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Abstract: This article describes the dynamics of a manipulator with two degrees of freedom, while the
dynamic model of the manipulator’s arm is derived using Lagrangian formalism, which considers
the difference between the kinetic and potential energy of the system. The compiled dynamic model
was implemented in Matlab, taking into account the physical parameters of the manipulator and
friction term. Physical parameters were exported from the 3D CAD model. A scheme (model) was
compiled in the Simulink, which was used for the subsequent validation process. The outputs of the
validations were compared with measured data of joint angles from the system (expected condition)
obtained by using gravity tests. For obtaining better results were parameters of the model optimizing
by using the Trust Region Algorithm for Nonlinear Least Squares optimization method. Therefore,
the aim of the research described in the article is the comparison of the model with the parameters
that come from CAD and its improvement by estimating the parameters based on gravitational
measurements. The model with estimated parameters achieved an improvement in the results of the
Normal Root Mean Square Error compared to the model with CAD parameters. For link 1 was an
improvement from 28.49% to 67.93% depending on the initial joint angle, and for link 2, from 63.84%
to 66.46%.

Keywords: planar robotic arm; pneumatic artificial muscle (PAM); gravity test; dynamic model;
validation; optimization; trust region algorithm

1. Introduction and Related Works

Robotics has been an area of research that has attracted the attention of scientists
around the world for many decades, but in recent years has enjoyed enormous interest,
especially in the safe interaction between humans and robots [1]. The robotic system may
be assigned tasks that a person cannot perform in some respects, e.g., if the operations are
physically demanding for a person, or if the activity requires high accuracy of movement,
or last but not least, the operating and working conditions are not suitable for human
work in the vicinity of such a mechanism. All these facts give researchers from different
fields many actuations to progress in the research and development of robots and manipu-
lators, whether in the process of designing [2,3], production or the actual application of
robots [4–7]. Ref. [4] describes the application of robots, and thus, in particular, the topic
of self-employed robots so that its interaction is safe in a dynamic environment. In [5],
are described, several types of robots, robot drives, sensors, control methods, as well as
industrial applications are described in several sections. Ref. [6], using Lab Activities, helps
to understand the parallel between the theory and the application of industrial robotics.
Advances in robotics are reflected in every single application area of robotics. This is the
case with rehabilitation robotics too, which is described in [7]. Current advances in robotics
(with a focus on explaining new concepts) are also described in more detail in [8].
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Behind the effective movement of the robot or manipulator are many aspects that
have to be mastered in motion control (detailed characteristics of manipulator properties,
complex process of motion simulation, correct derivation of kinematic and dynamic models,
or last but not least, correct identification of control algorithm). Therefore, the manipulator
control will not be correct until the system described in the form of a model is correct. In
the publications [9–11], which are manuals in the field of robotics, it is in some chapters to
the introduction of kinetic and dynamic methods of modeling such systems. For example,
in [9], Chapter 3 is devoted to Inverse Kinematics, and Chapters 4 and 5 are oriented to
Newton–Euler Dynamics and Lagrangian Dynamics. Ref. [10], in the introductory parts,
describes the basic topics of robotics, and then, among other things, one part is devoted to
various areas of application of robotics. Another more comprehensive publication is [11],
which explains the constructions, drives, principles of operation of robots and applications
of robots, so that the work helps not only researchers but also potential enthusiasts and
students of robotics. Publication [12] summarizes the most basic information on the
design, but also the control of mechatronic systems, focusing on the needs of engineers and
designers who develop and apply their machines to the industrial environment. The part
of the work is devoted to robotics, including the dynamic modeling of systems.

Modeling of kinematics and dynamics of manipulators plays an important role in
the control accuracy of these devices. For example, in the publication [13], the kinematics
and dynamics of the Hyundai HS165 robot are described, which is one of the industrial
robots used for spot welding. A large part of the article is devoted to the modeling of kine-
matics and dynamics, where the load capacity of the manipulator is monitored. Another
article [14], in turn, describes a mathematical model of a mobile manipulation robot, where
a kinematic model is used for the draft regulation, and a dynamic model is used to monitor
(compensate for errors) the speed of the robot. Additionally, the publication [15] describes
dynamic modeling, but for a manipulator, which is designed for underwater work and is
driven by an electric motor. The manipulator has heterogeneous arms, while each joint of
the arm behaves differently within the kinematics. By identifying the minimum number
of parameters, the model is experimentally validated on an underwater hybrid remote-
controlled vehicle Ifremer Ariane. In [16] is described the dynamic characteristics of the
arm of a manipulator that is driven by pneumatic artificial muscles. In addition to the
dynamics of the manipulator, the article also deals with the dynamics of the drive. It is
validated the model using measured data from a real device. The created complex model
of system dynamics is to be used for control.

Dynamic modeling is generally used to describe the basic relationship between two
parameters of the system, namely between force and motion. The dynamic model of the
system can be derived within the dynamic modeling based on two basic principles, which
are described in the publication [17]. The first is the Euler–Lagrange formulation. This
method assesses the system as a whole based on the total kinetic and potential energy (or
the difference between these energies). On the contrary, the Newton–Euler formulation
describes each member of the system separately. It is necessary to take into account
when choosing a method, e.g., number of joints in the manipulator (number of degrees of
freedom), location of joints and other mechanical parts, and others. In [18], the dynamic
modeling of a robotic manipulator is described using the Euler–Lagrange formulation.
The robot has four degrees of freedom, and the location of the base is oriented to the
ground/floor (horizontal mounting upwards). In addition to analyzing the properties of
this model, they suggest using a PID controller to control the position of the manipulator.
In [19], a combination of the Lagrange equation and the Morison formula is used to
derive a dynamic model of a manipulator with 3 DOF, which can be used in a hydrostatic
environment, while during modeling, they had to take into, for example, other forces acting
on the joints when working with the manipulator underwater. The next publication [20]
used the Euler–Lagrange method to derive dynamic equations for the prototypes of a
four-legged robot—Mini-Bot—where they tracked the position and angular velocity of
each leg in the Cartesian coordinate system. They used the Matlab-Mupad software tool as
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a tool for deriving dynamic equations. The Newton–Euler formulation was used in the
publication [21] to derive object equations, while a recursive Gibbs–Appell formulation
was used to obtain the dynamic equations of a flexible, cooperative manipulator. The
manipulator consists of two arms, which have two flexible links. Two limitations had to be
taken into account in the simulations, namely dynamic and kinematic limitations resulting
from the placement of the object on a non-holonomic mobile platform. In the article [22],
the research of the derivation of a dynamic model using a Newton–Euler formulation for a
rigid manipulator is described, which consists of two links.

