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Abstract: Artificial neural networks (ANNs) are an emerging field of research and have proven to
have significant potential for use in structural engineering. In previous literature, many studies
successfully utilized ANNs to analyze the structures under different loading conditions and verified
the accuracy of the approach. Several studies investigated the use of ANNs to analyze the shear
behavior of reinforced concrete (RC) members. However, few studies have focused on the potential
use of an ANN for analysis of the torsional behavior of an RC member. Torsion is a complex
problem and modeling the torsional fracture mechanism using the traditional analytical approach is
problematic. Recent studies show that the nonlinear behavior of RC members under torsion can be
modeled using ANNs. This paper presents a comprehensive analytical and parametric study of the
torsional response of RC beams using ANNs. The ANN model was trained and validated against
an experimental database of 159 RC beams reported in the literature. The results were compared
with the predictions of design codes. The results show that ANNs can effectively model the torsional
behavior of RC beams. The parametric study presented in this paper provides greater insight into
the torsional resistance mechanism of RC beams and its characteristic parameters.

Keywords: RC beam; torsion; artificial neural network; machine learning; PCA; autoencoder

1. Introduction

Most of the current design code [1–4] formulations for predicting the torsional re-
sponse of reinforced concrete (RC) members are based on the space-truss model [5] and
thin-walled tube theory [6]. However, due to the complex nature of the response of RC
members to torque, these theories have undergone several developments and modifi-
cations, including the introduction of variable angle truss and bending phenomenon,
compatibility equations, and softening of the concrete strut [7]. These developments are
based on experimental observations and were introduced with the intent to develop a
more uniform, rational, and easy-to-use behavior evaluation model. Torsion, which is a
complicated three-dimensional problem, involves the equilibrium and compatibility of
the whole 3D member [8]. Several design parameters, such as dimensions of the member,
details of transverse and longitudinal reinforcement, and the strength of concrete, affect the
torsional behavior of RC members. Extensive research studies have previously been carried
out to investigate the effects of these variables on the torsional response of RC members.
Hsu [9] presented an extensive experimental investigation of RC members under torsion
with normal compressive strength of concrete. Victor and Muthukrishnan [10] investigated
the effect of stirrups on the torque capacity of RC beams and developed an empirical equa-
tion for estimating the stirrup contribution to torque capacity. McMullen and Rangan [11]
experimentally investigated the effect of the aspect ratio and amount of reinforcement on
torsional strength of RC beams, and showed that the torsional strength decreases with an
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increase in aspect ratio. Collins and Mitchell [12] and Hsu and Mo [13] proposed compati-
bility aided analytical models capable of predicting the torsional behavior of RC members.
Koutchoukali and Belarbi [14] and Fang and Shiau [15] experimentally studied the effect
of high-strength concrete on the torsional behavior of RC beams. The studies showed
that the high-strength concrete beams had higher torsional strength and cracking stiffness
than the normal strength concrete beams. Chiu et al. [16] experimentally evaluated the
torsional behavior of RC beams with minimum torsional reinforcement. They found that
the post-cracking reserve strength in specimens with relatively low amounts of torsional
reinforcement is primarily related to the transverse and longitudinal reinforcement ratio,
in addition to the total amount of torsional reinforcement. Bernardo and Lopes [17] tested
sixteen hollow high strength beams subjected to torsion and demonstrated that some
design codes could lead to brittle torsional failure. Yang et al. [18] performed experiments
to study the behavior of ultra-high performance concrete RC beams under torsion with
a compressive strength greater than 150 MPa. Chalioris [19] and Chalioris and Karayan-
nis [20] investigated the influence of the volume of stirrups, the location of longitudinal
steel bars, and rectangular spiral reinforcement on the behavior of RC beams under torsion.
A parametric study on torsional behavior of high strength concrete using nonlinear finite
element analysis was also reported [21]. Recently, Lee et al. [22] examined the effect of
maximum torsional reinforcement limitations specified in widely used design codes.

Despite these research efforts, a rational and easy-to-use torsional evaluation model
has yet to be developed. This is due to (a) the complexities associated with the torsional
behavior of RC members and (b) their testing limitations. Previous research has demon-
strated that artificial neural networks (ANNs) can be an alternative approach for modeling
of RC members under complex loading conditions. Several researchers have successfully
employed ANNs to analyze the structures under different loading conditions and ver-
ified the accuracy of the approach by comparing it to the existing analytical methods.
Previous research studies [23–32] investigated the potential use of ANNs to analyze the
complex shear behavior of RC members and verified the existing design code formulation.
These studies evaluated a variety of design parameters affecting the shear behavior of RC
members with and without transverse reinforcement.

Because the current design codes perform a similar design process for the members
under shear and torsional moment, an analytical approach for the shear can also be
extended to analyze the torsional behavior. However, compared to studies of the shear,
few research studies have utilized ANN models to analyze the torsional response of RC
beams. Tang [33] used radial basis function neural networks (RBFNs) and Cevik et al. [34]
utilized a genetic programming (GP) model to analyze the torsional strength of 76 RC
beams and compared the results with design code equations. The results of these studies
demonstrated that predicting the ultimate strength with RBFN and GP was feasible, and the
prediction was better than existing code formulations. Similarly, Arslan [35] investigated
the efficiency of different artificial neural networks in predicting the torsional strength of
76 RC beams. The study showed that each ANN model provides reasonable predictions of
the ultimate torsional strength of RC beams.

It is evident from the literature that a large number of previous studies have focused
on modeling the shear behavior of RC members using ANNs. However, The studies
investigating torsional behavior are not only limited in number, but the databases used
for training and validation of ANN models appear insufficient. Therefore, the potential
use of ANNs in accurately modeling the torsional behavior of RC beams requires more
detailed research with a more extensive test database for training and validation of the
model. In this study, the torsional strength of RC beams was predicted using an ANN,
and a parametric study of significant characteristic variables was carried out. The ANN
model was trained and validated against a larger test database of 159 RC beams reported in
the previous literature. A total of 10 main input variables were used to train the regression
models. A back-propagation neural network (BPNN) was chosen to predict the torsional
strength, and principal component analysis, in addition to autoencoder algorithms, were



Appl. Sci. 2021, 11, 4465 3 of 23

considered to improve the analysis results. The results of the ANN model were compared
with the predictions of ACI 318-19, EC2-04, CSA-14, and JSCE-07.

2. Current Design Code Approaches for Torsion
2.1. ACI 318-19

The ACI 318-19 design provisions evaluate the maximum torsional strength of RC
members based on a thin-walled tube space-truss analogy. The code suggests that after
cracking, all the torsional actions are assumed to be resisted by stirrups and longitudinal
reinforcement, without any concrete contribution. Therefore, in the calculation of Tn,
only the torsional strength contribution from transverse and longitudinal reinforcement are
considered, and the assistance from the concrete is ignored. According to the ACI 318-19
design code, the torsional resistance of non-prestressed and prestressed members shall be
the lesser of (1) and (2):

Tn =
2Ao At fty

s
cotθ (1)

Tn =
2Ao At fy

ph
tanθ (2)

where θ shall not be taken to be less than 30◦ nor greater than 60◦. At is the area of one leg
of a closed stirrup resisting torsion, Ao is the area of longitudinal torsional reinforcement,
fty and fy are the yield strength of transverse and longitudinal torsional reinforcement,
respectively, and ph is the perimeter of the centerline of the outermost closed stirrup.

