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Abstract: Some strategies for solving differential equations based on the finite difference method
are presented: forward time centered space (FTSC), backward time centered space (BTSC), and
the Crank-Nicolson scheme (CN). These are developed and applied to a simple problem involving
the one-dimensional (1D) (one spatial and one temporal dimension) heat equation in a thin bar.
The numerical implementation in this work can be used as a preamble to introduce a method of
solving the heat equation that can be implemented in problems in the area of finances. The results
of implementing the software on very fine meshes (unidimensional), and with relatively small-
time steps, are shown. Through mesh refinement, it was possible to obtain a better temperature
distribution in the thin bar between a range of points. The heat equation was solved numerically
by testing both implicit (CN) and explicit (FTSC and BTSC) methods. The examples show that the
implemented schemes conform to theoretical predictions and that truncation errors depend on mesh,
spacing, and time step.

Keywords: analytical solution; numerical methods; diffusion equation

1. Introduction

Most physical phenomena are represented by partial differential equations. Steady-
state physical problems or time evolution problems are modeled through elliptic and
parabolic partial differential equations, respectively; these equations are difficult to solve
by analytical methods when the initial and boundary conditions are not simple. An
example of this is shown in [1–3] and references therein, where several equations of
physics-mathematics describing phenomena related to continuous element dynamics, elec-
trodynamics, quantum mechanics, and mass and heat transfer phenomena are highlighted.
For the solution of some of these equations, they use methods such as the Fourier Method,
the Riemann Integration, and the use of the Green’s Function [4–8]. However, these
procedures do not always guarantee analytical solutions that illustrate the behavior of a
mechanical system; this is where numerical methods provide powerful techniques that
allow a solution as close as possible to the reality of a specific problem.

The numerical methods developed by Harriot [9–15] were used to solve equations
and transcended in an important way to engineering in 1943 when Courant developed the
finite element method. Courant used the numerical methods of variation proposed by Ritz
to obtain approximate solutions for mechanical systems [16,17]. The Courant–Friedrichs–
Lewy (CFL) condition is a necessary condition for convergence in the numerical solution
of partial differential equations with partial differentials. A case of special importance is
when time discretization schemes are used as a numerical solution. As a consequence, in
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many simulations, the time step has to be less than a characteristic value; otherwise, the
code may be unstable and not yield the correct results.

Thus, simulations are an effective tool in applied sciences to find solutions and predict
their behavior. Additionally, they allow the mathematical recreation of physical processes
that frequently appear in engineering [18–20]. The use of simulations to study partial
differential equations, in particular the diffusion equation, normally requires a careful
study of numerical methods, the algorithms to be used, and the fundamental processes
to be included in the simulation. A simulation differs from a mathematical model in that
the former is a representation at each instant of the process to be simulated, while the
model is a mathematical abstraction of the fundamental equations necessary to analyze
that phenomenon. Normally, the use of a simulation to study a given problem requires
careful planning of the mathematical model (partial differential equations and initial
and boundary conditions) to be used and of the algorithms necessary to solve the model.
Numerical methods are used to determine the numerical solution of problems for which the
analytical solution may or may not be known. These allow the translation of complicated
mathematical schemes using algorithms, the results of which can be contrasted with the
analytical solutions, in cases where such solutions exist.

In this work, the heat conduction equation is simulated to obtain the temperature
patterns in a thin bar [21–23]. The analysis of non-stationary heat transfer is of practical
interest, not only because of the importance that cooling and heating processes have in a
large number of industrial applications but also because of their similarity with several
other equations of physics-mathematics that present the same difficulties to be solved
numerically. Among the problems directly related to non-stationary heat transfer problems
are the starting and stopping of machines, processes that can lead, on the one hand, to
the appearance of important thermal loads on the solid with the consequent deterioration
(turbine blades, for example), and on the other hand, to an increased emission of polluting
species (steam generators, gas turbines, and alternative internal combustion engines,
among others).

For the reasons mentioned above, the efficient and accurate solution of the time-
dependent differential equations of heat transfer plays a fundamental role, not only because
of the number of engineering problems they represent but also as an initial or test case for
many other more complex problems, in particular, the equations of fluid mechanics, whose
correct solution depends on the efficiency shown by the different methods in the solution
of the heat transfer equations [1–3].