Some papers also present new methods in their publications that can be used for the
dynamic modeling of manipulators. For example, [23] proposes a new method for derivate
a dynamic model of a manipulator with 6 DOF. The hysteresis effect of friction in the joints
is described using a centrosymmetric static friction model. The dynamic parameters of
the six joints were identified using a hybrid whale optimization algorithm and a genetic
algorithm. One of the most recent publications [24], contains another new approach to
deriving equations of motion, called Pseudo-Symbolic Dynamic Modeling. It is a numerical
algorithm whose task is to create functions that form the basis for the inverse dynamics of
the manipulator. The result is simplified dynamic models, while this algorithm has been
implemented in Matlab and can be applied to manipulators up to 7 degrees of freedom
of movement.

To achieve better results of the modeling, models can be optimized using numerical
iteration methods, for example, algorithms as, e.g., the Levenberg–Marquardt method
or the Trust Region Algorithm. In [25], the Levenberg–Marquardt method for the uncon-
strained optimization problem is studied, whereas the method of convergence technique
(using line search) is proposed. In one of the publication’s chapters [26], the Levenberg–
Marquardt method is used to determine the minimum volume of the longitudinal cooling
fin. The Trust Region Algorithm is also used to solve nonlinear problems. At present,
its popularity is higher than with the previously mentioned method. Many researchers
describe algorithms that are derived from the Trust Region Algorithm. The aim is to
increase its reliability and convergence properties. For example, in [27], two trust-region
algorithms are proposed that examine trust outside the specified area. In [28] is described
the application of the algorithm to the online estimation of tire/road friction parameters
in real-time. In addition, a new LuGre model-based nonlinear least-squares parameter
estimation algorithm is presented in this work.

The aim of the research described in the article is to use an optimization method to
estimate parameters of the model (improve the results of validation) and the comparison
of the model with the parameters that come from CAD and its improvement by estimating
the parameters based on gravitational measurements. The article describes the dynamics of
a manipulator with two degrees of freedom, while the dynamic model of the manipulator’s
arm is derived using Lagrangian formalism. The compiled model was implemented in
Matlab, taking into account the physical parameters of the manipulator. A scheme (model)
was compiled in the Simulink, which was used for the subsequent validation process. The
article is divided some parts, where the introduction is followed by the dynamic model of
the kinematic structure of a planar arm. Next follows the characteristics of the experimental
manipulator. Data measured from the system using gravity test are described in chapter
Measured Data. A simulation model was developed for the validation process, and the
results of the validation with CAD parameters are described in the fifth chapter. To achieve
better results were estimated the parameters of the model. The sixth chapter described the
optimization algorithm used to estimate parameters of the model (Trust Region Algorithm
for Nonlinear Least Squares), and in the next chapter are summarized results of validation
with estimated parameters. The last part consists of a discussion, in which the results of
validation and estimation of parameters, based on statistical indicators MAE and NRMSE.
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2. Dynamic Model of the System

The experimental system represents one of the most basic kinematic structures
(a planar arm with two rotating joints moving in the x-y plane). The schematic diagram
of the kinematic structure of the manipulator shown in Figure 1 serves to show the basic
elements, their location within the whole system, but also the basic parameters. Two rigid
arms, lengths l1 and l2, have a mass of m1 and m2. The distance from the axis of rotation of
the joint to the center of gravity of the arm is denoted as c1 and c2. I1 and I2 represent the
moments of inertia of the bodies (arms) concerning an axis that passes through the center
of gravity of the body and is parallel to the horizontal axis x. The deflection of the arm from
the zero position (the angle of rotation of the joint is not equal to 0◦) is indicated by the
angles ϕ1, ϕ2, which represent the degrees of freedom of the manipulator. The deflection
of the arm in the positive direction from the vertical y-axis is expressed by the angle of
rotation of the joint ϕ1. The angle ϕ2 indicates the angle of rotation of the second joint, but
concerning the axis of the first deflected link.
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Lagrange’s equations were used to derivate a dynamic model of the described system,
which has two degrees of freedom [29]. The general formulation for a robot with 2 degrees
of freedom is given in Equation (1), where L is Lagrangian, ϕi is joint positions, derivation
of the joint position is joint velocities, and τi is force term.

d
dt

[
∂L
∂

.
ϕi

]
− ∂L

∂ϕi
= τi i = 1, 2 (1)

The Lagrangian is given by the difference of kinetic and potential energy, and therefore
Equation (2) applies to its determination. Member Ek (ϕ,

.
ϕ) expresses the kinetic energy of

the manipulator and is formed by the sum of individual kinetic energies of members 1 and



Appl. Sci. 2021, 11, 4490 5 of 28

2 (Ek1 and Ek2). Member Ep (ϕ) characterizes the energy of the manipulator concerning its
position and is given by the sum of individual potential energies of arms 1 and 2 (Ep1 and Ep2).