Once the torsional cracks are developed, the concrete outside of the stirrups becomes
relatively ineffective. The total torsional stresses are carried by closed stirrups, longitudinal
reinforcement, and concrete diagonals in compression. For this reason, Ao, the gross area
enclosed by the shear flow path around the perimeter of the tube, is defined after cracking
in terms of Aoh, the area enclosed by the centerline of the outermost closed transverse
torsional reinforcement.

2.2. EC2-04

EC2-04 evaluates the maximum torsional strength of RC members based on the
following equation:

TRd,max = 2vαcw fcd Akte f ,isinθcosθ (3)

Here, TRd,max represents the maximum torsional resistance; v, the strength reduction
factor for concrete cracked in shear; αcw, coefficient taking account of the state of the stress
in the compression chord of analogous truss; fcd, the design value of concrete compressive
strength; Ak, the area enclosed by the centerlines of the connecting walls i due to torque;
tef,I, the effective thickness of wall i due to torsion; θ, the strut angle.

2.3. CSA-14

Similar to ACI 318-19, CSA-14 utilizes the space-truss theory to compute the maximum
torsional strength of RC members. The code suggests the following equation:

Tr = 2Ao
φs At fy

s
cotθ (4)

In this equation, Ao = 0.85Aoh (Aoh is the area enclosed by the centerline of the exterior
closed transverse torsion reinforcement, including area of holes (if any)). Although the
basic equation for torsional resistance in CSA-14 is based on the concept of the space-truss
analogy, the calculation of strut angle θ is somewhat different from that of the ACI 318-
19 procedure. The θ in CSA-14 uses either a simplified method, in which θ should be
taken to be equal to 35◦ when the yield strength of longitudinal steel reinforcement and
specific compressive strength of concrete do not exceed 400 and 60 MPa, respectively; or a



Appl. Sci. 2021, 11, 4465 4 of 23

compatibility aided approach, in which θ is a function of axial strain at the mid-depth of
the section εx. θ and εx can be calculated using Equations (5) and (6) as follows:

θ = 29 + 7000εx (5)

εx =
M f /dv + Vf −Vp + 0.5N f − Ap fpo

2
(
Es As + Ep Ap

) . (6)

2.4. JSCE-07

JSCE-07 evaluates the maximum torsional strength of RC members based on the
presence or absence of torsional reinforcement. The torsional capacity of members without
torsional reinforcement can be calculated based on the elasticity theory using Equation (7),
given below:

Ttcd = βntKt
ftd
γb

(7)

Here, Ttcd is the maximum torsional strength of members without torsional rein-
forcement and βnt considers the effect of axial forces, such as prestressing forces. βnt is
taken as

√
1 + σ′nd/(1.5 ftd), where ftd is the tensile strength of concrete and σ′nd is the

average working compressive stress due to axial forces, which must be smaller than 7 ftd.
The strength reduction factor γb is taken as 1.3 and the torsion factor Kt is calculated using
the formula presented in Table 9.2.1 of the design code. Kt differs by the shape of the
cross-section.

By comparison, the maximum torsional strength of members with torsional reinforce-
ment can be evaluated using the Equation (8) (Equation 9.2.31 in JSCE-07 design code),
which is based on the space-truss theory:

Ttcd = 2Am

√
qwql

γb
(8)

Am in this equation is the effective area for torsion, which depends on the shape of the
cross-section, and qw and ql are calculated as Atw fwd/s and ∑ Atl fld/u, respectively. Here,
Atl and Atw are the areas of longitudinal and single transverse reinforcement, respectively,
that work effectively as torsion reinforcements, and fld and fwd are their respective yielding
strengths. s is the longitudinal spacing of transverse torsional reinforcement and u repre-
sents the length of centerline of transverse reinforcement, which is taken as 2(bo+do) and
πdo for the rectangular and circular cross-sections, respectively.

3. Development of ANN Model

In this study, an ANN model for evaluating the ultimate torsional strength of RC
beams was developed using the open-source software package WEKA3 [36]. The model
utilizes the multilayer perceptron regression (MLP regression) algorithm. The theoretical
details of MLP regression can be found in the work of Kim et al. [37]. Because the algorithm
is well known and widely used for regression, the theoretical explanation is omitted in
this paper. To improve and strengthen the accuracy of the ANN model, preprocessing
algorithms were considered in this study. The algorithms used were principal component
analysis and autoencoder, and the details of the algorithms are discussed in this section.

3.1. Data Selection for the Training and Validation Set

One of the most important elements in developing a neural network model is selection
of the dataset, which is divided into two subsets: training data and testing data. Both sta-
bility and precision of the neural network model depend on the training phase [38,39].
In this research, a large experimental dataset of 159 specimens reported in the existing
literature [9,11,14,15,22,40–43], was used for the training and validation of the ANN model.
Almost 95% of the total data (151 specimens) was used for training and the remaining
5% (8 specimens) was used for validation. In this research, ten independent variables
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were used as input parameters for the ANN models. These input parameters include two
sectional properties: width (b) and depth (h), both in millimeters; three variables related to
closed stirrup: width (b′), depth (h′), and spacing (s), all in millimeters; the concrete com-
pressive strength (f

′
c), in MPa; and four reinforcement related properties: yield strength of

the longitudinal reinforcement (fyl) in MPa, longitudinal reinforcement ratio (ρl) in percent,
yield strength of transverse reinforcement (fyt) in MPa, and transverse reinforcement ratio
(ρt) in percent. The output variable was set to be the maximum torsional strength (Tmax) of
the RC beams. The sectional and material details of training and validation datasets are
given in Appendix A Table A1. Before learning, the raw data was preprocessed for more
efficient training and a better outcome.

3.2. Principal Component Analysis

Raw data Xb ∈ Rm×n used for training the learning algorithm in this article consisted
of m = 151 experimental sequences, where each experimental sequence comprises n = 10
variables. Because each variable varies within different ranges for the datasets used in this
article, they are typically normalized before being supplied for training. However, because
not all variables are mutually independent, none of them are necessary for training nor
they are in the best form (uncorrelated) for training the algorithm. PCA is a mathematical
tool used to reduce the number of correlated variables in a dataset to uncorrelated variables
called the principal components [44].

Finding the principal components of the given dataset Xb starts with column-wise
normalization [45]:

Xa
i =

Xb
i − Xb

i 1

σ
(
Xb

i
) (9)

were Xb
i is the i–th column vectors of Xb, the over-bar indicates the mean of subtended

term (therefore scalar), 1 is length–m column vector where all entries are unity, and σ(Xb
i )

represents the standard deviation of Xb
i . Performing this operation for all column vectors of

Xb yields a column-wise normalized matrix Xa. The correlation matrix Rb, which is the table
of correlation coefficients between all variables (columns) in the raw dataset, Xb, is equiva-
lent to the covariance matrix of the column-wise normalized matrix Xa. The correlation
coefficient ra

ij between column vector i and j of Xb, namely Xb
i and Xb

j , is calculated as:

ra
ij =

1
m− 1

(
Xb

i − Xb
i 1
)T(

Xb
i − Xb

i 1
)

σ
(
Xb

i
)
σ
(

Xb
j

) (10)

ra
ij =

1
m− 1

(Xa
i )

TXa
j (11)

Then, the correlation matrix Rb of Xa is simply the collection of ra
ij
′s as:

Ra =

 ra
11 · · · ra

1n
...