The increasing use of multiprocessor-based computers, either using parallel program-
ming or multiple processors, has recently encouraged the use of explicit methods, which are
much more apt to be parallelized due to their local information processing condition [4,5].
It could be said that an explicit method, although more computationally expensive than an
implicit method, is much more likely to be more efficient in parallel computation, and may
even exceed it, depending on the number of parallel processors used [6–8].

In this work, we try to verify the results obtained previously, using implicit and
explicit methods that are stable for time steps much larger than those normally used in this
type of simulation with time dependence. The time steps achieved are, for similar accuracy,
of the same order as those used in the implicit methods. In this way, all the advantages
concerning the ease of parallel processing typical of the explicit ones are maintained with
the advantages of the implicit ones concerning their stability for large time steps [24,25].

N-soliton solutions could also be generated for (1 + 1)-dimensional integrable differ-
ential equations; however, it is not of interest for this study to treat heat waves as solitons.
The interest of this research is to test different discretization schemes in the solution of
partial differential equations; to study the stability and convergence of each discretization
scheme in the one-dimensional heat diffusion equation; and, finally, to conclude which
scheme is more advantageous for future applications in various areas of interest.
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2. The Heat Equation

In engineering problems, it is common to find mathematical models that include par-
tial differential equations [26–29]. The analytical solution provides a better understanding
of the behavior of some phenomena since it can be determined at any instant of time. In
general, it is not possible to determine this solution due to the non-linearity of the equations
that constitute the mathematical model or due to the domain where the model is stud-
ied. Numerical methods in science and engineering provide a tool that allows translating
mathematical models into computational procedures, whose results can be contrasted with
the analytical solutions, in those cases where they exist. In the following, an algorithm
for solving partial differential equations is shown, using the one-dimensional diffusion
equation as a model problem. The choice of the same one is made based on its multiple
applications in problems of mechanics using the finite difference method to determine the
numerical solution of the diffusion equation using an explicit method and the implicit CN
method [30,31].

The one-dimensional 1D heat equation is expressed by Equation (1)

∂∅
∂t

= α
∂2∅
∂x2 0 ≤ x ≤ L, t ≥ 0 (1)

where ∅ = ∅(x, t) is the temperature and α is a constant coefficient. Equation (1) is a
model of transient heat conduction in a metallic segment of length L (physical domain).
The material property α is the thermal diffusivity. In a practical calculation, the solution is
obtained only for a finite time, tmax.

The solution to Equation (1) requires the specification of boundary conditions at x = 0
and x = L, and initial conditions at t = 0. The initial and boundary conditions are [32,33]:

φ(0, t) = φ0, φ(L, t) = φL φ(x, 0) = ƒ0(x) (2)

Other boundary conditions exist, represented by the gradient of the function at the
ends of the thin bar [34,35], or mixed conditions are also considered in the simulations.
To keep the presentation as simple as possible, only the conditions in Equation (2) are
considered in this article (Figure 1).

Figure 1. For the sake of generality, the discretization scheme is shown with the spacings in time
and space.

3. Finite Difference Approximations

The finite difference method is one of the many techniques to obtain numerical
solutions of Equation (1). In all numerical solutions, the differential equation is replaced by
a discrete approximation. In this context, the word “discrete” means that the numerical
solution is known only at a finite number of points in the physical domain, see Figure 1.
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In general, increasing the number of points not only increases the resolution but also the
accuracy of the numerical solution [36,37].

In many cases, it is not possible to find an analytical solution, especially with those real
physical problems that have regions with non-regular geometry. However, convergence
and stability tests ensure that the finite difference approximations used in the discretization
are correct. There are ways to calculate the convergence of a code when the analytical
solutions are known. Here, the parameters are taken into account to have a sufficiently fine
mesh and thus obtain a convergent system in as few iterations as possible. To this end, we
resort to the condition ∆x ≤ k ∆t, to ensure that the meshing is the one that best fits the
solution space to be discretized. Knowing the value of ∆x, the minimum number of nodes
to give a numerical solution to this system can be determined. In this way, the central idea
of the finite difference method is to replace continuous derivatives with so-called difference
formulas involving only the discrete values associated with positions on the grid.