L
(

ϕ,
.
ϕ
)
= Ek

(
ϕ,

.
ϕ
)
− Ep(ϕ) (2)

Determination Lagrange’s Equations

By calculating the Lagrangian and applying Equation (1), two nonlinear differential
equations are obtained, which represent the equations of the manipulator dynamics. For
link 1, the force component τ1 is determined in the final form:

τ1 =
[
m1·c1

2 + m2·c2
2 + m2·l12 + 2m2·c2·l1· cos ϕ2 + I1 + I2

]
· ..
ϕ1

+
[
m2·c2

2 + m2·c2·l1· cos ϕ2 + I2
]
· ..
ϕ2 − 2m2·c2·l1· sin ϕ2·

.
ϕ1·

.
ϕ2

−m2·c2·l1· sin ϕ2·
.

ϕ2
2
+ m2·g·c2· sin(ϕ1 + ϕ2)

+[m1·c1 + m2·l1]·g· sin(ϕ1)

(3)

and for link 2, the force component τ2 is defined:

τ2 =
[
m2·c2

2 + m2·c2·l1· cos ϕ2 + I2
]
· ..
ϕ1 +

[
m2·c2

2 + I2
]
· ..
ϕ2

+m2·c2·l1· sin ϕ2·
.

ϕ1
2
+ m2·g·c2· sin(ϕ1 + ϕ2)

(4)

The Lagrangian dynamic model expressed by Equations (3) and (4) can be written
in a compact form, and when extended by the friction component F then has the form of
Equation (5).

M(ϕ)
..
ϕ + C

(
ϕ,

.
ϕ
) .

ϕ + G(ϕ) + F
( .

ϕ
)
= τ (5)

The friction component F can be defined by Equation (6), where ω represents the
angular velocity in [rad/s]; Tc is the Coulomb friction magnitude is given in [N·m]; the
Viscous friction coefficient β has given in units [N·m·s/rad]. This whole expression on the
right side of the equation is also called Coulomb and Viscous friction [30].

F = sgn(ω)·Tc + β·ω (6)

3. Experimental System—Planar Robotic Arm

The object of the research was a planar robotic arm of the manipulator, which is driven
by an unconventional type of actuators (pneumatic artificial muscles) and has two degrees
of freedom. The manipulator is shown in Figure 2. The construction of the manipulator
consists of metal profiles, which ensure the stability of the manipulator and the attachment
of the upper arm of the manipulator to the upper base of the structure. A load weighing
3.34 kg is attached to the other arm of the manipulator. The type of pneumatic drive
was chosen for the manipulator drive-fluid muscles from the manufacturer FESTO. If
these muscles are pressurized, their activation occurs, as a muscle contraction, which
causes the translational tensile force of the muscle. However, since the muscles within the
manipulator are antagonistically involved, and also the chain-sprocket and joint subsystems
are present within the system, the resulting movement is rotational (the subsystems ensure
the transmission of torque). During the research, the angle of rotation of the joint was
monitored as an output parameter. An incremental sensor was installed in the manipulator
to be able to read this parameter. To achieve the required outputs with the manipulator,
the pressure in the muscles must be regulated—electronic pressure regulators (one for
each muscle) are used for this. In addition to the possibility of pressure coordination, the
regulators contain built-in pressure sensors. An AMD Athlon X2 computer with a 5 GB
RAM processor was used as a control unit to control the manipulator. The software support
of the stand consisted of the use of the Matlab and Matlab Simulink programs, while the
control signals were operated with a Humusoft MF624 card.
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Table 1 contains an overview of the main components used in the experimental system.
In addition to the name of the component, its basic parameters are also given. A total of
4 fluid muscles of the same size and diameter were used. Each muscle had one electronic
pressure regulator (a total of four were used). An incremental sensor was used to read the
output variable. The mechanical parts of the stand (except the structure) consist of two
arms, two joints, two chains and two sprockets with a diameter of 0.07 m.

Table 1. The list of main components used in experimental system.

Component Parameter Name Value Component Parameter Name Value

Fluid muscle
FESTO MAS-20-
250N-AA-MC-K

Diameter 0.02 m
Incremental

encoder
KUBLER 3610

Power supply
Max. resolution

5–30 V DC
2500 pulse/rev.

Length 0.25 m
Max. muscle force 1200 N

Max. working pressure 6 bar

Electronic pressure
regulator MATRIX

EPR50

Input signal 4–20 mA

Compressor
FIAC LEONARDO

Max. pressure
Flow

Power

8 bar
105 L/min

750 W

Input pressure 1–8 bar
Max. flow 60 L/min

Power supply 24 V DC
Output pressure 0–7 bar

Response 60–100 ms
Reaction time less than 5 ms
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4. Measured Data

Measurements were performed by using gravity experimental tests, the task of which
was to obtain the waveforms of the output monitored parameter—the joint angle of the
manipulator’s arm. The first measurement started at a joint rotation angle of 10◦, i.e., the
arm was moved from the zero position by 10◦. Then, it was released, and the values of the
joint rotation angle were recorded by incremental sensors until the moment when the arm
stopped. Thus, measurements were subsequently performed for the joint angle 20◦, 30◦

and 40◦ too. The total number of measurements for one initial angle was 20, with the tests
being performed in both directions. During the processing, all waveforms were converted
to one side based on a simplified assumption of symmetry of the arm dynamics. The tests
were performed independently for link 1 and link 2. The total measurement time was
different for each initial joint angle, but the sampling was the same at 0.005 s.

