four VCZs and seven VCZs; results are reported in Table 6. In Case 1, the
partition in four VCZs provides a VPI value larger than the one obtained by partitioning
the network in seven VCZs; in Case 2, opposite results are obtained; in Case 3, the partition
in four VCZs provides a VPI value three times smaller than that obtained by the partition
in seven VCZs. From the analysis of Table 6, the partition in four VCZs gives results that
are comparable with and in some cases even better than the partition in seven VCZs in
terms of VPI. The above results are also confirmed by the statistical parameters that are
reported in Table 7.

Then, the comparison is carried out by using the VPI values provided by the LinearDis-
tFlow VOP in a network without partitioning and reported in Table 2. Comparing Table 6
with Table 2, it appears that, in both Case 1 and Case 2, the VPI values are almost one order
of magnitude larger than the VPI values calculated by solving the LinearDistFlow VOP; on
the contrary, in Case 3, the VPI value for the partition in four VCZs is similar to the one
obtained by solving the LinearDistFlow VOP. These results give evidence that, since the
objective function adopted for a network partitioned in four VCZs (or in seven VCZs) is
a reduced representation of the voltages of the network, the effect of the optimization in
terms of VPI is strongly dependent of the operating conditions and cannot be predicted
a priori.

Table 6. Voltage performance index for the partitioning in four VCZs and seven VCZs provided by
solving problem (3).

Case # 4 VCZs 7 VCZs
(10−2 p.u.) (10−2 p.u.)

1 2.05 1.16
2 1.02 1.55
3 0.51 1.52

The above results are also confirmed by comparing the statistical parameters for
four VCZs and seven VCZs reported in Table 7 with the ones for the LinearDistFlow VOP
in Table 3. The mean values confirm that, in Case 1 and Case 2, the obtained results for
four VCZs and seven VCZs are worse than the ones provided by the LinearDistFlow VOP,
whereas, in Case 3, while the partitioning in seven VCZs is still the worst, the partitioning
in four VCZ gives a result comparable with the one provided by the LinearDistFlow VOP.
Similar considerations can be done for the maximum and minimum values. Concerning
the standard deviations, it is interesting to highlight that they present the same small order
of magnitude in all the considered cases for the VOP performed in a network clustered in
VCZs and in the network without partitioning. Generally speaking, LinearDistFlow VOP
flattens all the nodal voltages to values that are very close to the reference values; the same
behavior is shown by the VOP in four VCZs and seven VCZs, although around a value of
the nodal voltage slightly lower than 1.0 p.u.
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Table 7. Statistical parameters of the distribution of the nodal voltage amplitudes for the partitioning
in four VCZs and seven VCZs provided by solving problem (3).

Case V (p.u) σ (p.u) VM (p.u) Vm (p.u)
4 VCZs 7 VCZs 4 VCZs 7 VCZs 4 VCZs 7 VCZs 4 VCZs 7 VCZs

1 0.9954 0.9967 0.0043 0.0034 1.0036 1.0038 0.9881 0.9893
2 0.9963 0.9960 0.0025 0.0037 1.0025 1.0034 0.9925 0.9886
3 0.9978 0.9959 0.0022 0.0036 1.0034 1.0037 0.9924 0.9892

For the sake of completeness, as in the previous subsection, with reference only to
Case 3, the histograms of the distribution of the network node voltages for the partitioning
in four VCZs and in seven VCZs are reported in Figures 7 and 8, respectively. Figure 7
shows a bell-shaped histogram with the peak centered in the same voltage interval as in
Figure 4. Figure 8 does not show a markedly bell shape histogram but shows an almost
uniformly distributed shape histogram with a slight peak in the middle of the voltage
range [0.995, 1] p.u.

Figure 7. The histogram of the distribution of the nodal voltage amplitudes for the partitioning in
four VCZs in Case 3.

Figure 8. The histogram of the distribution of the nodal voltage amplitudes for the partitioning in
seven VCZs in Case 3.

