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Abstract: Due to the multitude of disciplines involved in mechatronic design, heterogeneous lan-
guages and expert models are used to describe the system from different domain-specific views.
Despite their heterogeneity, these models are highly interrelated. As a consequence, conflicts among
expert models are likely to occur. In order to ensure that these models are not contradictory, the
necessity to detect and manage conflicts among the models arises. Detecting these inconsistencies
at an early stage significantly reduces the amount of engineering activities re-execution. Therefore,
to deal with this issue, a formal framework relying upon mathematical concepts is required. The
mathematical theory, namely category theory (CT), is considered as an efficient tool to provide a
formal and unifying framework supporting conflict detection and management. This paper proposes
a comprehensive methodology that allows conflict detection and resolution in the context of mecha-
tronic collaborative design. CT is used in order to explicitly capture the inconsistencies occurred
between the disparate expert models. By means of this theory, the conflicts can be detected and
handled in an easy and formal way. Our proposed approach is applied to a collaborative scenario
concerning the electro-mechanical actuator (EMA) of the aileron.

Keywords: conflict resolution process; mechatronic system; collaborative design; category theory

1. Introduction

During the past decades, adopting collaborative design has become a competitive
factor for successful engineering processes in the mechatronic systems domain [1]. In order
to represent the specific views of the system to be designed, several expert models are
created within a project. To address these multiple views, collaborators involved in the
design process use different tools and languages [2]. Despite the heterogeneity of expert
models that represent different aspects of the system under design, collaboration between
these models is unavoidable [3]. Consequently, conflicts between the different stakeholders
are likely to occur and must be carefully handled in order to guarantee the high quality and
robustness of the final system [4]. To tackle this challenge, a formal framework that unifies
the heterogeneous expert models is required. This common framework will ease conflict
detection and resolution [5]. Since a model is composed of different elements related among
each other, it is natural to represent this model in the form of a graph [6]. Consequently,
rather than working on the heterogeneous model languages directly, a comprehensive and
unifying formalism becomes necessary. Hence, in order to keep the right meaning of the
different models, graphs should represent all the insights of these models. Accordingly,
the mathematical theory, called category theory (CT), provides formal as well as unifying
techniques allowing the representation of collaboration between the stakeholders while
carrying on their right content [7]. CT has a rich body of theory to concentrate on objects
and their relations. This theory was proposed by Samuel Eilenberg and Saunders Mac
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Lane to bridge two distinct fields: algebra and topology [8]. Using CT, it will be possible to
formalize an idea, a concept or a field, using a category and connecting this category with
another one through functors [9]. In this context, CT is proposed in our research work as a
framework to represent the interconnections among the design teams in order to facilitate
the conflict detection and handling. Our main objective is to detect the inconsistencies
occurred during mechatronic systems design in a formal and easy way and consequently,
reduce the amount of re-execution of engineering activities.

The remainder of this paper is structured as follows. Section 2 discusses the main
issues associated with conflict resolution. Section 3 presents the related research works.
Section 4 outlines our methodology for conflict resolution by means of CT. Section 5
provides an application of our proposed approach to the electro-mechanical actuator
(EMA) of an aircraft aileron. The discussion is given in Section 6. Finally, the conclusion
and outlooks on future work are presented in Section 7.

2. Background

The notion of “inconsistency management” was introduced in the first time by Finkel-
stein et al. [10] in the context of model-driven software engineering. According to Tay-
lor et al. [11], the inconsistency can be defined as a conflict or a contradiction between
different model elements. This contradiction can take five forms: name, interface, behav-
ioral, interaction and refinement inconsistencies.

• Name inconsistency occurs between two independent elements with the same name.
An example of this inconsistency would be two components named “sensor”, whereas
the first one is an angle sensor and the second is a current sensor.

• Interface inconsistency concerns two elements having mismatching terminologies or
values. For example, this inconsistency can be present when a distance “D” has two
different values in two different models or when an “electrical connection” is named
“electrical wiring” in another model.

• Behavioral inconsistency happens when the behavior of two elements does not match.
This kind of inconsistency occurs when a distance is expressed in “meters” in a model
and in “kilometers” in another one for example.

• Interaction inconsistency happens when an element does not respect certain interaction
constraints.

• Refinement inconsistency happens when two models of different abstraction levels
have different elements in order to fit the corresponding abstraction level. An example
of refinement inconsistency would be if, in one model, a “control unit” is defined as
a whole component, whereas it is defined as a combination of a controller, a signal
voltage, and an angle sensor in a more detailed model.

Interface and interaction inconsistencies are the most popular types addressed by
tools and research works. However, behavioral and refinement inconsistencies are the least
popular due to the insufficient number of tools capturing and managing these inconsisten-
cies [12]. In our study, we will focus on interaction and interface inconsistencies among
different models from different engineering disciplines. Our hypothesis is to solve only
the inconsistency, which occurs when two elements present mismatching values or do not
respect constraints defined in the system requirements. Name, terminology, behavioral, or
refinement inconsistencies are out of the scope of this study.

3. State-of-the-Art

In this section, we present the state-of-the-art regarding the conflict resolution ap-
proaches. Furthermore, an overview of the fundamental concepts of category theory as
well as the related works in the context of collaborative design is illustrated.
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3.1. Conflict Resolution Approaches
3.1.1. Interoperability Approach

Interoperability is defined as the cooperation between two or more software compo-
nents, which are designed in different interfaces, languages and execution platforms [13].
Guychard et al. [14] proposed an approach to ensure consistency and maintain traceabil-
ity based on three interoperable spaces. The information space contains databases, files,
and tools. In the conceptual space, the model federation is implemented, and the design
space is dedicated to managing the two previous spaces. This approach aims at building
a unique database where data can be stored. However, using this single database may
present some security problems and imply the management of a large amount of data [15].
Another solution is presented by Qamar et al. [16] where the need to manage consistency
through interoperability among different tools is discussed. In this research work, standard
files formats are used in order to maintain interoperability between distinct tools such as
TeamCenter [17], MagicDraw [18], and Simulink [19]. This solution ensures consistency
and maintains traceability. However, it may present some data loss problems during data
transit between heterogeneous domains and tools [12].