4.1. Measured Data—Link 1

Figure 3 shows 4 boxplots (when viewed from left to right for an initial joint angle of
10◦–40◦), which show how the initial values of the joint angle have changed in 4 different
measurement cases. Each boxplot was processed based on the measured initial joint angles
in 20 measurements. It can be seen from the graphs that the mean of the 20 measured
initial values (red line) approaches the required input at most in the case of an angle of 20◦

(the second graph from the left with mean value 20.016◦), where it is not possible to see
the 25th and 75th percentiles (blue rectangle) is present. Only one different value is also a
remote value of 19.872◦ (shown in the second graph on the left by a red cross). It is possible
also to observe a remote measured value of 40.464◦ in the fourth graph from the left when
the initial angle was set to the reference value of 40◦. The largest difference between the
minimum and maximum set input value (black horizontal line) can be observed for an
initial joint angle of 10◦ (first graph from the left).
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From the 20 measured time courses of the joint angle, where the initial joint angle is
10◦, the angles were set for individual measurements in the interval <9.216◦; 10.08◦>. The
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maximum value of the interval represents the statistic parameter Mode. Figure 4 represents
the mean response (red curve) and standard deviation (the grey area) from measured data.
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The interval of the initial angles of rotation of the joint with a reference value of 20◦ was
<19.872◦; 20.016◦>. Such a small range was caused by the fact that out of 20 measurements,
the value 20.016◦ was set 19 times. Waveforms of standard deviation and mean response of
data are shown in Figure 5.
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Figure 5. The mean response and standard deviation for the joint angle 20◦—link 1.

Figure 6 shows the waveform of mean response at a joint angle of 30◦ for link 1, where
the initial values of the joint angle were set in the range <29.808◦; 30.24◦>. More than half
of the measurements started from 30.096◦. Figure 6 shows a more pronounced standard
deviation also (compared to the deviation for angles of 10 ◦ and 20 ◦).
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The last group within link 1 is closed by the curve mean response and standard
deviation if the initial angle was 40◦, as shown in Figure 7 (respectively, in reality, the initial
angles were set in the interval <39.888◦; 40.464◦> during the measurements). Half of the
measurements were started at a joint rotation angle of 40.032◦.
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4.2. Measured Data—Link 2

Figure 8 shows four boxplots for link 2 (when viewed from left to right for an initial
joint angle of 10◦ to 40◦). In these graphs, in comparison with the graphs for link 1, it can
be seen that the minimum and maximum values of the set initial angles are much further
apart, which results in a more significant shift of the mean value from the desired initial
angle (especially for the angle −40◦, fourth graph from the left). The remote value was
measured only for an angle of 20◦ (red crosses, second graph from the left), two times
(−17.28◦ and −14.832◦).
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While for link 1, the initial angles were set in the range of up to 1◦, the setting of the
initial joint angle for the measurements of link 2 was more difficult in terms of constraints
in the construction of the system. Figure 9 graphically presents the mean response (red
curve) and standard deviation (grey area) when the initial angle was set to −10◦. The total
interval of the initial values of the angle of rotation was <−7.92◦; −10.08◦>, the Mode from
the twenty initially set angles was −8.928◦.
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Figure 9. The mean response and standard deviation for the joint angle 10◦—link 2.

As the joint angle for link 2 increases, the range of the intervals of the initial values
of the joint angle also increases (it is also visible in the area of the standard deviation
parameter in Figure 10). The interval for the initial value of the joint rotation angle −20◦ is
<−14.832◦; −21.888◦>, where the difference between the minimum and maximum value of
the interval already exceeds 7◦. Nevertheless, the value of the Mode parameter (−20.736◦)
is close to the reference value.
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Figure 10. The mean response and standard deviation for the joint angle 20◦—link 2.

The interval for the reference value −30◦ for link 2 was <−23.904◦; −31.248◦>, where
from the range of initial values, it is possible to monitor a more significant value of the
parameter Mode (−24.048◦) in comparison with the reference value. The shift of the
beginning of the mean response curve (Figure 11) and the standard deviation area itself is
caused by one of the measurements when the initially set value was −23.904 ◦.
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The last measured data was for the initial joint angle was −40◦. The total interval of
the initial values of the joint angle was <−32.976◦; −42.192◦>, the Mode of these twenty
values was −38.736◦. In Figure 12, it is possible to see the fact that the variance in the mea-
surements is the most expressive, which of course, was reflected in the standard deviation.
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Gravity tests showed that within link 1, the time course of mean response of the joint
angle was more uniform with gradual stabilization to the value of the zero joint angle. For
link 2, it is clear from the graphic waveforms that the course is different compared to link 1.
A more pronounced stabilization for link 2 for each initial joint angle begins only after a
certain amplitude has been exceeded. Additionally, in the case of graphical dependencies,
link 2 can see more significant friction, which can affect the validation process. Further,
from the sample mean responses and standard deviations for link 1 and link 2, it can
be presented that for initial joint angles of 10◦ and 20◦, the standard deviation range is
narrower than for 30◦ and 40◦ for both axes, which means that at higher initial joint angles,
the deviation from the mean response is more pronounced. This could be caused by the
stronger manifestation of unmodeled effects, such as additional oscillations of the structure,
which was not tightly fastened to the floor (itself slightly uneven). In addition, the larger
dispersion of the initial angles had an impact on the wider standard deviation band for link
2 compared to link 1. At the same time, it can be seen from the mean response that the arm
stabilization was not completed at 0◦ in any case due to the effect of friction being more
pronounced for this axis. The most visible deviation is for a joint rotation of 20◦ and 30◦ for
link 1 (Figures 5 and 6). After the phase of implementation of gravity tests and analysis of
measured data, the stage of validation in the Matlab and Simulink followed.

In research were used only experiments (not simulation) obtained through gravity
tests as a validating agent. However, in the first case, are used parameters values that
could be obtained from CAD, and thus could directly be used for simulation without
the need for experiments (nevertheless, even in this case, this was validated using the
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measurements—Chapter 5). In the second case, these parameter values were used as initial
values for parameter optimization to obtain an improved model that includes the effects
not incorporated in the model with CAD parameters—Chapter 7 (such as fluidic muscles,
chains, etc.).

5. Validation

Based on the dynamic model presented in the section Dynamic Model of The System,
a simulation scheme in the Simulink was created for the validation process. The basic phys-
ical parameters of the system (mass, length, a moment of inertia and distance from the axis
of rotation of the joint to the center of gravity for link 1 and link 2) were exported from the
CAD software, which was used to make a 3D model of the system. The coefficients viscous
friction coefficient and Coulomb friction magnitude were determined experimentally. An
overview of these parameters (with parameter designation, value and unit) is summarized
in Table 2.