. . .
...

ra
n1 · · · ra

nn

 (12)

To perform PCA, eigenvectors and eigenvalues of Rb are required. This is achieved by
the eigenvalue decomposition as:

Ra = VaΛaVaT (13)

where Va is a matrix with the eigenvectors of Rb as its column vectors, and Λa is a diagonal
matrix with the corresponding eigenvalues as its diagonal entries. Each eigenvector post-
multiplied by the normalized data set Xa yields a principal component, and the significance
of the computed principal component is represented by the corresponding eigenvalue,
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because it represents the variance of the designated principal component. The results are
tabulated in Table 1.

X = XaVa (14)

Table 1. Principal component results.

PC1 PC2 PC3 PC4 PC5 PC6

b (mm) 0.448 −0.186 −0.117 0.307 −0.315 0.057
h (mm) 0.437 −0.089 −0.182 −0.396 0.229 0.075
b′ (mm) 0.441 −0.133 −0.132 0.399 −0.340 0.086
h′ (mm) 0.407 −0.101 −0.246 −0.440 0.271 0.230
f
′
c (MPa) −0.185 −0.416 −0.034 0.453 0.567 0.509

fyl (MPa) −0.060 −0.601 0.089 −0.055 −0.149 −0.242
ρl (%) −0.362 −0.205 −0.330 −0.298 −0.239 0.203

fyt (MPa) −0.101 −0.585 0.119 −0.223 −0.145 −0.185
ρt (%) −0.256 0.099 −0.557 −0.008 −0.370 0.364

s (mm) 0.060 0.024 0.658 −0.224 −0.316 0.637

Variables (columns) of the preprocessed dataset X are now linearly independent;
that is, X is de-correlated. To determine if this is true, one may show that the correla-
tion matrix of XTX, namely R, is a diagonal matrix. Using Equations (10), (13), and (14)
sequentially yields:

R = 1
m−1 XTX = 1

m−1 (XaVa)TXaVa = 1
m−1 (V

a)T(Xa)TXaVa= (Va)T RaVa

= (Va)TVaΛa(Va)TVa = IΛa I = Λa (15)

therefore, X is de-correlated.
When the column vectors of Va are sorted in descending order regarding the corre-

sponding eigenvalues before being multiplied, the resulting principal components in X are
significant in the order they appear. Figure 1 shows the significance of each principal com-
ponent for the dataset used in this article. The percentages are the normalized eigenvalues
and their sum equals 100. As indicated, including the first six principal components is
sufficient to represent 96% of the variance in the original data set Xb. We may choose these
six principal components for training the learning algorithm and achieve a comparable
prediction accuracy, and the dimensions of the input data set are reduced. In addition,
the quality of the data set is improved because the principal components are linearly
independent.

Figure 1. Significance of each principal component.
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3.3. Autoencoder

Dimension reduction, or feature extraction in machine learning terminology, particu-
larly in image analysis applications, is also possible using the method called autoencoding,
which is an unsupervised learning technique using an ANN. Autoencoder uses the (nor-
malized) raw data as input and output at the same time. To benefit from the dimension
reduction, the classical autoencoder sets the number of nodes in the hidden layer inten-
tionally less than the input layer dimension [46]. A typical neural network architecture
of an autoencoder with fewer hidden layer nodes than in the input is shown in Figure 2.
Autoencoder takes the raw data Xb from the input layer and predicts the output X̂b such
that X and X̂b are close. Because the data goes through a hidden layer, which has fewer
nodes than the number of nodes in the input layer, the autoencoder tries to squeeze the
information in the input to fit into the hidden layer. This process in called encoding. Af-
ter the compression, the autoencoder decodes the data to reconstruct the input. When the
autoencoder finds a way to successfully reconstruct the data X̂b, which is close enough
to the input Xb, we can conclude that the squeezed information in the hidden layer has
sufficient information to closely describe the original data Xb but with a reduced dimension.
We refer to the compressed data as code. Because the code is considered to have sufficient
information to describe the raw data, using the code for training the learning algorithm
would be (almost) equivalent to training using the original data, and the dimension of the
data is reduced, as in PCA.

Figure 2. Simplified typical neural network architecture to implement an autoencoder.

A similar benefit, however, can be achieved by setting the number of nodes in the
hidden layer to be greater than in the input with sparsity constraints [47–49]; this allows
a greater number of hidden layer nodes than in the input layer, of which only a few are
activated, while most of the nodes remain inactive. Such an autoencoder is called the sparse
autoencoder and is known to have the advantage that, by using a dimension higher than
the original data, the likelihood that each experimental datapoint is easily distinguishable
is increased [50]. In this article, we used this sparse autoencoder with one hidden layer
consisting of 20 units (whereas the original data had 10 variables). The coded data was
then fed into the learning algorithm with one hidden layer with 24 nodes for training.
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3.4. Results of ANN Analysis

To develop the regression models, one layer of the hidden layer and two different
preprocessing filters were applied to the ANN models. A total number of 52 and 24 hidden
nodes were selected for the ANN models with two preprocessing algorithms: PCA and
autoencoder. The number of hidden nodes was chosen based on the trial-and-error method.
The activation function for the models was a sigmoid function. The calculated weight
values between the input-to-hidden layers and hidden-to-output layers are summarized in
Tables A2 and A3 for PCA and autoencoder, respectively.

The maximum torsional strength of 151 specimens of the training dataset was pre-
dicted using the ANN models developed in this study and compared with the predictions
of the most widely used design codes. Figure 3 shows comparison plots between the
experimental results and the calculated torsional strength of specimens. The x-axis repre-
sents the measured torsional strength of specimens and the y-axis presents the predicted
torsional strength by the design codes and developed ANN models. As shown in the
figure, among the four design codes, ACI 318-19 (Figure 3a) showed better predictions
with mean value and coefficient of variation (CV) of 0.98 and 25.18%, respectively. CSA-14
(Figure 3c) and JSCE-07 (Figure 3d) overestimated the maximum torsional strength of
RC beams. The mean value of the ratio of experimental torsional strength to predicted
torsional strength using CSA-14 was 0.71 with a CV of 25.18%, and the mean and CV for
JSCE-07 were 0.86 and 23.46%, respectively. EC2-04 (Figure 3b) mainly underestimated
the maximum torsional strength of RC beams. The mean and CV obtained using EC2-04
were 1.14 and 29.36%, respectively. In contrast, the ANN models successfully predicted
the maximum torsional strength of RC beams with the best mean and CV, compared to
the four design codes. The ANN model with two preprocessors—PCA (Figure 3e) and
autoencoder (Figure 3f)—resulted in a mean value of 1.0 for the ratio of experimental to
predicted torsional strength. The CV with PCA and autoencoder was 5.47% and 2.86%,
respectively, which is significantly lower than the CV of design code predictions.

The accuracy of the analysis results using current design codes and the developed
ANN algorithms was further evaluated based on three different errors: Root Mean Square
Error (RMSE), Relative Absolute Error (RAE), and Root Relative Square Error (RRSE).
Table 2 summarizes the calculated correlation coefficients and error percentages. The corre-
lation coefficient of the developed ANN algorithms was 0.9968 and 0.9993 for PCA and
autoencoder, respectively. The results from the developed ANN models well reflected
the training data set, and significantly lower error percentages were obtained by utilizing
the developed ANN models. All the calculated errors of the ANN models were lower
than 10%.