Drawing some conclusions, it can be stated that the linear optimizations based on the
partition in four VCZs and in seven VCZs are quite equivalent in terms of VPI. Since the
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practical implementation would require a smaller number of measurements of the nodal
voltages of the PNs in the partition in four VCZs with respect to the partition in seven
VCZs and a reduced data exchange among VCZs, the partition in four VCZs is preferable.
Furthermore, the results in terms of standard deviation show that the VOP polarizes the
voltage profiles around the reference value, guaranteeing in practice that all the nodal
voltages should not exceed the normal operating bounds.

4.3. Decentralized VOP

In this subsection, the performance of the decentralized VOP based on the APP
algorithm, referred to in the following as Decentralized APP, is tested by solving the
problem (14)–(16) for the partitioning in both four and seven VCZs. Table 8 shows the final
values of the objective function obtained by the APP algorithm for the two considered
partitioning and in the three considered cases. For the sake of comparison, Table 8 reports
also the results obtained by the centralized solution of the original problem (3), referred
to as Centralized VCZ-based VOP. From the results, it is apparent that the values of the
objective function obtained by decentralized and centralized algorithms are comparable for
both the network partitions and in all the cases. As expected, these results give evidence
that the Decentralized APP converges to solutions that are equal or slightly worse to the ones
given by Centralized VCZ-based VOP in terms of objective function. However, the optimal
solutions may correspond to different set-points of active and reactive powers of DER
controllers. Consequently, the resulting voltage profiles could be different, as evidenced by
the values assumed by the VPI.

Table 8. Final values of the objective function for Decentralized APP and Centralized VCZ-based VOP
with the partitioning in four and seven VCZs.

Case
Decentralized APP Centralized VCZ-Based VOP

(10−4 p.u) (10−4 p.u)
4 VCZ 7 VCZ 4 VCZ 7 VCZ

1 1.16 1.36 0.84 1.01
2 0.75 0.86 0.75 0.84
3 1.24 1.38 1.16 1.38

To this aim, Table 9 shows the values of the VPI obtained by the Decentralized APP
for four VCZs and seven VCZs in the three considered cases. By comparing Table 9 with
Table 6, it is apparent that the values of VPI for the Decentralized APP are higher or lower
than that for the Centralized VCZ-based VOP.

Table 9. Voltage performance index for the partitioning in four VCZs and seven VCZs provided by
Decentralized APP.

Case # 4 VCZs 7 VCZs
(10−2 p.u.) (10−2 p.u.)

1 1.96 1.41
2 0.77 1.50
3 2.45 1.98

For sake of completeness, Table 10 shows the statistical parameters of the nodal volt-
ages distribution obtained by the Decentralized APP for both the partitions and in the
three operating conditions. In addition, in this case, the values assumed by the stan-
dard deviations are almost equal to the ones obtained by the centralized approach and
always very small. With reference only to Case 3, the histograms of the nodal voltage
distribution calculated by the Decentralized APP for both the partitions are reported in
Figures 9 and 10, respectively.
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Table 10. Statistical parameters of the distribution of the nodal voltage amplitudes for the partitioning
in four VCZs and seven VCZs provided by Decentralized APP.

Case V (p.u.) σ (p.u.) VM (p.u.) Vm (p.u.)
4 VCZs 7 VCZs 4 VCZs 7 VCZs 4 VCZs 7 VCZs 4 VCZs 7 VCZs

1 0.9955 0.9966 0.0042 0.0040 1.0041 1.0048 0.9883 0.9896
2 0.9968 0.9960 0.0021 0.0037 1.0023 1.0033 0.9934 0.9888
3 0.9945 0.9954 0.0041 0.0041 1.0032 1.0038 0.9866 0.9874

Figure 9. The histogram of the distribution of the nodal voltages for the Decentralized APP in Case 3
with the partitioning in four VCZs.

Figure 10. The histogram of the distribution of the nodal voltages for the Decentralized APP in Case 3
with the partitioning in seven VCZs.