Table 2. The list of input parameters of the Simulink model.

Notation Description Value and Unit

m1 Mass—link 1 5.914 kg
m2 Mass—link 2 3.437 kg
l1 Length—link 1 0.615 m
c1 Distance to the center of mass—link 1 0.293 m
c2 Distance to the center of mass—link 2 0.19 m
I1 Moment of inertia—link 1 0.357 kg·m2

I2 Moment of inertia—link 2 0.013 kg·m2

fc1 Viscous friction coefficient—link 1 0.35 N·m·s·rad−1

fc2 Viscous friction coefficient—link 2 0.35 N·m·s·rad−1

fd1 Coulomb friction magnitude—link 1 0.35 N·m
fd2 Coulomb friction magnitude—link 2 0.35 N·m

The validation outputs were evaluated based on the MAE (Mean Absolute Error) and
NRMSE (Normal Root Mean Square Error) statistical indicators. The indicators are used to
compare the output of the model with the outputs of the system. The MAE indicator by
a numerical value represents the error that occurred during the validation compared to
the measured data. The general mathematical formulation of MAE is given in Equation
(7), where yj represents the output of the system on the k-th sample and ӯj represents
the output of the model on the k-th sample. The NRMSE, unlike the MAE, compares
the degree of agreement of the simulated output with the measured data (Equation (8)).
The desired value is for NRMSE = 100% when the model output corresponds 100% to the
system output.

MAE =
1
n

n

∑
j=1

∣∣yj − ŷj
∣∣ (7)

Fgo f =

1−

√
∑n

j=1
[
yj − ŷj

]2√
∑n

j=1

[
yj − 1

n ∑n
j=1 yj

]2

× 100% (8)

5.1. Results of Validation—Link 1

The validation results based on the selected MAE and NRMSE criteria for link 1 are
summarized in Table 3. The model output for link 1 achieved the best result based on both
statistical indicators at an initial joint angle of 10◦ (MAE = 1.0932 and NRMSE = 35.47%).
However, even with the best model, the results represent that the agreement of the model
output with the measured data is low and insufficient.
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Table 3. Results of validation for link 1.

Angle of Rotation MAE NRMSE

10◦ 1.0932 35.47%
20◦ 2.9180 20.29%
30◦ 3.2550 34.37%
40◦ 6.1717 16.69%

Figures 13–16 show the model outputs for the joint 10◦–40◦ for link 1. It can be seen
from the waveforms that the model outputs (blue solid line) are largely unable to simulate
an expected output represent by mean responses (red dashed line) at the specified input
parameters. The error (black dotted line) for a joint angle of 10◦ has a decreasing tendency
with a gradual approach to zero (Figure 13). The error waveforms for the joint angles
20–40◦ (Figures 14–16) are initially smaller but then increase over time, and at the moment
when the mean response and thus the output model approaches zero, the value of the error
is minimized.
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5.2. Results of Validation—Link 2

From the analysis of the validation results for link 2 (Table 4) based on the above
indicators, it is clear that the values of the indicators achieve even worse results than in
the case of link 1 (this may be due to oscillations that originate from the interconnection of
individual parts of the system for link 2 as for link 1). The highest value of the indicator
NRMSE = 18.14% was achieved for the model when the input joint angle was 30◦, but MAE
achieved the best result at the initial joint angle of 10◦ (MAE = 0.5655).

Table 4. Results of validation for link 2.

Angle of Rotation MAE NRMSE

10◦ 0.5655 14.94%
20◦ 1.1078 16.36%
30◦ 1.7524 18.14%
40◦ 2.8270 16.88%

Since the course of the measured data for link 2 has a different character compared to
the courses of link 1, and at the same time, a larger oscillation is present, these facts are also
reflected in the actual outputs of the model. In Figures 17–20, where the model outputs of
validation for the joint angle 10–40◦ for link 2 are presented, it is possible to see to what
extent over time the model output (blue solid line) was able to approach an average of the
measured values (red dashed line). Since the output of the model moves many times close
to the zero value of the joint angle, in all cases, the shape of the error (black dotted line)
is similar to the course of the mean response. Similarly, for both link 1 and link 2, at the
moment when the mean response and thus also the output model approaches zero, the
error value is minimized.
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Based on the insufficient results obtained in the validation phase and presented
either in the form of MAE and NRMSE criteria parameters or by time dependences of the
model outputs alone, compared to the average of measured values and the error between
model output and real setpoint, was as next step selected estimation of model parameters.
Parameter estimation is an efficient tool that uses mathematical models to accurately
describe the behavior of systems. This phase is described in the following two sections.

6. Parameter Estimation of 2-DOF Planar Arm

To estimate the parameters of the model given in Equations (9) and (10), one has
to formulate this as an optimization problem. Based on [31], the parameter estimation
problem can be formulated as follows: assuming it is a vector of measured values of
joint angle λ ∈ <nλ consisting of K samples, a vector of model parameters θ ∈ <nθ has
to be found using an optimization algorithm and properly defined objective function.
The objective function used in the experiments was a sum-squared type of error function
defined as:

( λ) =
K

∑
k=1

[
θ(k)− θ(k, λ)

]T[
θ(k)− θ(k, λ)

]
(9)

The purpose of the optimization algorithm is to find the values of parameter vector
λ̂ ∈ <nλ so that

λ̂ ∈ arg min
λ∈L

( λ) (10)

where L ⊂ <nλ is the parameter space.

Trust Region Algorithm for Nonlinear Least Squares

Nonlinear optimization is the minimization of a function according to the follow-
ing formulation:

min
x∈Rn

f (x) (11)

subject to ci(x) = 0 for i = 1,2, . . . ,me and ci(x) ≥ 0 for i = me + 1, . . . ,m. Functions f (x) and ci(x)
hold that they are real, defined in Rn; at least one of them is nonlinear; for the coefficients m
and me, it holds that are nonnegative integers, and m ≥ me. It holds that, if m = me = 0, the
function (Equation (11)) presents an unconstrained optimization problem. If this condition
does not apply, then Equation (11) is a constrained optimization problem.