Applying the finite difference method to a differential equation involves replacing the
derivatives with the corresponding finite difference expression, according to the appro-
priate scheme and accuracy. In the heat equation, there are derivatives concerning time
and derivatives concerning space. Using different grids should confirm the stability of the
solutions. In the limit when the mesh spacing (∆x and ∆t) tends to zero, the numerical
solution with either scheme will approach the true solution to the original differential equa-
tion, or the numerical solution approaches with less error to the true solution. However,
how close the numerical solution approaches the true solution varies with the difference
scheme used. Additionally, some practically useful schemes may fail to give a solution for
bad combinations of ∆x and ∆t. This is what we want to verify in this work [38].

The discrete approximation results in a set of algebraic equations that are evaluated (or
solved) for the values of the discrete variables. Figure 2 is a schematic representation of the
numerical solution. The mesh is the set of points where the discrete solution is calculated
(Figure 1). These points are called nodes; the lines between are adjacent to the domain
nodes, and the resulting image would resemble a grid or mesh. The key parameters of the
mesh are ∆x, the local distance between adjacent points in space, and ∆t, the local distance
between adjacent time steps. For simplicity, the examples considered in this article ∆x and
∆t are uniform throughout the mesh.

Figure 2. Relationship between the continuous problem and the discrete problem.

The numerical solution of the heat equation is discussed in many textbooks.
References [1–8] provide a more mathematical description of the development of finite
difference methods. See Cooper [4] for a modern introduction to the theory of partial
differential equations along with brief coverage of numerical methods [9,13,16] that takes a
more applied approach and introduces implementation problems. Fletcher [4] provides
development in Fortran for several methods.

4. Explicit Methods: Centered, Forward and Backward in Time Differences

The approximations to the governing differential equation are obtained by replacing
all the continuous derivatives with discrete formulas such as those in Equation (3). The
relationship between the continuous (exact) solution and the discrete approximation is
shown in Figure 2 [38]. The finite-difference model is a distinct step of translating the
continuous problem to the discrete one. The finite difference formulas are first developed
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with the dependent variable Ø as a function of a single independent variable, x, i.e.,
∅ = ∅(x). The resulting formulas are then used to approximate derivatives concerning
any space or time.

4.1. Direct Finite Difference of First Order

Consider a Taylor series expansion φ (x) over the point.

φ (xi + δx) = ∅(xi) + δx (3)

φ (x) first order direct difference. Consider a Taylor series expansion φ (x) over the point

φ(xi + δx) = φ(xi) + δx
∂φ

∂x

∣∣∣∣xi +
δx2

2
∂2φ

∂x2

∣∣∣∣xi +
δx3

3!
∂3φ

∂x3

∣∣∣∣xi + . . . (4)

where δx is a change in x to relative to xi. Let δx = ∆x in Equation (4), that is, consider
the value ∅ at the location of the mesh line xi + 1, i.e., ∅(xi + ∆x) = ∅(xi) + ∆x Note that
the powers of multiply partial derivatives to the right-hand side have been reduced by
one. The approximate solution is replaced by the exact solution, i.e., using ∅i ≈ ∅(xi)
y ∅i + 1 ≈ ∅(xi + ∆x)

∂φ

∂x

∣∣∣∣xi ≈
φi+1 − φi

∆x
− ∆x

2
∂2φ

∂x2

∣∣∣∣xi −
∆x3

3!
∂3φ

∂x3

∣∣∣∣xi + . . . (5)

The mean value theorem can be used to replace the higher-order derivatives

∂φ

∂x

∣∣∣∣xi ≈
φi+1 − φi

∆x
+

∆x2

2
∂2φ

∂x2

∣∣∣∣
ε

or
∂φ

∂x

∣∣∣∣xi −
φi+1 − φi

∆x
≈ ∆x2

2
∂2φ

∂x2

∣∣∣∣
ε

(6)

The term on the right-hand side of Equation (6) is called the truncation of the fi-
nite difference approximation. It is the error that results from truncating the series in
Equation (5). In general, ξ is not known and is determined from the simulation. Although
in the exact magnitude the truncation error cannot be known (unless the true solution Ø
(x, t) is known analytically). The notation “O” can be used to express the dependence of
the truncation error on the mesh spacing. The right-hand side of Equation (6) contains the
mesh spacing ∆x, which is selected for convenience.