3.1.2. Ontology-Based Approach

The term ontology originated from philosophy and represents an explicit specification
of a set of objects, concepts and other entities existing in a specific area of interest with
several relationships among them [12]. An approach was developed by Bock et al. [20]
whereby the authors combine ontological and model-based techniques in order to facilitate
collaborative design. They used ontology’s open world semantics as a support for collabo-
ration and consistency checking. Ontology enables the different stakeholders to develop
product descriptions independently and check consistency once the descriptions are com-
bined. Nonetheless, the authors do not present solutions to solve and manage detected
inconsistencies. In the same context, Penas et al. [21] assumed that ensuring consistency
is an important issue in mechatronic systems and cyber-physical systems (CPS) design
processes. The authors proposed the description of the different subsystems through a
holistic view based on ontologies. This representation should be unambiguous and precise
to guarantee the correct interpretation of the stored information and designers’ decisions.
According to the authors, the ontological representation can ensure consistency during the
design process. However, an explicit method for checking and managing inconsistency is
not presented in this work.

3.1.3. Dependency Modeling Approach

Several research efforts in the literature are based on explicit modeling of dependen-
cies in order to facilitate model management and consistency checking. In this context,
Qamar et al. [22] addressed dependency modeling to capture inter- and intra-dependencies
among heterogeneous models. This approach aims at notifying the engineers about possi-
ble inconsistencies if dependent proprieties change. The authors argued that the impact
of changing a model may be predicted through dependency modeling which enables
easier inconsistency detecting. However, the resolution of these inconsistencies is based
on a manual process whereby a stakeholder verifies and manages the captured conflict.
Similarly, Törngren et al. [23] focused on modeling dependencies among model, people,
and tool levels and proposed a multi-viewpoint model. In this approach, the dependency
is visualized through semantic web solution for inter and intra-viewpoints. The developed
model can be used for signaling inconsistencies when changes occur in the engineering
models. Nonetheless, the authors do not explicitly deal with resolving these conflicts.

3.1.4. Model Synchronization Approach

Model synchronization approach is based on unidirectional or bidirectional transfor-
mation among the models involved in the engineering process. Thus, in this approach
several transformation rules are formulated to define the nature of relations between entities
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of the different models. One example of this approach is the concept of Legendre et al. [24].
In their study, the authors presented a collaborative and iterative approach based on model
synchronization. This work focuses on the synchronization among architecture design of
safety analysis and assessment issues. The synchronization activity is based on the iden-
tification of inconsistencies arising from the confrontation of the two viewpoints. These
inconsistencies are handled by the search of compromises, which will evolve progressively
the different models. This proposition is applied manually to an industrial case study.
Thus, to overcome this drawback, Berriche et al. [15] extended the previous work towards
an automated method to formalize model synchronization in mechatronic design. The
main idea of this approach is the use of query view transformation (QVT) standard in order
to specify the abstraction as well as the concretization operations using a set of formal
transformation rules. This contribution ensures consistency among domain-specific models
in an automated manner and is applied on structural and hierarchical models. Nonetheless,
the conflict resolution mechanism is a manual process. Model synchronization is a useful
solution to maintain consistency among heterogeneous models. However, this synchro-
nization aims at checking consistencies of the system architecture and neglects parameters
and constraints inconsistencies, which is in the scope of our study.

3.1.5. Inconsistency Pattern and Rule-Based Approach

This approach is based on creating patterns in order to describe the existence condition
of any inconsistency. Thanks to these patterns, models querying is possible. Thus, based on
pattern matching, inconsistency can be detected and handled by ignoring, resolving or tol-
erating it [1]. Herzig et al. [25,26] provided a support for automating conflict management
task within the context of model-based systems engineering (MBSE). They argued that
heterogeneous models can be represented by graphs and inconsistencies can be identified
using pattern matching. In this approach, models are transformed into a graph formalism.
These graphs can be queried based on graph patterns which define the inconsistency types.
Feldmann et al. [1] tackled the challenge of inconsistency management by proposing a
comprehensive approach which aims at specifying, diagnosing and handling inconsisten-
cies in MBSE. A dedicated graphical modeling language is proposed in this approach in
order to explicitly capture dependencies and consistency rules, which must hold among
the heterogeneous models.

3.1.6. Parameters and Constraints Approach

This approach suggests the use of parameters and constraints to check the consistency
in the heterogeneous models within a multi-disciplinary development team. This approach
focuses on value and interaction inconsistencies according to the classification presented by
Taylor et al. [11]. Once these parameters or constraints are violated, the inconsistency may
be detected and should then be managed to maintain the consistency of the system to be
modelled. In this context, Kleiner et al. [27] proposed a model to exchange and capitalize
fine granularity data (i.e., in the form of parameters and constraints) to check consistency
and help designers to solve conflicts. This model is experimented through the COLIBRI
application (COnstraint LInking BRIdge). Nevertheless, this approach does not present
an explicit solution to manage the conflicts that took place during expert model integra-
tion. Later, the COLIBRI model is extended by Badin et al. [28] towards the knowledge
configuration model (KCModel). This model is organized into knowledge configuration
(KC), user configuration (UC) and information core entity (ICE). The knowledge consists
of parameters and rules organized in the ICEs. These entities are used by the stakeholders
and potential conflicts are detected among them. Several research works make use of the
KCModel such as [3,29]. Nonetheless, as the previous cited works, KCModel is limited
in term of conflict resolution. Inspired by KCModel, Mcharek et al. [30] developed a new
collaborative design model called collaborative design process and product knowledge
(CDPPK). The main goal of this model lies on reorganizing parameters in order to facilitate
collaboration. The structure of this model is based on KCModel structure. The authors kept
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the use of ICEs proposed by [28] and proposed new entities such as the design product
knowledge (DPK), which contains all the used ICEs in the project as well as the final prod-
uct results after the collaboration. This model supports conflict resolution. However, this is
done manually which can be time-consuming especially for mechatronic system design.