In summary, comparing decentralized and centralized solutions, although the ob-
jective functions are very similar, the optimal set-points of the active and reactive power
controllers of DERs are different because the problem (3) is not strictly convex. In practice,
there are infinite combinations of DERs active and reactive powers that give, as solu-
tions, the same objective functions. However, different power injections cause different
voltage profiles, as confirmed by the VPI and statistical parameters of the voltages distri-
bution. Anyway, the amplitudes of the nodal voltages are always polarized around the
reference values.
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In addition to the considerations related to the final solution achieved by the de-
centralized algorithm, it is important to also investigate the convergence characteristics.
In particular, the number of iterations that the Decentralized APP needs to reach convergence
is different for the two network partitions. Convergence is achieved when the coupling
error is smaller than a tolerance value, which is fixed to 2.5·10−5 p.u.. The coupling error
is defined as the infinity norm of the vector composed of all the errors on the equalities
in (5), which are calculated by each VCZ to update the Lagrangian multipliers according
to (15)–(16). Obviously, the convergence rate also depends on the values of the parameters
ε , c and ρ in the decentralized APP algorithm. In this analysis, the set was equal to:

- 4 VCZs partition: ε = 0.1, c = 0.15 and ρ = 0.29;
- 7 VCZs partition: ε = 0.075, c = 0.15 and ρ = 0.29.

Figures 11 and 12 show the evolutions of, respectively, the objective function and the
coupling error, for the partitioning in four VCZs in the three cases. It is evident that in all
the cases the number of iterations does not exceed the value of 400. The worst performance
is in Case 3, where the number of iterations to convergence is almost equal to 400.

Figure 11. Objective function of the Decentralized APP for the partition in four VCZs: (a) Case 1, (b)
Case 2, (c) Case 3.

Figure 12. Coupling error of the Decentralized APP for the partition in four VCZs: (a) Case 1, (b) Case
2, (c) Case 3.

Figures 13 and 14 show the evolutions of the same quantities for the partitioning in
seven VCZs. In comparison with the partitioning in four VCZs, it is evident that, for a
network partitioned in seven VCZs, the Decentralized APP nearly doubles the number of
iterations to reach convergence, as expected from the theory. It is important to notice that
the evolution of objective function always presents a rapid decrease in the first iterations.
Consequently, if the algorithm stops after few tens of iterations, the value of the objective
function is already close to the optimal solution. In addition, the evolution of the coupling
error is also strongly decreasing after the first iterations, reaching in few tens of iterations
the order of magnitude of 10−3, which is already acceptable being expressed in voltage p.u.
These considerations are important from a practical perspective point of view because they
allow for relaxing the communication requirements of the decentralized solution.
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Figure 13. Objective function of the Decentralized APP for the partition in 7 VCZs: (a) Case 1, (b) Case
2, (c) Case 3.

Figure 14. Coupling error of the Decentralized APP for the partition in seven VCZs: (a) Case 1, (b) Case
2, (c) Case 3.

4.4. Voltage Profiles

In the previous sections, the analysis has focused on each step of the proposed method.
In this final section, the performance of the Decentralized APP solution is analyzed in
absolute terms. To this aim, the voltage profiles of the feeders and subfeeders are reported
and compared with the ones obtained by the Benchmark VOP and the one obtained without
any optimization, referred to as no VOP that is obtained by solving the DistFlow problem
with fixed active powers and null reactive powers injected by DERs. Figures 15–17 show
the network voltage profiles respectively for Case 1, Case 2, and Case 3, also including
the HV busbar (slack node) and the MV substation busbar. It is evident how the profiles
obtained by the Decentralized APP are closer to the Benchmark VOP ones than the ones
obtained by no VOP, in all the considered cases. These results show that, although the
proposed algorithm does not guarantee the same profiles as the reference centralized VOP,
it represents a significant improvement with respect to the absence of optimization. At the
same time, it is worth mentioning that, compared with the reference centralized VOP,
the proposed Decentralized APP requires a very limited number of voltage measurements
and a significant reduction of communication requirements.