The equal sign in this expression is true in the order of magnitude sense. That is, the
O = ∆x2 on the right-hand side of the expression is not strictly equal. Rather, the expression
means that the left-hand side is a product of an unknown constant and ∆x2. Although
the expression does not give the exact magnitude of the error, it tells us how fast that
term approaches zero as ∆x becomes smaller. Using the notation O large, one can write
Equation (5) as

∂φ

∂x

∣∣∣∣xi =
φi+1 − φi

∆x
+ O(∆x) (7)

The Equation (7) is known as the forward difference formula for
(

∂∅
∂x

)
xi because it

involves xi and xi+1 nodes. The forward difference approximation has a truncation error
that is O (∆x). The size of the truncation error is under control because the mesh size ∆x
can be chosen.
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4.1.1. First-Order Backward Difference

An alternative first-order finite difference formula is obtained if the Taylor series thus
in Equation (4) is written with δx = −∆x. Using the discrete variable mesh instead of all
unknowns, one obtains

∂∅
∂x

∣∣∣∣xi =
φi − φi+1

∆x
+ O(∆x) (8a)

This is the backward difference formula because it involves the values of ∅ in
xi and xi−1 (Figure 3). The order of magnitude of the truncation error for the backward
difference presents an approximation equal to the direct difference approximation.

∅(xi, tn+1)−∅(xi, tn)

∆t
= d(xi, tn+1) (8b)

Figure 3. Finite difference backward in time (BTCS). Known values are indicated with black circles
and unknown values with a white circle.

4.1.2. First-Order Centered Difference

To obtain the centered finite difference approximation, we start from Equations (9)
and (10), shown below:

φi+1 = φi + ∆x
∂φ

∂x

∣∣∣∣∣xi +
∆x
2

∂2φ

∂x2

∣∣∣∣∣xi +
(∆x)3

3!
∂3φ

∂x3

∣∣∣∣∣xi + . . . (9)

φi−1 = φi − ∆x
∂φ

∂x

∣∣∣∣∣xi +
∆x
2

∂2φ

∂x2

∣∣∣∣∣xi −
(∆x)3

3!
∂3φ

∂x3

∣∣∣∣∣xi + . . . (10)

By subtracting the results of Equation (10) from Equation (9)

∂φ

∂x

∣∣∣∣xi =
φi+1 − φi−1

2∆x
+ O

(
∆x2

)
(11)

This is the centered difference approximation to
(

∂∅
∂x

)
xi, the truncation error for

approximation goes to zero much faster than the truncation error in Equation (7) or (8).
There is a complication with Equation (11) because it does not include the value for ∅i.
This can cause problems when the centered difference approximation is included in an
approximation to a differential equation.
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4.1.3. Second-Order Centered Difference

Finite difference approximations to higher order derivatives can be obtained with the
additional manipulations of the Taylor series expansion over ∅(xi). Adding the yields of
Equations (9) and (10).

∂2φ

∂x2

∣∣∣∣xi =
φi+1 − 2φi + φi+1

∆ x2 + O
(

∆x2
)

(12)

This is also called the central difference approximation, but (obviously) it is the
approximation to the second derivative, while Equation (11) is the central difference
approximation to the first derivative.

The finite-difference approximations developed above are now assembled into a
discrete approximation to Equation (1). Both time and spatial derivatives are replaced by
finite differences. Doing so requires specification of both the time and spatial locations of
the Ø values in the finite-difference. Therefore, one needs to introduce the superscript m to
designate the time of the discrete solution step. Although this seems to be only a simple
problem, choosing the time step where the spatial derivatives are evaluated will have a
great impact on the convergence and stability of finite difference implementation.

4.1.4. Difference Centered Forward in Time

Approximates the derivative of time in Equation (1) with a direct difference

∂φ

∂t

∣∣∣∣∣tm+1, xi =
φn+1

i − φn
i

∆t
+ O(∆x) (13)

Implementation of the forward scheme (Figure 4) requires solving a system of equa-
tions at each time step. In addition to the complication of developing the code, the com-
putational effort per time step for the backward scheme is greater than the computational
effort per time step of the forward difference scheme. The forward scheme has a great
advantage over the centered scheme: it is unconditionally stable (for solutions to the heat
equation). Therefore, the forward scheme produces a robust computational model, even
with the choice of ∆t and ∆x. This advantage, however, is not always appropriate and the
centered scheme is still useful for some problems.

∅(xi, tn+1)−∅(xi, tn)

∆t
= d(xi, tm) (14)

Figure 4. Finite forward difference (FTSC). Unknown values are indicated with a black circle and
known values with white circles.
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4.1.5. Implicit Method: Crank-Nicolson (CN)

In numerical analysis, the Crank-Nicolson (CN) method is a finite difference method
used for the numerical solution of partial differential equations, such as the heat equation.
It is a second order method in time, implicit and numerically stable.