3.2. Synopsis

A multitude of different approaches are proposed in the literature in the field of conflict
resolution. These approaches are classified into six different types. As discussed previously,
the interoperability approach presents some data loss problems because of data transit
between heterogeneous domain and tools. Ontological representation ensures consistency
checking during the design process, but the creation of ontologies can be a time-consuming
task. Moreover, some efforts in the literature are based on explicit modeling of dependencies
in order to facilitate conflict checking but this solution does not deal with conflict resolution
and can be also a time-consuming task. Model synchronization approaches are proposed
in the literature as an efficient solution in the field of inconsistency management. However,
this solution does not take into consideration the conflict resolution of fine granularity
data which is in the scope of this study. The rule and pattern-based approach showed its
efficiency in conflict management of fine granularity data. Whereas some studies dot not
present explicit solution to manage the detected conflicts, other research works handle
this problem by proposing several conflict resolution techniques. Using rules and patterns
tends to be flexible since the rules can be removed or added without revising the entire
consistency checking system. This can be beneficial for mechatronic system design in
terms of reducing development time. Finally, parameters and constraints approaches are
presented as a conflict resolution technique. The principle of this approach is the core idea
of our study. As discussed beforehand, our main goal is to check and handle conflicts
between parameters and constraints. Nevertheless, the proposed research works in this
field do not present solutions to handle these conflicts.

Hence, to overcome this drawback, we propose a new conflict management methodol-
ogy regarding fine granularity data based on patterns and rules. By means of these rules,
our proposition will be more flexible, which in turn will ease the conflict resolution task. In
the aforementioned rule and pattern-based approaches, graphs are used to create patterns
and query the different involved models in the design process. These graphs have shown
their efficiency in making the conflict resolution process easy and simple. However, using
these graphs may not take into account some insights that come from the practice, which is
essential to keep the right meaning of the model [31]. Furthermore, mechatronic design
encompasses several disciplines collaborating among each other, which makes the design
quite complex. Therefore, in order to deal with this complexity, formal methods based on
mathematical techniques are required [32]. In this context, CT, as a mathematical theory,
provides a unifying framework to formalize the interconnection between stakeholders, as
well as to facilitate conflict detection and resolution. Hence, the basic concepts and related
works to this theory are presented in the next section.

3.3. Category Theory (CT)

In this section, the fundamental concepts of CT as well as related works in the context
of collaborative design using this theory are presented.

3.3.1. Category Theory Basic Concepts

The fundamental concepts of CT are presented as follows:
A category consists in a set of objects X, Y, Z, etc. and a set of arrows or morphisms

f, g, h, etc. Each morphism f has a domain (dom) and a co-domain (cod) f: X→ Y, where
X = dom(f) and Y = cod(f) [33]. Given two arrows f: X→ Y and g: Y→ Z, there is a given
morphism g # f: X→ Z called the composition of g with f (see Figure 1a). Moreover, for
each object X, there is a morphism 1X: X→ X, called the identity morphism with respect
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to the property f # 1X = f = 1Y # f. Whenever the composition is defined, it has to be
associative: h # (g # f) = (h # g) # f, for all f: X→ Y, g: Y→ Z and h: X→ Z.
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A functor F: C =⇒ D between two categories C and D is a mapping of objects to
objects and morphisms to morphisms.

An object is called Initial object I if for any object X in a category C there is exactly one
morphism from I to X.

An object is called Terminal object T if for any object X in a category C there is exactly
one morphism from X to T.

A Comma category is a construction in CT that involves two functors with the same
co-domain. This concept allows the source and target object to vary over the image of
distinct functors [33]. Let A, B, and C be categories and let F: A =⇒ C and G: B =⇒ C, be
functors with the same co-domain. A comma category ca be formed as follows (Figure 1b):
the objects are all triples (X, Y, h) where X is an object in A, Y an object in B and h: F(A)
→ G(B) a morphism in C. The morphisms from (X, Y, h) to (X′, Y′ and h′) are all pairs
(α,β), where: X → X′ and β:Y → Y′ are morphisms in A and B respectively, for which
the square commutes, that is G(β) # h = h′ # F(α). The composition of pairs is done
componentwise [33].

In a category C a Pullback of arrows f and g with cod(f) = cod(g) consists of the arrows
P1 and P2 such that f # P1 = g # P2. Given any arrow w1: W→ X and w2: W→ Y with
f # w1 = g # w2, there exists a unique u: w→ P with w1 = P1 # u and w2 = P2 # u (see
Figure 1c). The dual of a pullback can be defined as a Pushout structure.

3.3.2. Category Theory in Collaborative Design

In recent years, CT has found wide applications in several domains such as artificial
intelligence [34], computer science [35], Systems Engineering (SE) [8] and collaborative
design [36]. In the context of collaborative design, Ormandjieva et al. [32] presented an
approach using category theory in order to construct a unified multi-agent systems model.
Through this model it is possible to represent the communication between the different
agents by means of CT. This proposition intends to check the system properties by the
construction of categories and functors. Furthermore, another research work based on
CT was proposed by Mabrok and Ryan [8]. The researchers applied CT to verify and
validate the modelled system design. The authors introduced CT as a formal foundation
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for model-based systems engineering (MBSE). In this work, the global system is considered
as a category and its components as objects. The interrelations between these objects are
presented by means of arrows and the different alternatives of the system are introduced
as categories. The solution category is related to the system category by functors where
each alternative is a result of a particular functor. Additionally, Zhu and Li [37] presented
a categorical framework to formally design and implement complex systems as well as
to verify the consistency of communication between design and implementation. The
presented framework is based on the use of functors in order to verify design categorical
models against implementation categorical models. Moreover, Kibret et al. [38] proposed
a formalization of the verifiable design process (VDP) through CT. The system models
are presented by categories and their constituent parts are defined through objects and
morphisms. Categorical structures such as pullback and pushout are used to analyze the
different representations of the system and functors are applied to define the abstraction
layer of the VDP.