Optimization problems are solved by numerical iteration methods, which means that
the approximate solution of the function at the point xk is in the k-th iteration. The new
point (approach to the solution) xk+1 is determined computationally based on an algorithm.
Such approximation to the solution is applied until the solution is acceptable. An important
aspect in the direction of the search, whereby solving subtasks it is verified whether the
points are approaching, resp. do not come close to the solution. One of the algorithms
that can be applied is the Trust Region Algorithm [32–35]. The Trust Region Algorithm
for Nonlinear Least Squares is similar to the method Levenberg–Marquardt [25,36] used
to solve nonlinear functions. Although it is a newer algorithm (compared to Levenberg–
Marquardt), it brings advantages such as robustness, reliability and convergence properties.
In this algorithm, the model is said to be trusted if the area is close to the solution. Such an
area is called a trust region and is modified at each subsequent iteration. This means that if
in a certain iteration the approximate model is not good enough (it, therefore, contains a
bad point), the area of confidence will not be increased but, on the contrary, will decrease.

After a nonlinear optimization problem was defined using Equation (12), if this prob-
lem were unconstrained, the algorithm model could be constructed under the condition
that the trial step in the k-th iteration would be determined as [34]:

min
d∈Rn

gT
k d +

1
2

dTbkd = ϕk(d) (12)

Subject to ‖d‖2 ≤ ∆k (13)



Appl. Sci. 2021, 11, 4490 17 of 28

where bk is a symmetric matrix of dimension nxn approaching the Hessian of the function
f (x); gk represents the gradient at the current iteration xk; ∆k is greater than zero and
represents the trust-region radius.

If Equation (13) is subtracted from Equation (12), then the difference is Sk. Subse-
quently, if the difference ϕk(0)−ϕk(Sk) is determined, the result is Pk, which represents the
predicted reduction. For Pk, holds it is positive if xk is a stationary point and bk is a positive
semi-definite. Actual reduction Ak (reduction in objective function) can be determined as
Algorithm 1 [34]:

Ak = f (xk)− f (xk + Sk) (14)

If the ratio is the actual reduction Ak and the predicted reduction Pk, it is obtained an
important ratio rk, which firstly expresses whether the test step is acceptable and secondly
determines the adaptation of the new trust-region radius.

Algorithm 1 [34]

1. Step: Given: x1 ∈ Rn, ∆1 > 0, ε ≥ 0, b1 ∈ Rnxn;

0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2〈1, τ2〉0, k1

2. Step: If ‖gk‖2 ≤ ε then stop;

Solve is Sk

3. Step: Calculated rk = Ak/Pk

xk+1 =

{
xk i f rk ≤ τ0
xk + Sk otherwise

Choose ∆k+1 that satisfies

∆k+1 ∈
{
[τ3‖gk‖2, τ4∆k] i f rk < τ2
∆k, τ1∆k otherwise

4. Step: Update

bk+1; k: = k+1; go to 2. Step.

τi is chosen by the user (usually τ0 = 0, τ1 = 2, τ2 = τ3 = 0.25, τ4 = 0.5). Normally, τ0 is
chosen to be zero, but if τ0 >0, count of lim

k→∞
in f ‖gk‖2 = 0 will be stronger. As a satisfactory

optimal criterion for terminating the algorithm at point xk is ‖gk‖2 ≤ ε.

7. Parameter Estimation of Simulink Model

Within the estimation of model parameters, attention, in this case, was focused on the
parameter estimation of the Simulink model, where the task is to process the input/output
data used for the testing phase. In the validation phase, tests were performed separately
for link 1 and link 2 and at the same time for each axis at four different initial joint
angles. However, when estimating the model parameters, the estimation takes place
simultaneously for link 1 and link 2 for the specified joint angle. To create the experiment,
it was necessary to select the measured outputs—the matrix of the required measured
outputs depending on time. Specifically, in this case, it was the time dependence of the
mean response obtained from the measured data. Another important step in configuring
the experiment was to choose which parameters to estimate. In the performed experiment,
all physical parameters of the system were selected for estimation, which are listed in
Table 5. At the same time, it was necessary to determine the limits of the set parameter.
The limits were set to ±30% of the original parameter values obtained from the CAD
software (excluding friction). The basis of parameter estimation is an optimization method
and algorithm that determine the sequence of steps in which the estimation takes place
and what criteria for parameter estimation are chosen. Based on what was mentioned in
Section 4, the Trust Region Algorithm for Nonlinear Least Squares was chosen.
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Table 5. The list of the number of samples and the parameters’ spaces.

Angle of Rotation K Notation Parameter Estimation Bounds

10◦ 2100 m1 5–7 kg
20◦ 3182 m2 3–5 kg
30◦ 4546 l1 0.5–0.7 m
40◦ 5028 c1 0.2–0.4 m

c2 0.13–0.25 m
I1 0.25–0.45 kg·m2

I2 0.009–0.017 kg·m2

fc1 0.00001–20 N·m·s·rad−1

fc2 0.00001–20 N·m·s·rad−1

fd1 0.00001–20 N·m
fd2 0.00001–20 N·m

The result of parameter estimation is new estimated values of selected model parame-
ters, which were reused for validation to obtain better model results. An overview of these
parameters is summarized in the list of model parameters after parameter estimation in
Table 6. The simulation scheme in Simulink was modified with new detected parameters,
and the process of output validation based on measured data was performed as in section
Validation. The results of the validation after estimating the parameters are divided into
two parts—for link 1 and link 2.

Table 6. The list of model parameters after parameter estimation.