For diffusive equations (and for many other types of equations), it can be shown that
the CN method is unconditionally stable. However, the approximate solutions may still
contain some spurious oscillations, depending on the relationship between the temporal
and spatial spacings (Figure 5).

Figure 5. Crank-Nicolson scheme. Unknown values are indicated with black circles and known
values with white circles.

The FTSC and BTSC schemes have a truncation error in time of O (∆t). When very
accurate solutions in time are needed, the CN scheme has significant advantages. The CN
scheme is no more difficult to implement than the BTSC scheme, and has time truncation
error of order O(∆t2). The CN scheme is implicit and stable [1,18,21]. The left-hand side
of the heat equation is approximated differently from that used in the FTSC scheme. The
right side of the heat equation is approximated by the average of the difference evaluated
at the current and previous time.

Truncation errors in this order-of-magnitude approximation O (∆t2) + O (∆x2). In
contrast to Equation (14), with Equation (15) the fact that it is not possible to rearrange to
obtain an algebraic formula for ∅n(i) in terms of its neighbors ∅n, ∅n (i + 1),∅n (i− 1) y
∅n−1 (or simply adding 1 to each spatial subscript in Equation (15)) shows that ∅n (i + 1),
depends on ∅n (i + 2), and ∅n(i). Thus, Equation (15) is a system of equations for the
values of Ø at the internal nodes of the spatial grid (i = 2, 3, ..., N − 1).

∅(xi, tn+1)−∅(xi, tn)

∆t
=

1
2
[d(xi, tn+1) + d(xi, tm)] (15)

The approximation error for the explicit schematic is O (∆t + ∆x2) and the implicit
Crack Nicolson scheme has an error of the order of O (∆t2 + ∆x2). If the solution of
the equation tends to the solution of the original differential equation when ∆t→ 0 and
∆x→ 0, the scheme in differences is convergent [1,4]. If the computational error produced
at a certain time step decreases or at least does not increase when moving to the next time
step, the scheme is stable.

For example, in the case of diffusion (l), the Crank-Nicolson discretization is:

∅m+1
1 −∅m

i
∆t

=
α

2(∆x)2

((
∅m+1

i+1 −∅m+1
i +∅m+1

i−1

)
+
(
∅m

i+1 −∅m
i +∅m

i−1
))

(16)

The Crank-Nicolson scheme is implicit, and one must solve a system of equations for
the variable Ø at each time step. The system of equations is identical to transient problems
in one spatial dimension, and the difference in computational cost is not significant. How-
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ever, for transient problems with two or three spatial dimensions, the computational effort
per forward time step is much larger than the computational effort per centered time step
of difference. However, the stability is higher than forward. In problems in one, two, or
three dimensions, CN generally provides a computational advantage [38].

4.1.6. The Algorithm

Figure 6 shows the algorithm for finding the numerical solution of the transfer equation.

Figure 6. Algorithm for the numerical solution.

4.1.7. Analytic Solution

By the method of separation of variables, if we assume that the solution Ø has the
form Ø (x, t) = X (x). T(t) it reduces to a problem of ordinary differential equations with
values on the boundary. Using classical methods for the solution of ordinary differential
equations, we obtain the eigenvalues and the corresponding eigenfunctions that allow us
to determine the expression of the analytical solution as a Fourier series given by

∅(x, t) =
∞

∑
n=1

bne−
an2π2

L2 tsin
(nπ

L
x
)

(17)
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where bn with n ∈ N are the coefficients of the Fourier series development of the function
f (x) (initial condition of the problem) and are determined by the formula

bn =
2
L

L∫
0

f (x)sin
(nπ

L
x
)

dx (18)

With the appropriate boundary conditions the analytical solution Ø (x, t) is ob-
tained [39,40].

5. Results
5.1. Numerical Implementation

The finite difference method allows us to obtain an approximate solution for Ø (x, t)
at a finite set of points x and t for the codes developed in this paper. There are plausible
schemes that do not exhibit this important property of converging to the true solution. See
the consistency discussions in references [1,4]. The numerical implementation is performed
uniformly spaced in the interval 0 ≤ x ≤ L such that xi = (i− 1)∆x, i = 1, 2, 3 . . . N where
is the total number of spatial nodes, including those on the edge. Given L and N, the space
between xi is calculated with ∆x = L/(N − 1). Similarly, the discrete times are uniformly
spaced in 0 ≤ t ≤ tmax : tm = (m− 1)∆t, m = 1, 2, ..M where M is the maximum number
of time steps and ∆t is the size of a time step ∆t = tmax/(M− 1).