In summary, a multitude of methodologies based on the mathematical formalism of
CT can be found in the literature. Although their diversity, a common point between these
approaches is presented, that is, the use of CT as a formal tool to support the heterogeneous
representations of the system under design. Similar to these approaches cited beforehand,
CT will be applied in this research paper as a common formalism to support conflict
detection and handling. However, this theory will be used in order to manipulate fine
granularity data (i.e., in the form of parameters and constraints) in contrast with previous
works where the CT is used to manipulate either system components or system agents
without taking into account the parameters and constraints of the system. Categorical
structures, such as objects, morphisms, functors, and comma category, will be used in our
formalism, as detailed in the next section.

4. Conflict Resolution Approach Based on Category Theory
4.1. Main Concepts

Collaborative design process involves stakeholders from different backgrounds and ar-
eas aiming at reaching a common objective about product development [30]. These experts
have different views on the system and make use of heterogeneous modeling languages
and tools. However, interrelations between these models are inevitable. Consequently,
conflicts may appear and have to be carefully considered to guarantee a high quality of
the system under design. To tackle this challenge, we propose a new conflict resolution
model, based on CT, aiming at diagnosing and handling the inconsistencies between the
expert models involved in the collaborative process. On the one hand, our approach is
based on rules and patterns, which makes it more flexible. This technique makes removing
or adding new rules during the conflict resolution process possible, which in turn can
reduce development time in mechatronic design. On the other hand, we use CT in our
methodology as a formal framework to illustrate conflict detection and resolution. The
motivation of using this theory is its powerful mathematical constructions. Using this
theory, graphs will carry all the intuitions coming from the practice and have a formal
meaning. Furthermore, the traceability of collaboration between the different stakeholders
is ensured in a formal way by means of the different categories containing all the results
of this exchange. Moreover, querying graphs in the conflict resolution process is based
on category mapping through functors, which makes this action formal and easy at the
same time.

The architecture of our approach is illustrated in Figure 2. As a first step, the different
parameters of the expert models have to be abstracted into parameters categorical graphs
PmCG using CT constructions. This step provides a common formalism that makes the
several expert models homogeneous despite their heterogeneity. Then, dependencies
among the parameters are established by means of CT through the definition of morphisms
representing the dependency coefficient among the different parameters (objects). At this
level, the process of diagnosis and handling can start. A set of consistency rules (CRs) is
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established to identify the constraints to be respected. Then, the conflicts appeared during
the collaboration between the EMs are detected through graph patterns matching against
the parameters categorical graphs. If the conflicting parameter has some dependencies with
another one, the related parameter has to be updated. Consequently, the corresponding
parameters categorical graphs have also to be updated and the modified values will be
saved in the updated Parameters Categorical Graphs UPmCG. Otherwise, one of the
resolution actions (RA) is applied to the conflicting parameter in order to manage this
contradiction. The final results of the conflict resolution process will be saved in the final
parameters categorical graphs FPmCG to ensure the traceability of collaboration.
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Based on this architecture, a Conflict Resolution Problem (CRP) is defined as an
8-tuple: CRP = <EM, PmCG, UPmCG, FPmCG, DCG, CR, GP, RA>, which contains the
following elements:

• Expert Model (EM) refers to a set of models, EM1, EM2, . . . , EMn, that are relative
to different domains and involved in the collaborative process. Examples of expert
models may be: a control model using for instance Simulink software [19], a multi-
physical model using Modelica language within Dymola software [39], a 3D model
with CATIA environment [40] in order to verify the integration of the whole mecha-
nism, a Commercial off-the-shelf (COTS) model to select the appropriate components
against the properties obtained from the simulation, etc.
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• Parameters Categorical Graph PCG represents the unified graphs based on category
theory, P1CG, P2CG, . . . , PmCG, which contains crucial parameters extracted from the
EMs and will help to capture conflicts between these models. A 5-tuple PmCG = <O,
id, Ar, Lo, LAr> is an attributed, directed graph. In the context of CT, this graph
represents a category where O = (O1,.., Oj) is a set of objects (i.e., vertices). Each object
has its own identity id (i.e., the looped arrow). These objects are the different versions
of parameters used by the involved experts as well as their values. Objects are related
to each other through a set of arrows or morphisms Ar (i.e., edges). All the objects and
arrows have labels (i.e., attributes) Lo and LAr respectively. A sample PmCG, created
following the previous definition of comma category, is illustrated in Figure 5. The
identity morphisms as well as the composition arrows are not represented in this
category in order to avoid cluttering it with a large number of morphisms.

• Updated Parameters Categorical Graph UPmCG this category will contain the updated
values obtained after each iteration of the conflict resolution process. Similar to the
PmCG described beforehand, the UPmCG is considered as a category and inherits all
the proprieties of the first PmCG. Through these updated categories, traceability can
be ensured which will be useful in reuse perspectives.

• Final Parameter Categorical Graph FPmCG this category will contain the final results
obtained after applying the appropriate RAs to the detected conflicts. Similarly, this
categorical graph has the same form than the PmCG and UPmCG described previously.

• Dependency Categorical Graph (DCG) illustrates the existing dependencies between
the parameters presented in the PmCG based on category theory. A 5-tuple DCG = <Od,
idd, Ard, Lod, LArd> is an attributed, directed graph and represents a category where
O = O1, ..., Om is a set of objects (i.e., vertices) where m refers to the number of
parameters used in the collaborative process. Each object has its own identity idd.
The identity morphism represents the internal evolution of each object. It is assumed
to be present for the DCG. However, it is seldom shown in order to avoid cluttering
the category with an identity morphism for each object. In this graph, the objects are
the different parameters used by the involved experts. Objects (i.e., parameters) are
related to each other through a set of arrows or morphisms Ard (i.e., edges). These
morphisms highlight the dependency between the different parameters. All the objects
and arrows have labels (or attributes) Lod and LArd respectively. The morphism labels
represent the dependency coefficient of each relation between two objects. These
coefficients will be used in conflict resolution process. A sample DCG is illustrated in
Figure 4.