Table 2. Prediction accuracies.

ACI 318-19 EC2-04 CSA-14 JSCE-07 PCA Autoencoder

Correlation Coefficient 0.9369 0.9467 0.8924 0.9260 0.9968 0.9993
Root Mean Square Error 16.1713 14.4432 36.8951 22.8708 3.4492 1.6022
Relative Absolute Error 32.1298 30.9552 76.4643 42.4559 6.5440 2.9346

Root Relative Square Error 37.6681 33.6429 85.9407 53.2735 8.0344 3.7321
Error (%)
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Figure 3. Comparisons between predicted and measured torsional strength of the training dataset. (a) ACI 318-19; (b)
EC2-04; (c) CSA-14; (d) JSCE-07; (e) PCA; (f) autoencoder.

4. Model Validation
4.1. Validation Data Set

After the analysis of training dataset, the proposed ANN model was validated against
a dataset of eight RC beams subjected to torsional moments. These eight specimens were
not used for the training set. Details of the specimens and test results are summarized
in Table 3. Because eight specimens were extracted from five different experimental test
programs, the details of each specimen were different.
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Table 3. Details of the validation set specimens.

Specimen

Section Details Concrete Longitudinal Bar Transverse Bar Test
Strength

b
(mm)

h
(mm)

b′

(mm)
h′

(mm)
f
′

c
(MPa)

ρl
(%)

fyl
(MPa)

ρt
(%)

fyt
(MPa)

s
(mm)

Tu
(kN·m)

B-1 300 350 247 29 42.2 1.00 659 1.01 667 130 47.64
B-2 300 350 247 297 68.4 1.51 310 1.88 340 70 66.71
B-3 320 370 247 297 26.0 0.86 353 0.90 353 130 34.91
B-4 320 370 247 297 50.0 0.43 480 0.53 480 220 34.05
B-5 400 600 310 510 35.3 0.93 320 0.93 334 53 126.11
B-6 400 600 310 510 35.3 0.69 309 0.67 334 73 110.14
B-7 203 305 165 267 93.9 0.82 386 0.92 386 108 21.00
B-8 254 508 216 470 30.9 0.62 323 0.63 334 121 40.34

4.2. Validation Data Results

The maximum torsional strength of the specimens was calculated using the ANN
algorithms with two preprocessors, PCA and autoencoder, and current four design codes.
In Figure 4, the validation results of the algorithms were compared with the prediction of
design codes. The x-axis represents the specimen name and the y-axis shows the ratio of the
test to calculated torsional strength. In Figure 4a, the circular, diamond, triangular, and cross
markers represent ACI 318-19, EC2-04, CSA-14, and JSCE-07, respectively, whereas in
Figure 4b, the circular and cross markers indicate the ANN algorithm results with PCA and
autoencoder, respectively. The mean value, standard deviation, and CV of the validation
set are presented in Table 4. As shown in Figure 4 and Table 4, the ANN model accurately
predicted the maximum torsional strength compared to the predictions of design codes,
even if the models were untrained for this data set. The ANN models resulted in the
best mean and CV values of 0.96 and 2.27%, respectively, for PCA, and 1.05 and 11.55%,
respectively, for the autoencoder. In contrast, ACI 318-19 and EC2-04 overestimated,
and JSCE-07 and CSA-14 mainly underestimated, the maximum torsional strength of RC
beams. The mean and CV values for ACI 318-19, EC2-04, CSA-14, and JSCE-07 were 1.09,
1.13, 0.701, 0.88 and 22.32%, 22.95%, 23.57%, 21.55%, respectively.

Figure 4. Comparisons between predicted and measured torsional strength of the validation dataset. (a) Current design
codes; (b) ANN models.

Table 4. Statistical values of the validation dataset.

ACI 318-19 EC2-04 CSA-14 JSCE-07 PCA Autoencoder

Mean 1.09 1.13 0.70 0.88 0.96 1.05
Standard deviation 0.24 0.26 0.16 0.19 0.02 0.12

Coefficient of variation 22.32 22.95 23.57 21.55 2.27 11.55
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5. Parametric Study

A parametric study was conducted to evaluate the potential effects of input variables
on the torsional strength of RC beams. RC beam H1-540-100 from the training dataset in
Table A1 was chosen as a reference beam for this parametric study. To investigate the effect
of an individual variable on torsional strength, all the other variables were fixed while
the individual variable was varied. Figures 5 and 6 show the results of the parametric
study of 10 variables using the ANN with PCA and autoencoder, respectively. The x-axis
represents the range of the individual variable and the y-axis indicates the normalized
torsional strength in MPa. The empty square markers represent the experimental test data.
The double-lined curves in Figures 5 and 6 are the trained ANN models with PCA and
autoencoder algorithms, respectively. The solid, dotted, dashed, and dash-dot curves are
the calculated normalized torsional strength from ACI 318-19, EC2-04, CSA-14, and JSCE-07,
respectively.
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Figure 5. Parametric study using PCA: (a) beam width; (b) beam height; (c) closed beam width; (d) closed beam height;
(e) concrete strength; (f) yield strength of longitudinal bar; (g) amount of longitudinal bar; (h) yield strength of transverse
bar; (i) amount of transverse bar; (j) spacing of transverse bar.
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Figure 6. Parametric study using autoencoder: (a) beam width; (b) beam height; (c) closed beam width; (d) closed beam height;
(e) concrete strength; (f) yield strength of longitudinal bar; (g) amount of longitudinal bar; (h) yield strength of transverse bar;
(i) amount of transverse bar; (j) spacing of transverse bar.

5.1. Size of Concrete Section

Figures 5 and 6a–d show the results of the analysis of the cross-sectional size effect
on torsional strength of RC beams. The size effect of the concrete cross-section and closed
section was nearly negligible among the test results. No clear trend was observed in the
experimental data with increasing beam section width and overall depth; nor did the
ANN model show any significant variation in torsional strength. The figures show a large
scattering without an obvious tendency, which implies that the other input variables affect
the torsional strength of RC beams more than the sectional dimensions and size.

5.2. Concrete Strength

Although the current design codes neglect the contribution of concrete to the torsional
strength of RC members, the experimental results show the increasing torsional strength
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with increasing compressive strength of concrete. As shown in Figures 5 and 6e, the ANN
with PCA and autoencoder can effectively take into consideration the effect of concrete
compressive strength. The calculated torsional strength with ANN tends to increase as the
concrete strength increases, whereas the design codes predict no effect of concrete strength
on the torsional strength of RC beams.

5.3. Amount and Yielding Strength of Longitudinal Reinforcement

The analysis results in Figures 5 and 6f–g show that the yield strength of longitudinal
reinforcement does not significantly affect the torsional behavior. The torsional behavior is
rather more affected by the amount of longitudinal reinforcement than its yield strength.
As shown in the figure, the torsional strength remained nearly the same for all ranges of
yielding strengths, which was effectively represented by the current design codes and the
ANN algorithms. However, the torsional strength increased as the amount of longitudinal
reinforcement increased. This increasing trend of torsional strength was well reflected by
ACI 318-19 and EC2-04 design codes.