5.2. Estimates of Truncation Error (TE)

The TE for the centered or forward schemes is O (∆t) + O (∆x2). The notation O large
expresses the rate at which the TE reaches zero. For code validation, we worked with the
magnitude of the TE. For a ∆t, ∆x given as ∆t→ 0 and ∆t→ 0, the true magnitude of the
truncation error is [41–46]

TE = Kt∆t + Kx∆x2 (19)

where Kt y Kx are constants that depend on the accuracy of the finite-difference approxi-
mations implemented. To make TE arbitrarily small, both ∆t and ∆x must approach zero.
To verify that an FTSC or BTSC (results are shown in Figures 7–9) code works correctly, we
wish to determine whether a reduction in ∆t causes a reduction in TE.

Figure 7. Evolution of the temperature in the thin bar versus time and using finite difference
backward (BTCS). The instability of the solution is remarkable.
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Figure 8. Evolution of the temperature on the thin bar as a function of time and position for a grid of
100,000 points on the spatial grid using FTCS.

Figure 9. Evolution of bar temperature versus time and bar point position for a mesh of 150,000
points on the spatial grid using backward finite differences (BTCS).

Similarly, if one wishes to determine whether a linear reduction in ∆x causes a
quadratic reduction in TE, one must vary only ∆t or ∆x. The NC scheme shows a quadratic
reduction in TE with ∆t (Figure 10).
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Figure 10. Evolution of bar temperature versus time and bar point position for a mesh of 150,000
points on the spatial grid using Crank-Nicolson (CN).

One could also use the second-order L1 rules norm, comparing the numerical solution
with the analytical one to determine the error at the level of approximation, as expected.

Figure 11 shows the pseudocode used for the analysis of the heat equation.

Figure 11. Pseudo code showing the numerical scheme in FORTRAN 77 implemented with finite
difference for the heat equation.
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5.3. Solutions Validation

To verify the built-in algorithm, problems that have exact solution are solved and
the analytical results are compared with the numerical solution of the code. A proposed
example is a 3 m long thin wire, and the material properties are: k = 12 w/m◦K.

Table 1 shows the analytical and approximate results of the solution of the one-
dimensional problem given as an example, with an approximation of two decimal digits. It
shows the accuracy that the computer code can achieve when solving the finite difference
problem using the FTCS, CN, and BTCS methods, respectively.

Table 1. Comparison of the exact (analytical) and approximate (numerical with forward difference,
FTCS, CN, and BTCS) solution of the example.

X(m)
Analytical

Temperature
(◦C)

Numerical
Temperature
(FTCS) (◦C)

Numerical
Temperature

(CN) (◦C)

Numerical
Temperature
(BTCS) (◦C)

0 50.00 50.00 50.00 50.00
0.5 125.10 124.76 125.21 120.23
1.0 154.32 154.79 154.02 150.33
1.5 175.22 176.43 175.13 169.07
2.0 202.37 204.84 202.34 199.97
2.5 225.12 225.75 225.18 221.86
3.0 167.35 166.13 167.27 163.45

5.4. Discussion

When performing simulations involving numerical solutions of partial differential
equations, it is evident that, apart from rounding and series truncation errors (recall that
finite difference expressions are derived from a Taylor series development up to second-
order), there are the errors inherent in the limitations of fitting the physical model to
accurately describe the real physical system and the limitations of the boundary condi-
tions [47–50].

The numerical time integration of the equations can be done explicitly or implicitly.
In the former, its main advantage is the possibility to solve each time step, without the
need to solve a system of equations where all the degrees of freedom are involved. Its
disadvantage is the stability of the solutions, which in many cases leads to time steps that
are too small to be efficient.

On the contrary, implicit methods allow, under certain conditions, always stable time
steps, whose size must be regulated only by criteria of precision and not of stability. In
return, a system of equations involving all of its degrees of freedom must be solved, which
makes the method costly and difficult to parallelize.