Notation Value and Unit Notation Value and Unit

m1 6.813 kg I1 0.264 kg·m2

m2 3.361 kg I2 0.012 kg·m2

l1 0.552 m fc1 0.335 N·m·s·rad−1

c1 0.346 m fc2 0.279 N·m·s·rad−1

c2 0.212 m fd1 0.203 N·m
fd2 0.076 N·m

7.1. Results of Validation after Parameter Estimation—Link 1

The results of validation after the estimation of parameters were assessed based on the
same statistical criteria as in the validation before estimation. Table 7 provides an overview
of the MAE and NRMSE indicators for link 1. From the results, it can be seen that based
on the MAE indicator, the model at the initial joint angle of 10◦ (MAE = 0.6076) is the best,
while based on the NRMSE indicator, it is the model at an initial joint angle of 40◦, with
NRMSE = 84.62%.

Table 7. Results of validation after parameter estimation for link 1.

Angle of Rotation MAE NRMSE

10◦ 0.6076 63.96%
20◦ 0.9420 75.27%
30◦ 1.0382 81.61%
40◦ 1.1045 84.62%

The improvement of the model results is obvious also from the graphic curves.
Figures 21–24 show the model outputs after parameter estimation for the joint 10◦–40◦ for
link 1. The model output (blue solid line) approaches the required mean response (red
dashed line) with increasing initial joint angle, which also indicates an increase in the value
of the NRMSE indicator in Table 7. Before estimating the parameters, the model output
had the problem of achieving mean response amplitudes and also the peaks of the model
output amplitudes that were shifted for the time axis.
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7.2. Results of Validation after Parameter Estimation—Link 2

The results of the validation before estimating the parameters were significantly worse
for link 2 compared to the results for link 1. However, after estimating the parameters
and performing the validation again, the models were able to produce much better model
outputs, as evidenced by the MAE and NRMSE values in Table 8. The MAE indicator had a
value of less than one for each initial joint angle, with the best output of the model obtained
at an initial joint angle of 10◦ (MAE = 0.2407). The value of the NRMSE indicator was
around 80% at all initial joint angles examined, with the model achieving the best result at
an angle of 20◦ (NRMSE = 82.82%).

Table 8. Results of validation after parameter estimation for link 2.

Angle of Rotation MAE NRMSE

10◦ 0.2407 79.64%
20◦ 0.3401 82.82%
30◦ 0.5159 81.98%
40◦ 0.7207 82.69%

This significant difference in the improvement of the model results after parameter
estimation is especially visible in Figures 25–28. The model before parameter estimation
had the biggest problem for link 2 with data in the time zone 0 to 2.5 s when there are
significant fluctuations of the manipulator’s arm. However, these jumps are followed by
more pronounced damping. However, the model after estimation can simulate the output
(blue solid line) at this time with high accuracy to the mean response (red dashed line) for
each initial joint angle, which is of course also reflected by the change in the curve error
(black dotted line).
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8. Discussion

The estimation of model parameters using the Trust Region Algorithm for Nonlinear
Least Squares optimization method for the known structure of the planar kinematic system
model derived based on Lagrange formalism was intended to improve the validation
results. As mentioned above, the limits of the estimated parameters were set to ±30%
of the original value of each parameter (excluding friction). This value was set because
deviations could occur within the parameters specified by the CAD software, e.g., the
resulting weights can be skewed, as an element, such as a chain or muscles, is not included
in the CAD. CAD, therefore, determined the parameters only based on the modeled
construction. A summary and comparison of validation results before and after parameter
estimation is given in Table 9 for link 1 and in Table 10 for link 2. It is clear from the
indicators that the estimation of parameters significantly helped to achieve better model
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outputs in the process validation. If the indicators for link 1 are compared, the most
significant improvement occurred at the initial joint angle 40◦, when the original output
of the model reached MAE = 6.1717 and NRMSE = 16.69%, while after estimation, the
output of the model was obtained at MAE = 1.1045 and NRMSE = 84.62%. For link 2, the
results in the initial validation were even worse than for link 1. As mentioned above, the
cause could be a more pronounced oscillation in this axis. Therefore, this fact was expected
to play a role in the results even after optimization. However, it is clear from the results
that the optimization within the parameter estimation helped the model so much that the
outputs not only achieved much better results than before the estimation, but within the
NRMSE indicator, they were also similar in value (stable) at different initial rotation angles.
However, the most significant change after the determination occurred at an initial angle
of 40◦ (taking into account the values of both indicators).

Table 9. Comparison of results validation before and after parameter estimation for link 1.

Before After

Angle of Rotation MAE NRMSE MAE NRMSE

10◦ 1.0932 35.47% 0.6076 63.96%
20◦ 2.9180 20.29% 0.9420 75.27%
30◦ 3.2550 34.37% 1.0382 81.61%
40◦ 6.1717 16.69% 1.1045 84.62%

Table 10. Comparison of results validation before and after parameter estimation for link 2.

Before After

Angle of Rotation MAE NRMSE MAE NRMSE

10◦ 0.5655 14.94% 0.2407 79.64%
20◦ 1.1078 16.36% 0.3401 82.82%
30◦ 1.7524 18.14% 0.5159 81.98%
40◦ 2.8270 16.88% 0.7207 82.69%

Since the process of estimating the parameters took place simultaneously for both
axis 1 and axis 2, from the results of the estimation, it was necessary to select the model
that achieved the best results as a whole (not separately for axis 1 and axis 2). As already
mentioned at the beginning of this chapter, the most significant progress in the results
occurred at the initial angle of rotation of the joint of 40◦, so this model was chosen as the
best. Figure 29 shows the time courses of the joint angle for both axes at the initial joint angle
of 40◦ before the model optimization process. For both axes, you can see that the output
model (blue solid curve) is different compared to the required mean response (red dashed
curve). After optimizing the model, however, significant differences (improvements) for
both axes can be seen in the model outputs in Figure 30. The output of the model no outrun
the required output (this phenomenon was visible especially for axis 1 before estimation).
The model also achieves the amplitude of the measured values much better (especially
with axis 2 before estimation, this problem is visible).
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Since the essence of the optimization of the model was the estimation of the model
parameters using the chosen algorithm, it is important to analyze the estimated parameters
themselves, which ensured the improvement of the results. These were the parameters
of the manipulator together with the coefficients found in the friction components. In
connection with this, it should be noted that since the goal was set in the validations—the
best possible model outputs and results within the indicators. Therefore the arm parame-
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ters, such as length, weight, etc., were also included in the estimation. Table 11 shows a
comparison of the values of these parameters before estimation and after estimation.