5.4. Amount and Yielding Strength of Transverse Reinforcement

The effect of the transverse reinforcement was nearly the same as the effect of the
longitudinal reinforcement. Figures 5 and 6h–j represent the effect of yielding strength,
amount, and spacing of transverse reinforcement on torsional strength of RC beams.
A slightly increasing trend of the torsional strength was observed with the increasing yield
strength of transverse reinforcement. This effect was well accounted for in all design codes.
In the case of the amount of transverse reinforcement, EC2-04 and CSA-14 overestimated
the torsional strength of RC beams. The ANN algorithms well predicted the increasing
trend of the torsional strength with increasing amount of transverse reinforcement. Spacing
of transverse reinforcement was reflected by the amount of transverse reinforcement.
Therefore, an independent effect of the spacing of transverse reinforcement on torsional
strength cannot clearly be observed by the current design codes.

6. Conclusions

In this research, a back-propagation neural network (BPNN) model was used to
predict the ultimate torsional strength of RC beams. A total of 159 experimental datapoints
were collected from previous experimental test programs to train and validate ANN
models. Before training, the raw data was preprocessed using principal component analysis
(PCA) and the sparse autoencoder technique to enhance the quality of the training dataset.
The analysis results obtained using the ANN model were compared with the predictions
of four design codes. Significant results were obtained, as follows:

• The data collected to utilize the ANN technique was almost double that of the existing
publications.

• In addition to BPNN algorithms, two preconditioners, PCA and an autoencoder,
were also used. These were shown to increase the accuracy.

• Predicting the torsional strength of RC beams was straightforward with the trained
ANN algorithms.

• The trained ANN could better reflect the effect of input variables for those that were
not well reflected by the current design codes.

A parametric study was conducted to evaluate the potential effect of each input vari-
able on the torsional behavior of RC beams. First, the cross-sectional size effect and the en-
closed section size effect were not observed. The torsional strength of the RC beams did not
show any noticeable change per the change in the concrete size-related variables. Second,
the concrete compressive strength showed a positive relationship to the torsional strength,
which was capped around 90 MPa. Third, the amount of longitudinal reinforcement posi-
tively affected the torsional strength, whereas the contribution of yield strength was less
significant. Finally, similar trends were observed from the transverse reinforcement-related
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variables, in terms of effective amount and less-effective yield strength. A decrease in
torsional strength was observed as the spacing increased.
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Appendix A

Table A1. Details of the Training Set Data.

Specimen

Section Details Concrete Longitudinal
Bar Transverse Bar Test

Strength

b
(mm)

h
(mm)

b′

(mm)
h′

(mm) f
′

c(MPa)
ρl

(%)
fyl

(MPa)
ρt

(%)
fyt

(MPa)
s

(mm) Tu (kNm)

T1-C42S40 300 350 247 297 42.2 1.00 317 1.01 340 130 44.62

T1-C42S50 300 350 247 297 42.2 1.00 469 1.01 480 130 50.06

T1-C70S40 300 350 247 297 68.4 1.00 317 1.01 340 130 50.79

T1-C70S50 300 350 247 297 68.4 1.00 469 1.01 480 130 50.06

T1-C70S60 300 350 247 297 68.4 1.00 659 1.01 667 130 50.45

T2-C42S40 300 350 247 297 42.2 1.51 310 1.88 340 70 56.83

T2-C42S50 300 350 247 297 42.2 1.13 466 1.46 480 90 53.21

T2-C42S60 300 350 247 297 42.2 1.00 659 0.94 667 140 46.65

T2-C70S50 300 350 247 297 68.4 1.13 466 1.46 480 90 48.86

T2-C70S60 300 350 247 297 68.4 1.00 659 0.94 667 140 48.55

C24SD30-ACI 320 370 247 297 26.0 0.67 335 0.58 353 200 30.16

C24SD30-EC 320 370 247 297 26.0 1.34 335 1.29 353 90 40.60

C24G60-ACI 320 370 247 297 26.0 0.43 480 0.45 480 260 31.58

C24G60-mid 320 370 247 297 26.0 0.64 480 0.65 480 180 32.80

C24G60-EC 320 370 247 297 26.0 0.88 442 0.97 480 120 36.64

C42G60-mid 320 370 247 297 50.0 0.64 480 0.78 480 150 39.70

C42G80-ACI 320 370 247 297 50.0 0.43 673 0.39 673 300 38.96

C42G80-mid 320 370 247 297 50.0 0.64 673 0.53 673 220 39.83

T1-350-65 400 600 310 510 35.4 0.75 313 0.75 334 65 123.45

T1-480-90 400 600 310 510 35.4 0.55 475 0.54 486 90 124.11

T1-660-122.5 400 600 310 510 35.4 0.44 569 0.40 595 123 88.87

T2-480-72.5 400 600 310 510 35.3 0.69 468 0.67 486 73 105.61
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Table A1. Cont.

Specimen

Section Details Concrete Longitudinal
Bar Transverse Bar Test

Strength

b
(mm)

h
(mm)

b′

(mm)
h′

(mm) f
′

c(MPa)
ρl

(%)
fyl

(MPa)
ρt

(%)
fyt

(MPa)
s

(mm) Tu (kNm)

T2-660-100 400 600 310 510 35.3 0.54 567 0.49 595 100 109.91

T3-350-90 400 600 310 510 35.4 0.55 318 0.54 334 90 101.10

T3-660-90 400 600 310 510 35.4 0.60 570 0.54 595 90 117.15

T4-660-72.5 400 600 310 510 35.3 0.75 565 0.67 595 73 119.83

H1-350-65 400 600 310 510 36.5 0.75 365 0.75 356 65 127.83

H1-480-90 400 600 310 510 36.5 0.55 451 0.54 454 90 129.92

H1-540-100 400 600 310 510 36.5 0.50 546 0.49 542 100 116.80

H2-350-52.5 400 600 310 510 30.7 0.93 357 0.93 360 53 142.81

H2-480-72.5 400 600 310 510 36.5 0.69 449 0.67 454 73 127.54

H2-540-80 400 600 310 510 36.5 0.60 545 0.61 542 80 125.65

H3-350-90 400 600 310 510 36.5 0.55 363 0.54 356 90 102.48

H3-540-135 400 600 310 510 36.5 0.38 544 0.36 542 135 94.71

H4-350-72.5 400 600 310 510 30.7 0.69 359 0.67 360 73 113.65

H4-540-72.5 400 600 310 510 36.5 0.69 543 0.67 542 73 129.32

B5UR1 203 305 165 267 39.6 0.82 386 0.92 373 108 19.40

B7UR1 203 305 165 267 64.6 0.82 386 0.92 399 108 18.90

B9UR1 203 305 165 267 75.0 0.82 386 0.92 373 108 21.10

B12UR1 203 305 165 267 80.6 0.82 386 0.92 399 108 19.40

B12UR2 203 305 165 267 76.2 0.82 386 0.97 386 102 18.40

B12UR3 203 305 165 267 72.9 1.05 376 1.04 386 95 22.50

B12UR4 203 305 165 267 75.9 1.23 373 1.10 386 90 23.70

B12UR5 203 305 165 267 76.7 1.28 380 1.41 386 70 24.00

B1 254 381 216 343 27.6 0.53 314 0.54 341 152 22.26

B2 254 381 216 343 28.6 0.83 316 0.82 320 181 29.26

B3 254 381 216 343 28.1 1.17 328 1.17 320 127 37.51

B4 254 381 216 343 30.5 1.60 320 1.62 323 92 47.34

B5 254 381 216 343 29.0 2.11 332 2.13 321 70 56.16

B6 254 381 216 343 28.8 2.67 332 2.61 323 57 61.69

B7 254 381 216 343 26.0 0.53 320 1.17 319 127 26.89

B8 254 381 216 343 26.8 0.53 322 2.61 320 57 32.54

B9 254 381 216 343 28.8 1.17 319 0.54 343 152 29.83

B10 254 381 216 343 26.5 2.67 334 0.54 342 152 34.35

D1 254 381 216 343 26.6 0.53 333 0.54 338 152 22.37

D2 254 381 216 343 25.6 0.83 323 0.82 331 181 27.68

D3 254 381 216 343 28.4 1.17 341 1.17 333 127 39.09

D4 254 381 216 343 30.6 1.60 330 1.62 333 92 47.91

M1 254 381 216 343 29.9 0.83 326 0.55 353 149 30.39

M2 254 381 216 343 30.5 1.17 329 0.78 357 105 40.56
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Table A1. Cont.