• Consistency rule (CR): A set of consistency rules, CR1, CR2, . . . , CRp, between ele-
ments of EMs. The EMs will be considered inconsistent if CRs are not respected.

• Graph Pattern (GP), GP1, GP2, . . . , GPq, a set of categories aiming at describing the
existence of a conflict. Querying the different PmCGs using these patterns can help in
conflict detection. This graph is defined as a category containing a set of objects and
morphisms. The objects of this category are either a string representing the parameter
names and is unmodified through the different iterations or a variable for parameter
values definition. The morphisms in the GP illustrate the value attribution for each
parameter. The form of the GP can vary dependently to the PmCG to be queried. An
example of GP is illustrated in Figure 3. The GP1 describes the existence of a conflict
between two expert models where the value m1 is not equal or less than m2. The
second GP2 represents a conflict among three expert models where m1 is not equal or
less than m2 and m3. Moreover, a conflict can be detected when the values of m2 and
m3 are not equal.

• Resolution action (RA): A set of actions, RA1, RA2, . . . , RAr, to resolve the conflicts
detected by means of GPs. These actions cover modifying the value of the conflicting
parameter, tolerating the conflict and ignoring it. The choice of these actions is
ensured by the project manager and depends on the current context as well as the
detected conflicts.
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4.2. Proposed Methodology

As aforementioned, CT is used in this paper to provide a formal framework in order
to diagnose and handle the conflicts during mechatronic collaborative design process.
The mathematical formalism of CT provides a formal conflict detection and resolution
through using the functor concept. All categories defined in this formalism satisfy the
formal definitions of CT mentioned beforehand. Moreover, using this mathematical theory
collaboration traceability is ensured for reuse perspectives. Our methodology is composed
of seven main steps. The flowchart of the proposed approach is presented in Figure 6.
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4.2.1. Step 1: Creating a Common Representational Formalism (PmCG) Based on CT for
Parameters Extracted from Expert Models (EMs)

According to the model-driven architecture (MDA) introduced by the object man-
agement group (OMG) [41], a model can be defined as a reality representation and an
abstraction of meaningful and relevant things to the stakeholders, described using well-
defined languages [6]. Each model contains a variety of knowledge relative to specific
expert models. The knowledge defines how different elements are related to each other.
Thus, a model can be considered as a set of elements and relations.

For this reason, it is natural to consider models as graphs. Hence, instead of working
directly on the heterogeneous model languages, a unifying formalism is required. These
graphs have a formal meaning in the context of CT and highlight all the intuitions coming
from the practice. As a first step of our methodology, a formal as well as comprehensive
framework is established by means of this mathematical theory. Herzig [7] argued that
translating all parameters contained in models is not meaningful. Hence, only crucial
parameters will be considered in the conflict resolution problem. These parameters are
called crucial since their contribution in reaching the project objectives is considered
important [42]. To extract knowledge, a close exchange between the project manager and
all the engineers involved in the design process is recommended. Some approaches to
extract crucial knowledge also exist using multi-criteria decision-making methods [43].

Thus, for each crucial parameter, a parameter categorical graph (PmCG) is created.
The idea is to consider parameters as categories, the objects as the different versions of the
parameter used by the EMs and the morphisms as the progress of the concerned parameter
from an expert model to another one. Each object in the category has an identity morphism
illustrating the natural representation of internal evolution of parameter value. At the end
of this step, a set of categories PmCG are obtained where m represents the number of the
crucial parameters involved in the collaborative design.

4.2.2. Step 2: Creating the Parameters Dependency Categorical Graphs (DCG)

During the collaborative mechatronic design, interrelations between the EMs as well
as their elements are likely to occur. These interrelations may cause several conflicts in the
design process. In order to facilitate conflict detection and handling, these dependencies
have to be represented in a formal way. Hence, at this level, the project manager creates
a dependency graph based on CT in order to illustrate the relations between the objects.
The objects of this category refer to the involved parameters in the collaborative design,
whereas the morphisms represent the dependency between these parameters. The labels
of morphisms highlight the value of dependency coefficient between the corresponding
parameters. The values of this coefficient range from 1 to 3 as shown in Table 1.

Table 1. Dependency coefficient values.

Dependency Coefficient Description of Dependency Coefficient Levels

1 Low dependency
2 Moderated dependency
3 High dependency

The value “1” refers to a low dependency between the objects, “2” indicates that the
two objects are moderately dependent and “3” denotes a high dependency. The dependency
coefficients are evaluated based on the knowledge and previous experiences of the project
manager. For each mechatronic system design, a unique DCG is created which will be used
in the following steps of the conflict resolution process.

4.2.3. Step 3: Defining Consistency Rules (CRs)

As introduced beforehand, an inconsistency is defined as a state of conflict, marked
by the presence of a contradiction. This term is used to denote a situation in which a set
of descriptions do not respect some relationships that should hold among them. These
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relationships can be expressed as a consistency rule (CR) against which descriptions can be
checked [1]. CRs refer to constraints which need to be respected by the involved models.
In our approach, CRs are composed of conditions describing relationships between the EM
parameters. For example, one CR can be written in the following form: CR1 = “P1EM2 must
be equal or less than P1EM1”.

4.2.4. Step 4: Defining Graph Patterns (GPs)

As argued by Herzig et al. [25] it is impossible to capture all inconsistencies due to the
lack of perfect knowledge about the processes. Consequently, only known inconsistencies
can be defined. These known inconsistencies can be considered as patterns. Hence, graph
patterns aim at describing the existence of a conflict in a PmCG. Therein, GPs are illustrated
graphically using CT concepts (as shown in Figure 3).