The implicit method is the Crank-Nicholson method, it has an order of approximation
equal to O (∆t2 + ∆x2). This method has the advantage of being unconditionally stable,
i.e., the instability phenomenon does not appear in the solution that was seen for the
explicit method. Figure 6 shows the temperature profile achieved under the conditions
that introduced instability in the explicit scheme, that is, for ∆x = 5/13 and ∆t = 0.5.

Figures 7–9 show the temperature profiles for the three discretization schemes pre-
sented in this work. CN outperforms the FTCS and BTCS schemes in terms of stability,
convergence, and smoothness of the solutions.

Table 1 compares the values achieved using the three schemes with the analytical
solution. As can be seen in them and as mentioned, a better approximation is achieved for
CN, compared to FTCS and BTCS.

To study stability it is sufficient that the solutions of the differential equations do not
present oscillations (are regular), even more so when the solutions are time-dependent. It
is necessary to let the time-dependent variables evolve for a long time to verify that they
do not present oscillations or irregular peaks, as can be seen in Figure 6.
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All the runs of the codes were elaborated with the three schemes. A mesh refinement
was performed to verify the stability of the solutions. These discretization schemes can be
extended to 2D and 3D problems.

In some cases when the analytical solution is not known, one way to perform conver-
gence is to take the numerical value of the first iteration of the program as the analytical
solution and compare it with the numerical value of the second iteration. Then, the value
of the second iteration is taken as the analytical solution and compared with the numerical
value of the third iteration and so on. The convergence consists of checking how close the
numerical solution obtained is to a known analytical solution.

To perform the convergence of the code elaborated in FORTRAN77, we proceeded
as follows: since the finite difference approximation method used in the Taylor series
development is of second order, it is postulated that the error is also of second order in
∆x. Plotting log (error) Vs log (∆x) (where error involves the numerical and analytical
solution), the error between a known analytical solution and the numerical solution found
for the heat equation is obtained. A slope approximately equal to two implies that the
numerical solution converges to the analytical solution. In this case, a general expression
for convergence calculation given by the L1 rules [20], where fij is the analytical solution
and Fij is the numerical solution obtained and L1 = Error, was used for convergence.

The results obtained for each method used were of 1.7 (BTCS), 1.8 (FTCS), and 2.0
with CN, in full agreement with those expected by the second-order approximation error.

From the above, it is established that the errors found showed a tendency for the NC
method to better approximate the analytical solution in terms of error and convergence in
most of the tests performed.

6. Conclusions

This work serves as a preamble to more complex problems such as the application
of the 1D heat equation in the area of finance. Using as motivation a simple example of
application of the diffusion equation, it has been possible to compare the application of
different methods for its solution. Explicit and implicit numerical methods were presented
with their advantages and disadvantages in terms of the stability of each one. The user can
select the solution method according to the required needs. That is, noticing the instability
problem, the desired method can be selected by choosing the length of the spatial and
temporal interval.

It can be seen that the application of an implicit method allows one to obtain the solu-
tion without falling into the instability phenomenon. Additionally, the Crank-Nicholson
method allows for better approximation. However, there are cases in which such a strict
approximation error may not be necessary; in such cases, an explicit method with fewer
calculations but taking care of the stability of the scheme will suffice.

The mathematical formulation with CN and Dirichlet conditions [34] is the most
appropriate for the solution in the three cases shown. This was verified using Newman
conditions in the three schemes used. This model represents an important tool in the design
and optimization of the processes, so much so that it can be used to test new experimental
conditions, aiming at the decrease of time and costs involved in the simulation of the heat
transfer equation in different physical systems.

There are many finite difference schemes for solving differential equations. It is
numerical experimentation that reveals which of the different schemes is the best to use. The
important factor is to see whether the equations are parabolic, elliptic, or hyperbolic; one
scheme may be more appropriate than others when performing stability and convergence
of the solutions.

To verify the results, a series of simulations previously performed by other authors [1]
is carried out to induce a thorough understanding of the heat transfer phenomena, always
keeping a critical attitude towards the program that executes the calculations. It is time
to integrate partial differential equations and simulations to understand that simulations
require as much or more time than an experimentalist in a laboratory to demonstrate the
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veracity, validity, and strengths of the same and contribute to establishing the paradigms
of all the aspects that accompany a simulation. All the cases were solved with FORTRAN
77. In several cases, the capabilities of the program developed with FORTRAN 77 were
reached in terms of meshes and calculation times.
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