Specimen

Section Details Concrete Longitudinal
Bar Transverse Bar Test

Strength

b
(mm)

h
(mm)

b′

(mm)
h′

(mm) f
′

c(MPa)
ρl

(%)
fyl

(MPa)
ρt

(%)
fyt

(MPa)
s

(mm) Tu (kNm)

M3 254 381 216 343 26.8 1.60 322 1.07 326 140 43.84

M4 254 381 216 343 26.5 2.11 319 1.42 327 105 49.60

M5 254 381 216 343 28.0 2.67 335 1.81 331 83 55.70

M6 254 381 216 343 29.4 3.16 318 2.13 341 70 60.11

I2 254 381 216 343 45.2 0.83 325 0.83 349 98 36.04

I3 254 381 216 343 44.7 1.17 343 1.17 334 127 45.65

I4 254 381 216 343 45.0 1.60 315 1.62 326 92 58.08

I5 254 381 216 343 45.0 2.11 310 2.13 325 70 70.73

I6 254 381 216 343 45.8 2.67 325 2.61 329 57 76.72

G1 254 508 216 470 29.8 0.40 322 0.40 339 187 26.78

G3 254 508 216 470 26.8 0.88 339 0.88 328 156 49.60

G4 254 508 216 470 28.3 1.20 325 1.20 321 114 64.86

G5 254 508 216 470 26.9 1.58 331 1.60 328 86 71.98

G6 254 508 216 470 29.9 0.60 334 0.59 350 127 39.09

G7 254 508 216 470 31.0 0.93 319 0.94 323 146 52.65

G8 254 508 216 470 28.3 1.32 322 1.31 329 105 73.45

N1 152 305 130 283 29.5 0.61 352 0.61 341 92 9.09

N1A 152 305 130 283 28.7 0.61 346 0.61 345 92 8.99

N2 152 305 130 283 30.4 1.11 331 1.11 338 51 14.46

N2A 152 305 130 283 28.4 1.11 333 1.11 361 114 13.22

N3 152 305 130 283 27.3 0.91 352 0.89 352 64 12.20

N4 152 305 130 283 27.3 1.42 340 1.42 356 89 15.70

K1 152 495 114 457 29.9 0.56 345 0.57 354 191 15.36

K2 152 495 114 457 30.6 1.02 336 1.03 338 105 23.73

K3 152 495 114 457 29.0 1.59 316 1.58 321 124 28.47

K4 152 495 114 457 28.6 2.26 344 2.28 340 86 35.03

C1 254 254 216 216 27.0 0.44 341 0.44 341 216 11.30

C2 254 254 216 216 26.5 0.80 334 0.81 345 117 15.25

C3 254 254 216 216 26.9 1.24 331 1.24 330 140 20.00

C4 254 254 216 216 27.2 1.76 336 1.76 328 98 25.31

C5 254 254 216 216 27.2 2.40 328 2.37 329 73 29.71

C6 254 254 216 216 27.6 3.16 316 3.20 328 54 34.23

J1 254 381 216 343 14.3 0.53 328 0.54 346 152 21.47

J2 254 381 216 343 14.5 0.83 320 0.83 341 98 29.15

J3 254 381 216 343 16.9 1.17 339 1.17 337 127 35.25

J4 254 381 216 343 16.8 1.60 324 1.62 332 92 40.68

PT4 381 381 346 346 28.6 1.10 425 0.66 328 102 70.00
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Table A1. Cont.

Specimen

Section Details Concrete Longitudinal
Bar Transverse Bar Test

Strength

b
(mm)

h
(mm)

b′

(mm)
h′

(mm) f
′

c(MPa)
ρl

(%)
fyl

(MPa)
ρt

(%)
fyt

(MPa)
s

(mm) Tu (kNm)

PT5 356 356 343 343 33.8 1.26 373 0.75 328 102 65.20

A1 254 254 222 222 36.9 0.44 360 0.55 285 79 13.10

A1R 254 254 222 222 39.6 0.44 360 0.55 285 79 12.50

A2 254 254 222 222 38.2 0.80 380 1.06 285 41 22.60

A3 254 254 219 219 39.4 1.24 352 1.21 360 79 27.80

A4 254 254 219 219 39.2 1.77 351 1.69 360 57 34.50

B1 178 356 146 324 36.3 0.45 360 0.57 285 83 12.80

B1R 178 356 146 324 39.9 0.45 360 0.57 285 83 12.30

B2 178 356 146 324 39.6 0.81 380 1.06 285 44 20.80

B3 178 356 143 321 38.6 1.26 352 1.26 360 83 25.30

B4 178 356 143 321 38.5 1.80 351 1.72 360 60 31.80

B30.1 160 275 120 235 41.7 3.47 620 1.28 665 90 16.62

B30.2 160 275 120 235 38.2 3.47 638 1.28 669 90 15.29

B30.3 160 275 120 235 36.3 3.47 605 1.28 672 90 15.25

B50.1 160 275 120 235 61.8 3.47 612 1.28 665 90 19.95

B50.2 160 275 120 235 57.1 3.47 614 1.28 665 90 18.46

B50.3 160 275 120 235 61.7 3.47 612 1.28 665 90 19.13

B70.1 160 275 120 235 77.3 3.47 617 1.28 658 90 20.06

B70.2 160 275 120 235 76.9 3.47 614 1.28 656 90 20.74

B70.3 160 275 120 235 76.2 3.47 617 1.28 663 90 20.96

B110.1 160 275 120 235 109.8 3.47 618 1.28 655 90 24.72

B110.2 160 275 120 235 105.0 3.47 634 1.28 660 90 23.62

B110.3 160 275 120 235 105.1 3.47 629 1.28 655 90 24.77

T1-1 300 350 260 310 43.2 0.48 410 0.60 370 130 32.86

T1-2 300 350 260 310 44.0 0.72 410 0.91 370 85 45.89

T1-3 300 350 260 310 41.7 0.97 410 1.19 370 65 54.05

T1-4 300 350 260 310 42.6 1.13 510 1.83 355 75 62.41

T2-1 300 350 260 310 40.1 0.48 410 0.34 370 225 26.05

T2-2 300 350 260 310 41.7 0.76 510 0.60 370 130 38.11

T2-3 300 350 260 310 42.7 1.13 510 0.88 370 88 50.16

T2-4 300 350 260 310 42.6 1.33 512 1.03 370 75 56.39

H-06-06 350 500 300 450 78.5 0.68 440 0.61 440 100 92.00

H-06-12 350 500 300 450 78.5 1.16 410 0.61 440 100 115.10

H-12-12 350 500 300 450 78.5 1.16 410 1.22 440 50 155.30

H-12-16 350 500 300 450 78.5 1.64 520 1.22 440 50 196.00

H-20-20 350 500 300 450 78.5 1.96 560 1.97 440 55 239.00

H-07-10 350 500 300 450 68.4 0.98 500 0.68 420 90 126.70

H-14-10 350 500 300 450 68.4 0.98 500 1.36 360 80 135.20

H-07-16 350 500 300 450 68.4 1.64 500 0.68 420 90 144.50
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Table A1. Cont.