4.2.5. Step 5: Locating Conflicts through Matching GPs against PmCGs

At this level, the conflicts presented during the design process can be localized through
querying the PmCG using graph patterns. In the context of CT, this matching between the
GPs and PmCG is established in a formal way through functors. As defined previously,
functors are considered as a mapping between the different objects as well as morphisms
from one category to another one. An example of this mapping is illustrated through
Figure 7. The image of y1, y2, m1 and m2 of GP category through the functor “G” are
respectively P1EM1, P1EM2, V1EM1 and V2EM2 in P1CG category. This mapping allows the
verification of the consistency between the different values of the same parameter in the
corresponding PmCG. All we need is to generate a functor from GP to the desired PCG to
check consistency. Consequently, if these values are not equal, then, a conflict is detected
and has to be carefully handled following the next steps. Otherwise, if all the values are
consistent, the conflict resolution process can be stopped.
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4.2.6. Step 6: Detecting Related Parameters to the Conflicting Parameter through
Checking DCG

At this level, the detected conflict must be resolved. If the dependency coefficient (c12,
c14, c32, etc. in Figure 4) between two objects (i.e., parameters P1, P2, etc.) is equal or less
than to 2, the dependency link is ignored, and a resolution action (RA) has to be applied
to solve this conflict. The RAs in our approach can be either a modifying, tolerating or
ignoring actions. Ignoring action means that the detected conflict is no longer of interest,
whereas tolerating conflicts refers to parameter tolerance where the decision maker (i.e.,
the project manager) decides to tolerate a parameter by considering a slight deviation
from desired values. However, modifying action requires a modification in the value
of the concerned parameter. In this case, the engineer needs to update its expert model
until finding the appropriate value. Hence, depending on the current context and the
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detected conflicts, the decision maker can decide how to react to handle these conflicts.
Thus, resolution action (RA) is based on a set of handling rules, which are defined as: a
tolerating handling rule, a modifying handling rule or an ignoring handling rule.

Nonetheless, if the dependency coefficient between two parameters is more than 2,
this link has to be taken into consideration and the RA must be chosen regarding the related
parameters to the conflicting one in order to prevent new conflicts to appear (Step 6.2 in
Figure 6). At this level, the values of related parameters have to be updated and saved
in the UPmCG (Step 6.2.1 and 6.2.2). Then, a new mapping between GPs and PmCG is
established in order to check the existence of new conflicts. If new conflicts are presented,
Step 6 will be repeated until reaching the appropriate trade-off between all the parameters.
Otherwise, the final results will be saved, and the conflict resolution process can be stopped.

4.2.7. Step 7: Saving the Final Values of Each Parameter in the Final Parameter Categorical
Graph FPmCG

The last step in the CRP consists in saving the final results obtained after the resolution
of all conflicts in the final parameters category FPmCG. This category will be used for
traceability perspectives during the collaborative process.

Our proposed methodology based on rules, patterns and mathematical constructions
of CT provides a formal framework to detect as well as handle conflicts between the differ-
ent stakeholders during mechatronic collaborative design. This framework is considered
as a flexible solution since rules can be added, modified or even deleted without influenc-
ing all the conflict resolution process. Moreover, conflict detection and resolution in our
methodology is based on different mathematical constructions of CT, which keeps all the
insights of the practice in a formal and easy way and facilitates traceability of collaboration.
In order to illustrate the capacity of the proposed approach, a mechatronic system design
will be studied in the next section.

5. Case Study

In order to demonstrate our approach, an Elector-Mechanical Actuator (EMA) of an
aileron for a small aircraft is considered in this paper. The EMA is a mechatronic system
used to actuate the aileron of the aircraft and replace the usual rod, lever and cables
mechanisms [44,45].

Several EMA architectures can be studied such as a direct drive, 3-bars or 4-bars
architecture. In this work, our chosen structure is the 3-bars architecture as shown in
Figure 8, adopted from [45]. The EMA is linked to the aileron and the wing through two
spherical joints. It contains a DC motor controlled by a control unit, a gearbox and a
ball screw-nut assembly aiming at transforming the motor rotation movement into the
translation of the rod to push and pull the aileron. The EMA is considered as a multi-
physical system since it encompasses mechanics, control, electrics, etc. Its multi-disciplinary
aspect makes the EMA an interesting example to validate our approach. The different steps
of our methodology described previously (see Figure 6) will be applied to the EMA system.
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5.1. Step 1: Creating a Common Representational Formalism (PmCG) Based on CT for Parameters
Extracted from Expert Models (EMs)

The first step in our proposed approach consists in creating a common formalism for
parameters of each expert model using CT concepts. Four expert models (EMs) are involved
in the EMA system design. EMR refers to a specification model where the requirements to
be respected are identified. These requirements are defined through the SysML requirement
diagram in Magic Draw environment as illustrated in Figure 9. The response time of the
EMA must not exceed 600 ms and the static error shall be less than 2 deg. The EMA mass
is 3 Kg. The required power shall not exceed 250 W and the system cost must not exceed
2000 €. All the EMA components shall fit into the allocated area between the aileron and
the wing.
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Figure 9. The initial requirements of EMA system.

EMMP represents a multi-physical model using Modelica language. This model is
based on differential, discrete and algebraic equations in order to describe the dynamic
response of the EMA [46]. The EMA multi-physical model within Dymola environment
is shown in Figure 10. This model is created using components from Modelica library.
It contains a DC motor powered by a PID controller and connected to a gearbox. The
produced rotational movement is converted into a translation by means of the screw-nut.
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Based on the multi-physical model another expert model is established (EMC). The
existing commercial, off-the-shelf (COTS) components are chosen conforming within the
simulation results. This model contains the characteristics of the chosen components (see
Figure 11a). The final expert model is a 3D model (EM3D) using CATIA environment. This
model is created in order to verify the integration of the whole mechanism in the aileron
and the wing assembly (see Figure 11b). In our case study, a well-defined workflow while
creating each expert model must be considered. This workflow starts with the requirement
model (EMR). Then, the multi-physical model (EMMP) is provided. Once the simulation
results are obtained from the multi-physical model (EMMP), the existing COTS components
(EMC) will be found. The last model (EM3D) is used to verify the 3D integration of EMA
mechanism in the assembly of the aileron and the wing.
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Figure 11. COTS components and 3D integration of EMA system: (a) COTS components: DC motor
and (b) 3D integration within CATIA environment [44].