Table 11. Comparison of parameters before and after parameter estimation.

Notation Value and Unit
before Estimation

Value and Unit
after Estimation

m1 5.914 kg 6.813 kg
m2 3.437 kg 3.361 kg
l1 0.615 m 0.552 m
c1 0.293 m 0.346 m
c2 0.19 m 0.212 m
I1 0.357 kg·m2 0.264 kg·m2

I2 0.013 kg·m2 0.012 kg·m2

fc1 0.35 N·m·s·rad−1 0.335 N·m·s·rad−1

fc2 0.35 N·m·s·rad−1 0.279 N·m·s·rad−1

fd1 0.35 N·m 0.203 N·m
fd2 0.35 N·m 0.076 N·m

The weights of the arm parts m1 and m2 were changed by the estimation—the weight
of the upper part of the arm was estimated to 0.9 kg extra, while the weight of the lower
part of the arm was estimated to be 0.076 kg less. The parameter, Distance to the center
of mass, for both links were increased by a value of 0.053 m for c1 and a value of 0.022 m
for c2. The length of the arm on axis 1 is less by 0.063 m. Due to these changes, of course,
the values of the moments of inertia I1 and I2 have also changed. The Viscous friction
coefficient and Coulomb friction magnitude were set experimentally before the validations.
However, after optimization, the values of the Viscous friction coefficient and Coulomb
friction magnitude are smaller than the initial value of 0.35 (especially the value of fd2).

The parameters that were the subject of estimation and used for the subsequent opti-
mization of the model were estimated in the Parameter Estimator. During the estimation
process, this tool (among other things) offers the possibility to monitor how the values of
the parameters are estimated (changed) depending on the iterations until all the values of
the estimated parameters are stabilized. The result of this phase from the given toolbox
can be seen in Figures 31 and 32. During the estimation, only one graph could be viewed,
where the waveforms of all 11 estimated parameters were. However, since the masses m1
and m2 are represented by much higher values than the remaining parameters, the mass
curves were exported to the second graph for better clarity. Based on the waveforms of
Figure 32, it can be seen that the smallest changes in the parameter estimation occurred
in the parameters c2 (Distance to the center of mass for link 2) and Iz2 (Moment of inertia
for link 2). On the contrary, significant changes took place in the values of Coulomb
friction magnitude fd1, fd2. In Figure 31, it is possible to observe how the weight estimate
has changed. From the course of estimating the mass m2, it can be seen how the weight
changed in the first iterations, but the result of the estimation in the last iteration was, in
the end, very similar to the original value.
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Significant estimates and changes in some parameters can be evaluated based on the
following hypotheses:

• The weights m1 and m2 that were exported from the CAD software did not take into
account the total weight of the arms even with connected muscles, chain, etc. Based on
which the resulting weight could increase by estimation (this phenomenon is visible
especially for axis 1—weight m1).

• Given the first hypothesis, it is possible to follow up. By changing the weight and
shape of the arm, its length, the estimation of the parameter Distance to the center
of mass for link 1 and 2—c1 and c2 (a visible increase of these parameters during
estimation) is influenced.

• Changes in the estimation of the moment of inertia parameters Iz1 and Iz2 may also be
closely related to the change in mass and the shift of the center of gravity.

• In terms of the use of a chain and a sprocket, it was assumed that the friction would be
more pronounced (than if another gear had been used), so the value of the coefficients
was set to 0.35. However, it is clear from the estimation that the experimentally
determined initial values of the friction coefficients were oversized, as evidenced by
the courses of the estimated parameters fc1, fc2 and fd1, fd2.
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9. Conclusions

The research described in this article aimed to compare the model with the param-
eters that come from CAD and its improvement by estimating the parameters based on
gravitational measurements. An improvements model could be subsequently applied to
the control phase.

The study described in this article can be summarized in four stages:

• Obtain a representative set of joint angle data by performing gravity tests.
• Creation of a simulation model in the Matlab and Simulink, which presented the

dynamics of a real system—a planar robotic arm with two degrees of freedom (taking
into account the friction component).

• The validation of a dynamic model built based on Lagrange formalism. However,
at this stage, the expected results based on the MAE and NRMSE indicators were
not achieved.

• The estimation of parameters—as the initial results of validation were insufficient, the
research was extended to the estimation of model parameters using the Trust Region
Algorithm, which helped to significantly improve the values of MAE and NRSME.

Based on the results of parameter validation and estimation, it can be stated that
the values of system parameters, which serve as input data for the model, significantly
affect the validation results, which was demonstrated after estimating these parameters
significantly affected the results. Within the course of the estimated parameters, a certain
connection between the parameters was seen, which gives rise to the assumption that the
values of the parameters not only influence the results of the validation but also interact
with each other. The more accurate the system parameters are obtained in the step, the
more accurate the validation results will be. By reducing the oscillations (especially for
link 2 and at higher initial rotation angles) which occur in the system due to the individual
structural bonds, it would be possible to achieve a more accurate stabilization of the arm
movement to zero, and thus to improve the validation results.

In further research, the authors would like to extend this research to the following parts:

• Accurate identification of system parameter values, including drive parameters.
• The inclusion of drive dynamics, which would create a more complex dynamic system

model.
• The addition of a part of the drives to the simulation scheme in Simulink, the use of

other tools, such as SimMechanics.
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analysis, M.T.; investigation, M.T.; writing—original draft preparation, M.T.; writing—review and
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