Specimen

Section Details Concrete Longitudinal
Bar Transverse Bar Test

Strength

b
(mm)

h
(mm)

b′

(mm)
h′

(mm) f
′

c(MPa)
ρl

(%)
fyl

(MPa)
ρt

(%)
fyt

(MPa)
s

(mm) Tu (kNm)

N-06-06 350 500 300 450 35.5 0.68 440 0.61 440 100 79.70

N-06-12 350 500 300 450 35.5 1.16 410 0.61 440 100 95.20

N-12-12 350 500 300 450 35.5 1.16 410 1.22 440 50 116.80

N-12-16 350 500 300 450 35.5 1.64 420 1.22 440 50 138.00

N-20-20 350 500 300 450 35.5 1.96 560 1.97 440 55 158.00

N-07-10 350 500 300 450 33.5 0.98 500 0.68 420 90 111.70

N-14-10 350 500 300 450 33.5 0.98 500 1.36 360 80 125.00

N-07-16 350 500 300 450 33.5 1.64 500 0.68 420 90 117.30

HS-33 254 508 215.9 469.9 28.34 1.33 321.99 1.28 328.88 104.9 63.3

HS-34 254 508 215.9 215.9 27.03 0.30 341.29 0.22 341.29 215.9 11.3

HS-35 254 508 215.9 215.9 26.54 0.39 334.4 0.41 344.74 117.6 15.3

HS-36 254 508 215.9 215.9 26.89 0.49 330.95 0.61 329.57 139.7 20

HS-37 254 508 215.9 215.9 27.17 0.59 336.46 0.86 327.5 98.6 25.3

HS-38 254 508 215.9 215.9 27.23 0.69 328.19 1.16 328.88 73.2 29.7

HS-39 254 508 215.9 215.9 27.58 0.79 315.78 1.57 327.5 54.1 34.2

Table A2. Weights of Hidden Layer of PCA.

j
i

Output
1 2 3 4 5 6 Bias

1 −0.1545 0.1662 0.1384 0.6391 0.4325 0.3042 0.9473 0.7981

2 −0.5281 1.1510 1.2343 0.2340 −0.4649 −0.6759 4.4658 −1.8626

3 −1.4639 0.1587 −0.4870 −0.0452 −0.2854 −0.3282 −0.7895 −1.5143

4 0.0019 0.0082 −0.0013 0.0156 0.0010 0.0044 −0.2514 0.0192

5 0.0020 0.0064 −0.0041 0.0183 0.0021 0.0068 −0.0726 0.0215

6 0.0029 0.0081 −0.0045 0.0209 0.0018 0.0083 −0.0249 0.0243

7 −0.0013 0.0037 −0.0012 0.0026 0.0005 0.0000 0.5251 0.0051

8 0.0009 0.0031 −0.0023 0.0062 0.0008 0.0028 −0.1684 0.0080

9 0.0041 0.0105 −0.0044 0.0232 0.0009 0.0087 −0.0521 0.0280

10 −0.1247 0.1927 −0.4994 −0.1091 −0.5657 −0.1735 0.9192 0.6379

11 −0.3498 0.0057 0.0178 −0.3881 0.0938 −0.9444 0.9381 −0.8587

12 −0.1445 −0.6899 −0.1118 −2.1050 0.5718 0.2138 0.9358 1.2367

13 0.0008 0.0045 −0.0031 0.0067 0.0005 0.0042 0.0629 0.0093

14 0.3453 −0.1055 1.0681 0.4641 −0.4305 0.3656 −0.4678 −0.7170

15 0.0038 0.0104 −0.0094 0.0407 0.0045 0.0165 0.1316 0.0450

16 0.0028 0.0051 −0.0024 0.0145 0.0003 0.0080 −0.3654 0.0145

17 0.0035 0.0091 −0.0060 0.0268 0.0027 0.0108 0.0385 0.0311
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Table A2. Cont.