Once the expert models are created, the evolution of parameters used in the EMA
design by different EMs will be illustrated through the PmCG. These categories contain
only crucial parameters extracted from the EMs. To do so, we recommend an effective
exchange between the stakeholders to extract the most important parameters. The crucial
parameters of EMA system are listed in Table 2. For each parameter, a PmCG is created
based on CT concepts. An excerpt of a PCG of the parameter P4 (maximal power for EMA
system) is illustrated in Figure 12.

Table 2. Crucial parameters for the EMA system and the values found by the EMs.

Parameters Unit EMR EMMP EMC EM3D

Response time (Rt) ms 600 535 - -
Static error (Se) deg 2 2.44 - -

Global Mass (Mass) Kg 3 - 3.143 -
Maximal power (Pw) W 250 288 250 -

Cost (Ct) € 2000 - 1555.65 -
Motor diameter (Ømot) mm 70 - 65 70
Motor Length (Lgthmot) mm 145 - 131.4 145
Motor resistance (Rm) Ohm - 0.5 0.356 -

Motor Inductance (Lm) mH - 0.0039 0.000161 -
Motor Inertia (Jm) Kg.m2 - 10 × 10−7 13.45 × 10−5 -

Reducer diameter (Øred) mm 85 - 81 85
Reducer Length (Lgthred) mm 95 - 91.9 95

Reducer ratio (rred) [] - 3.5 3.7 -
Screw-nut diameter (Øsn) mm 25 - 22 25
Screw-nut Length (Lgthsn) mm 60 - 58.4 60

Screw-nut ratio (rsn) [] - 330 333 -
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All what we need to ensure that the created category respects the mathematical
definitions in the context of CT is to prove the existence of composition, identity as well as
associativity. Let PwEMR, PwEMMP and PwEMC be three different versions of the maximal
power such as EMR interacts with EMMP, which in turn interacts with EMC then, EMR
can interact with EMC indirectly through EMMP, which highlights the existence of a
composition of morphisms between EMR and EMC. Moreover, the different values of Pw
are represented as objects in this category. The first value in the requirement model evolves
into a new value in EMMP, which in turn evolves to another value in EMC. This means that
the value in EMR can evolve indirectly to the value in EMC. Let multi-physical activity,
cots activity and verification activity be the morphisms such as multi-physical activity:
PwEMR → PwEMMP, cots activity: PwEMMP → PwEMC and verification activity: PwEMR →
PwEMC. It is clear that multi physical activity # (cots activity #verification activity) = (multi
physical activity # cots activity) # verification activity, which verifies the associativity
property. The identity arrows for each object in this category exist to represent the internal
evolution of the Pw parameter and its values. Each object must have an identity morphism.
However, it is seldom shown in order to avoid cluttering the category with an identity
morphism for each object.

5.2. Step 2: Creating the Parameters Dependency Categorical Graphs (DCG)

In this step, the DCG of crucial parameters is established (see Figure 13). The project
manager attributes the dependency coefficients, indicating the degree of dependency,
through morphisms between the parameters according to the scale proposed in Table 1.
These coefficients are defined based on the project manager expertise. The resolution
actions will be chosen based on the dependency coefficients between the parameters, as
will be explained in the following steps.
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5.3. Step 3: Defining Consistency Rules (CRs)

Here, the different CRs are defined in order to describe the relationships that must
hold between the different parameters of EMs. An excerpt of some CRs for EMA system
design is presented in Scheme 1.
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Scheme 1. An excerpt of CRs for EMA system.

5.4. Step 4: Defining Graph Patterns (GPs)

Based on the aforementioned defined CRs, graph patterns are created in order to
formulate the expected relationships among the four EMs of EMA system that will cause
the conflict occurrence as described in Figure 3. Each morphism between two different
values of the same parameter in the graph pattern highlights the non-respect of a CR.

5.5. Step 5: Locating Conflicts through Matching GPs against PmCG

At this level, the conflicts are detected by means of matching the GP against the
PmCG of each crucial parameter in EMA design. This step is achieved through using the
functor concept as described in Section 4.2.5. An example of this mapping is illustrated
through Figure 14. All the remaining PmCGs have to be mapped in the same way in
order to locate the detected conflicts during EMA system design. The highlighted rows
in Table 2 represent the conflicting parameters detected during the first iteration of our
conflict resolution process.



Appl. Sci. 2021, 11, 4486 19 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 24 
 

5.3. Step 3: Defining Consistency Rules (CRs) 

Here, the different CRs are defined in order to describe the relationships that must 

hold between the different parameters of EMs. An excerpt of some CRs for EMA system 

design is presented in Scheme 1. 

 

Scheme 1. An excerpt of CRs for EMA system. 

5.4. Step 4: Defining Graph Patterns (GPs) 

Based on the aforementioned defined CRs, graph patterns are created in order to for-

mulate the expected relationships among the four EMs of EMA system that will cause the 

conflict occurrence as described in Figure 5. Each morphism between two different values 

of the same parameter in the graph pattern highlights the non-respect of a CR.  

5.5. Step 5: Locating Conflicts through Matching GPs against PmCG 

At this level, the conflicts are detected by means of matching the GP against the 

PmCG of each crucial parameter in EMA design. This step is achieved through using the 

functor concept as described in Section 4.2.5. An example of this mapping is illustrated 

through Figure 14. All the remaining PmCGs have to be mapped in the same way in order 

to locate the detected conflicts during EMA system design. The highlighted rows in Table 

2 represent the conflicting parameters detected during the first iteration of our conflict 

resolution process. 

 

Figure 14. GP matching against the PCG of Response time parameter (Rt) using a functor “G”. 

5.6. Step 6: Detecting Related Parameters to the Conflicting Parameter through Checking DCG 

Once the conflicts are located in the first iteration, the related parameters have to be 

detected. If the dependency coefficient is ≤ 2, the link will be ignored. This decision is 

made by the project manager in order to simplify the conflict resolution process. Other-

wise, the high dependency between parameters will be taken into consideration during 

the conflict resolution. In our case, the parameters dependency flows of the first iteration 

Figure 14. GP matching against the PCG of Response time parameter (Rt) using a functor “G”.