5. Conclusions

A distributed algorithm based on the auxiliary problem principle (APP) has been
proposed in this paper to solve the voltage optimization problem (VOP) in distribution
networks with distributed energy resources (DERs) according to a decentralized approach.
To this aim, the distribution network is decomposed in a reduced number of voltage
control zones (VCZs) with pilot nodes (PNs) and a new linearized DistFlow method
for radially-operated distribution networks is adopted to make the voltage optimization
problem convex. The reformulation of the VOP that accounts only for PNs, allows for
acquiring voltage measurements only at the PNs and does not require a system state-
estimation. The main advantage of the proposed distributed algorithm is that it achieves
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the global optimal solution, although, of an approximate VOP, by iteratively solving strictly-
positive definite quadratic subproblems of small dimension in each VCZ and exchanging
only scalar values among VCZs. The proposed algorithm has been tested on the IEEE
123-bus system. The conducted analysis has been demonstrated that the adoption of
the linearization technique assures high accuracy of the results with respect to classical
optimization adopting nonlinear power flow equations. Furthermore, the optimization of
the nodal voltages at the only PNs has given results comparable with the ones provided
by a fully centralized approach. In particular, it has been shown that, even though not
all the network voltages are optimized, the voltage amplitudes are polarized around the
reference values, limiting the possibility that some nodal voltages may exceed normal
operating bounds. Finally, the convergence characteristics of the distributed algorithm
have been analyzed evidencing that the number of iterations to convergence increases with
the number of the network partitions. Numerical results have shown that the choice of four
VCZs is a good trade-off between accuracy and requirements for a practical implementation,
keeping in mind that the best choice is strongly system–dependent. Future research will
compare from both a theoretical and numerical point view the APP with other distributed
techniques. The application of the proposed method to unbalanced distribution systems
will also be investigated, by adopting an adequate three-phase linear model of the network.

Figure 15. The network voltage profile for the no VOP, Benchmark VOP and Decentralized APP in
Case 1.
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Figure 16. The network voltage profile for the no VOP, Benchmark VOP, and Decentralized APP in
Case 2.

Figure 17. The network voltage profile for the no VOP, Benchmark VOP, and Decentralized APP in
Case 3.

Author Contributions: Conceptualization, A.R.D.F. and M.R.; methodology, A.R.D.F. and M.D.S.;
software, M.D.S. and C.R.; validation, C.R. and M.D.S.; formal analysis, A.R.D.F.; investigation,
A.R.D.F., C.R. and M.D.S.; data curation, M.D.S.; writing—original draft preparation, C.R. and M.D.S.;
writing—review and editing, A.R.D.F., M.D.S. and M.R.; visualization, M.D.S.; supervision, A.R.D.F.;
project administration, M.R.; funding acquisition, M.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Italian Ministry of University and Research by the special
grant “Dipartimenti di eccellenza”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2021, 11, 4509 23 of 24

Data Availability Statement: Data are contained within the article and in referenced papers.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

Abbreviations
The following abbreviations are used in this manuscript:

ALF Augmented Lagrangian Function
APP Auxiliary Problem Principle
DER Distributed Energy Resources
DG Distributed Generator
DMS Distributed Management System
MMs Method of Multipliers
PN Pilot Node
VCZ Voltage Control Zone
VOP Voltage Optimization Problem

Appendix A

For i, j = 1, . . . , Nz with j 6= i

Ai =

(
γT

iiγii γT
ii1

T
Nz

1Nz γii 1Nz 1T
Nz

)
bT

i = (−yiref − cT
i ) cT

i = (γii 1T
Nz
)

eT
ii = (0T

xi
eT

Nz
) eT

ij = (−γij 0T
Nz
)

Di = diag(1T
xi

1T
Nz
) zT

imin
= (xT

imin
-∞T

Nz
) zT

imax
= (xT

imax
+∞T

Nz
)

where 0Nz and 1Nz are two vectors of, respectively, zeros and ones with dimension (Nz− 1);
0xi and 1xi are two vectors of, respectively, zeros and ones with dim(xi); -∞Nz and +∞Nz

are two vectors of, respectively, −∞ and +∞ with dimension (Nz − 1); eNz is a (Nz − 1)
vector whose components are defined according to
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