j
i

Output
1 2 3 4 5 6 Bias

18 −0.0006 0.0009 −0.0011 −0.0007 −0.0001 0.0006 0.0116 0.0012

19 0.0003 0.0031 −0.0021 0.0049 0.0002 0.0029 −0.0442 0.0076

20 −0.0020 −0.0016 0.0003 −0.0067 −0.0010 −0.0008 −0.2061 −0.0061

21 0.1284 −0.0049 −0.5827 0.6024 −0.7819 0.0078 0.0088 1.0035

22 1.0685 1.0795 −0.3224 −1.1641 0.0630 0.0932 −0.3027 −1.7037

23 0.0002 0.0020 −0.0022 0.0049 0.0003 0.0029 −0.2849 0.0053

24 0.0012 −0.0050 0.0057 −0.0036 0.0051 −0.0082 −1.1914 −0.0106

25 0.0033 0.0121 −0.0120 0.0516 0.0082 0.0197 0.1696 0.0578

26 0.7212 −0.7731 −0.2847 −0.9176 −0.3761 −0.7928 0.9476 1.0558

27 −0.0001 0.0011 −0.0021 0.0008 −0.0001 0.0016 0.1582 0.0024

28 0.0002 0.0005 −0.0012 −0.0025 −0.0005 −0.0004 0.1512 0.0001

29 −0.0082 −0.0771 0.0585 −0.1788 −0.0213 −0.0640 −0.4771 −0.2064

30 0.0036 −0.0264 0.0254 −0.0324 0.0005 −0.0274 −0.3046 −0.0596

31 −0.0009 0.0127 −0.0085 0.0164 0.0019 0.0168 0.1461 0.0278

32 −0.0013 −0.0016 0.0000 −0.0077 −0.0009 −0.0022 −0.0323 −0.0067

33 −0.0011 0.0001 −0.0017 −0.0011 −0.0003 0.0003 0.0040 −0.0002

34 −0.0021 −0.0002 −0.0014 −0.0059 −0.0001 −0.0041 0.3393 −0.0035

35 0.0031 0.0085 −0.0060 0.0270 0.0036 0.0110 0.0687 0.0312

36 0.0011 0.0035 −0.0034 0.0083 −0.0009 0.0038 −0.1523 0.0109

37 0.0005 0.0034 −0.0021 0.0157 0.0007 0.0056 −0.3042 0.0175

38 −0.2065 0.9972 −0.3582 −0.2333 −0.4763 0.3482 0.2780 1.0032

39 0.0003 0.0023 −0.0023 0.0055 0.0001 0.0024 −0.0375 0.0075

40 0.0035 0.0085 −0.0051 0.0199 0.0016 0.0086 0.1094 0.0239

41 0.0015 0.0050 −0.0034 0.0126 0.0011 0.0055 −0.1113 0.0147

42 −0.0098 −0.0442 0.0361 −0.1166 −0.0103 −0.0444 −0.4152 −0.1293

43 0.0003 0.0010 −0.0018 −0.0005 −0.0002 0.0009 0.2403 0.0025

44 −0.4171 −0.8559 0.4381 −0.3890 −0.6355 −0.0345 −1.6492 −1.1249

45 −0.0012 0.0000 −0.0008 −0.0062 −0.0005 −0.0015 0.2185 −0.0032

46 −0.0005 −0.0009 −0.0008 −0.0066 −0.0007 −0.0015 0.1369 −0.0040

47 −0.0017 −0.0124 −0.0028 −0.0220 −0.0022 0.0022 0.4295 −0.0091

48 0.0370 −0.0410 −0.1221 0.0599 −0.0004 0.1190 −1.7507 0.1534

49 0.1348 0.0679 0.0561 0.2256 0.0476 0.1361 0.6825 0.2366

50 0.0021 0.0057 −0.0036 0.0145 0.0007 0.0070 −0.0250 0.0174

51 1.3530 −1.6506 −1.2656 −0.6204 −0.1295 −0.3793 −2.6746 1.7284

52 0.0011 0.0037 −0.0022 0.0072 0.0004 0.0039 0.2319 0.0109
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Table A3. Weights of Hidden Layer of Autoencoder.

i

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Bias Output

1 0.479 0.091 0.116 −0.027 −0.123 0.203 0.203 0.092 −0.194 −0.275 −0.128 0.309 −0.191 −1.096 0.062 −0.183 0.303 0.170 −0.236 −0.148 −1.762 −1.164

2 0.203 −0.587 −0.370 −0.223 −0.211 −0.076 0.282 −0.009 −0.108 −0.008 −0.043 −0.197 0.391 0.324 −0.061 0.418 0.349 −0.137 −0.095 0.066 0.331 −0.737

3 −0.007 0.010 0.017 −0.014 −0.014 0.019 0.010 −0.007 −0.034 −0.007 −0.001 −0.010 0.022 0.006 −0.002 0.016 0.009 −0.002 0.012 0.002 −0.559 0.061

4 0.013 −0.018 −0.037 0.024 0.028 −0.035 −0.022 0.016 0.066 0.016 0.005 0.017 −0.043 −0.015 0.006 −0.026 −0.019 0.004 −0.025 0.000 0.648 −0.119

5 0.000 0.009 −0.006 −0.011 −0.010 0.007 0.005 −0.004 −0.001 0.002 0.011 0.000 −0.007 −0.009 0.003 −0.007 0.005 0.008 −0.005 −0.006 0.118 0.014

6 0.005 −0.006 −0.010 0.008 0.010 −0.012 −0.008 0.004 0.023 0.004 −0.001 0.008 −0.015 0.000 0.000 −0.010 −0.007 0.002 −0.007 −0.003 0.186 −0.043

7 −0.237 0.032 −0.110 −0.051 0.215 0.305 −0.321 −0.083 0.010 −0.151 −0.166 −0.186 0.224 0.646 −0.117 0.564 −0.085 0.141 0.480 −0.178 −0.922 0.949

8 0.004 −0.005 −0.011 0.009 0.009 −0.012 −0.008 0.005 0.023 0.004 −0.001 0.008 −0.015 −0.001 0.000 −0.010 −0.007 0.002 −0.007 −0.003 0.210 −0.044

9 0.000 −0.004 0.002 0.004 0.006 −0.003 0.000 0.003 0.002 −0.002 −0.003 0.002 0.004 0.005 −0.005 0.000 0.000 −0.002 0.002 −0.002 0.293 −0.001

10 −0.077 −0.023 0.148 −0.024 −0.164 0.122 0.083 −0.054 −0.196 −0.124 0.000 −0.011 0.151 0.158 −0.131 0.028 0.119 0.024 0.075 −0.150 −1.517 0.484

11 −0.005 0.006 0.009 −0.008 −0.009 0.011 0.006 −0.005 −0.021 −0.004 0.000 −0.007 0.014 0.002 −0.001 0.010 0.006 −0.001 0.008 0.002 −0.448 0.036

12 0.005 −0.006 −0.012 0.006 0.007 −0.005 −0.004 −0.001 0.011 −0.002 0.006 0.001 −0.002 −0.008 0.004 −0.001 −0.002 −0.004 −0.005 −0.001 0.603 −0.024

13 1.183 0.053 0.276 −0.822 0.604 0.694 0.044 −0.155 0.124 −0.072 −0.005 0.319 0.463 0.277 −0.996 −0.213 0.141 0.456 −0.241 −0.073 −3.233 1.624

14 0.045 −0.179 0.543 0.259 −0.603 0.120 0.236 −0.131 −0.704 −0.315 0.105 0.066 0.279 0.098 −0.495 −0.071 0.136 0.156 0.423 −0.393 −3.889 1.460

15 −0.064 −0.019 −0.085 −0.032 −0.029 −0.194 −0.183 0.079 0.285 0.103 −0.094 0.094 −0.228 0.508 0.121 −0.159 −0.120 −0.071 0.026 −0.005 −0.927 −0.682

16 −0.005 −0.017 −0.020 0.024 0.024 −0.027 −0.015 0.013 0.058 0.006 0.017 0.034 −0.034 −0.020 −0.035 −0.016 −0.014 0.011 −0.024 −0.012 0.475 −0.093

17 0.000 0.000 0.000 0.001 0.000 −0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 −0.001 0.001 0.000 0.000 0.000 −0.001 −0.090 −0.002

18 −0.115 −0.114 0.170 0.017 −0.336 0.175 0.105 −0.040 −0.219 −0.239 0.154 −0.017 0.165 0.145 −0.157 −0.022 0.190 0.038 0.003 −0.241 −1.526 0.678

19 0.503 0.336 0.428 −0.239 −0.106 0.081 0.008 −0.132 0.480 −0.175 −0.532 −0.482 −0.312 0.426 1.488 0.138 0.357 0.233 −0.479 −0.203 1.079 1.550

20 0.206 −0.164 −0.236 −0.047 0.006 −0.082 −0.037 0.207 0.378 −0.040 0.295 0.028 −0.224 −0.160 0.185 −0.092 −0.055 −0.017 −0.406 0.133 2.651 −0.893

21 0.010 −0.014 −0.025 0.019 0.021 −0.026 −0.015 0.011 0.049 0.010 0.001 0.014 −0.032 −0.007 0.003 −0.021 −0.014 0.003 −0.017 −0.003 0.522 −0.089

22 0.007 −0.008 −0.016 0.013 0.014 −0.017 −0.011 0.008 0.033 0.006 −0.001 0.011 −0.022 −0.003 0.001 −0.014 −0.009 0.003 −0.010 −0.003 0.361 −0.061

23 0.000 −0.002 −0.005 0.004 0.002 −0.003 −0.002 0.000 0.002 0.001 −0.002 0.000 −0.002 0.003 0.002 −0.004 −0.001 −0.001 0.000 −0.002 −0.654 −0.010

24 0.292 0.134 0.269 −0.123 −0.105 −0.198 0.262 −0.092 0.598 0.188 −0.447 −0.292 −0.404 0.488 0.882 0.172 −0.359 0.154 −0.278 0.061 −0.230 −1.305
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