5.6. Step 6: Detecting Related Parameters to the Conflicting Parameter through Checking DCG

Once the conflicts are located in the first iteration, the related parameters have to be
detected. If the dependency coefficient is ≤ 2, the link will be ignored. This decision is
made by the project manager in order to simplify the conflict resolution process. Otherwise,
the high dependency between parameters will be taken into consideration during the
conflict resolution. In our case, the parameters dependency flows of the first iteration are
established referring to the DCG as shown in Table 3. At this level, the value of the static
error Se will be modified, then, the value of the related parameters (Rt, Pw, Mass and Rm)
will be updated and saved in the corresponding UPCG. After this modification, the conflict
in static error (Se) value is resolved. Consequently, we move to the second iteration where
the conflict in the Mass value will be handled. We suggest in this case the tolerance of this
conflict by considering a slight modification in the required value defined in EMR. The
remaining conflicts after this iteration are shown in the second column of Table 3. This step
will be repeated until handling all the conflicts.

5.7. Step 7: Saving the Final Values of Each Parameter in the Final Parameter Categorical
Graph (FPCG)

Once all the conflicts are handled successfully, the final results are saved in the FPmCG.
Table 4 illustrates the final results obtained after the conflict resolution process.

During conflict resolution of the static error (Se) parameter, a modification in the
value of the response time (Rt) has occurred due to their dependency. This modification
ameliorates the response time of the system, as shown in Figure 15.

The final PCG of Rt after the conflict resolution process is represented in Figure 16a.
Moreover, the project manager decides to tolerate the non-respect of the requirement in
the global mass parameter. Hence, the value of the Mass in the requirement model (EMR)
is modified. This value will be saved in the final PCG of Mass parameter as illustrated
in Figure 16b. Furthermore, in EM3D the engineer adjusts the values of his 3D design
according to the final COTS components chosen in the EMC (see Table 4).
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Table 3. Conflicting parameters dependency flows.
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Table 4. Final results obtained after the conflict resolution process.

Parameters Unit EMR EMMP EMC EM3D

Response time (Rt) ms 600 140 - -
Static error (Se) deg 2 1.61 - -

Global Mass (Mass) Kg 3.500 - 3.143 -
Maximal power (Pw) W 250 250 250 -

Cost (Ct) € 2000 - 1555.65 -
Motor diameter (Ømot) mm 70 - 65 70
Motor Length (Lgthmot) mm 145 - 131.4 145
Motor resistance (Rm) Ohm - 0.356 0.356 -

Motor Inductance (Lm) mH - 0.000161 0.000161 -
Motor Inertia (Jm) Kg.m2 - 13.45 × 10−5 13.45 × 10−5 -

Reducer diameter (Øred) mm 85 - 81 81
Reducer Length (Lgthred) mm 95 - 91.9 92

Reducer ratio (rred) [] - 3.7 3.7 -
Screw-nut diameter (Øsn) mm 25 - 22 22
Screw-nut Length (Lgthsn) mm 60 - 58.4 60

Screw-nut ratio (rsn) [] - 333 333 -
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6. Discussion

In this section, the main contributions of our proposed approach are highlighted. As
aforementioned, our main goal is to detect and manage conflicts between fine granularity
data during collaborative design in a formal way. The existing approaches in this context do
not present explicit solutions to handle conflicts between parameters and constraint, man-
ual processes are suggested to solve detected conflicts. Furthermore, rule and pattern-based
approaches are presented in the literature as an efficient solution to manage inconsistencies
among heterogeneous models. Despite their flexibility, traceability of collaboration as
well as dependencies between model elements are overlooked in these methodologies.
Hence, we proposed a new conflict resolution process combining pattern and rule-based
methodologies with constraints and parameters approaches using the concepts of category
theory. The methodology presented in this paper allows conflict detection in a formal way
using category mapping through functors.

Additionally, the different versions of the Parameters categorical graphs (PmCG,
UPmCG and FPmCG) ensure the traceability of the collaboration evolution for reuse per-
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spectives. With this formal representation, we can identify that the value of a given
parameter is modified by a given expert model at a given time. Moreover, our proposition
takes into account the change propagation caused by dependencies between the different
parameters, which is overlooked in the existing approaches. Nevertheless, the proposed
methodology presents some limits. On one hand, as mentioned beforehand, identifying
crucial knowledge in our approach is based on meetings between the different stakeholders
involved in the design process. This method is time-consuming and difficult to organize for
mechatronic systems design. Hence, formal methods based on mathematical concepts are
needed in order to extract the most important knowledge for the collaboration in a formal
and easy way. On the other hand, dependency coefficients in the DCG are identified by
the project manager based on his knowledge and previous experiences. This assumption
makes the conflict resolution process centralized on the project manager decisions. Thus,
automated solutions might be integrated into our proposed process.

7. Conclusions

The proposed approach in this research paper enabled conflict detection and manage-
ment during mechatronic systems design. This approach was established by means of rule
and pattern-based approach as well as parameter and constraint approach combination
while using the powerful concepts of category theory. This theory provided, on the one
hand, a unified and formal representation of the knowledge involved in the collaborative
design and, on the other hand, a formal conflict detection method based on categories
mapping by means of functors. The common representational formalism based on CT
concepts allowed collaboration traceability, which will be efficient for reuse perspectives.
Our methodology was applied to a collaborative scenario of the electro-mechanical actuator
of the aileron (EMA) regarding different expert models having common parameters pre-
senting conflicting values. This proposition had proven its efficiency in conflict detection
and handling of the EMA system design and can be further adapted for other case studies.

In future works, we will explore how category theory can be used in the crucial knowl-
edge identification process, which will reduce the execution time of this task. Thereafter,
we will investigate how automated methods may be integrated into our proposed approach
to facilitate dependency coefficient identification.
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