
applied  
sciences

Article

Influence of Wind Power on Modeling of Bidding Strategy in a
Promising Power Market with a Modified Gravitational
Search Algorithm

Satyendra Singh 1 , Manoj Fozdar 2, Hasmat Malik 3 , Maria del Valle Fernández Moreno 4

and Fausto Pedro García Márquez 4,*

����������
�������

Citation: Singh, S.; Fozdar, M.;

Malik, H.; Fernández Moreno, M.d.V.;

García Márquez, F.P. Influence of

Wind Power on Modeling of Bidding

Strategy in a Promising Power

Market with a Modified Gravitational

Search Algorithm. Appl. Sci. 2021, 11,

4438. https://doi.org/10.3390/

app11104438

Academic Editor: Jordi Cusido

Received: 19 April 2021

Accepted: 10 May 2021

Published: 13 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Skills, Bhartiya Skill Development University Jaipur, Rajstahan 302037, India;
satyendra.singh@ruj-bsdu.in

2 Department of Electrical Engineering, Malaviya National Institute of Technology
Jaipur, Rajasthan 302017, India; mfozdar.ee@mnit.ac.in

3 BEARS, University Town, NUS Campus, Singapore 119077, Singapore; elev505@nus.edu.sg
4 Ingenium Research Group, Universidad Castilla-La Mancha, 13071 Ciudad Real, Spain;

mariavalle.fdez@uclm.es
* Correspondence: FaustoPedro.Garcia@uclm.es

Abstract: It is expected that large-scale producers of wind energy will become dominant players in
the future electricity market. However, wind power output is irregular in nature and it is subjected
to numerous fluctuations. Due to the effect on the production of wind power, producing a detailed
bidding strategy is becoming more complicated in the industry. Therefore, in view of these uncertain-
ties, a competitive bidding approach in a pool-based day-ahead energy marketplace is formulated in
this paper for traditional generation with wind power utilities. The profit of the generating utility is
optimized by the modified gravitational search algorithm, and the Weibull distribution function is
employed to represent the stochastic properties of wind speed profile. The method proposed is being
investigated and simplified for the IEEE-30 and IEEE-57 frameworks. The results were compared
with the results obtained with other optimization methods to validate the approach.

Keywords: energy market; modeling of renewable source; market clearing price; oppositional
gravitational search algorithm; strategic bidding; wind power

1. Introduction

Nowadays, the electric industries are reforming and implementing a deregulated
business policy, which generates competition among power trading firms. The electric
companies are more concerned with profit maximization in this dynamic electricity market.
The electric utility companies have engaged in competitive bidding in order to achieve a
strong profit margin. The benefit of electricity producing companies is fully reliant on the
price of marginal cost (MCP), playing an important role in the dynamic energy market.
The value of MCP is determined by the system operator (SO) using curves of supply and
demand. To calculate the value of the next unit of power produced, MCP uses the process
used in market clearing strategy [1]. A feasible approach to the optimum bidding problem
can be achieved by using this mechanism. Renewable electricity sources, such as wind
energy, have been an inseparable component of the current power grid. In contrast to
other non-renewable energy sources, wind energy sources are an option prior to power
generation. Due to the unpredictability of this renewable energy supply, several restrictions
exist in the market in support of power dealings [2]. The key objective of this situation is to
create a bidding approach representation for optimizing the benefit of producing utilities
in a deregulated setting, using a single-sided bidding setup. The effect of the wind source
on the bidding model is being investigated using uncertainty modelling.
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First, in a restructured power market setting, for traditional power traders, the opti-
mum bidding problem was solved with the help of a complex programming approach [3].
Furthermore, for the purpose of resolving power sector bidding strategy considering
variables that influence the bidding strategy challenge, such as generation costs, market
restrictions, and competitor bidding behavior, many researchers have used numerous
mathematical approaches, e.g., Monte Carlo simulation [4], particle swarm optimization
algorithms (PSO) [5], genetic algorithms (GA) [6], bat inspired techniques [7], krill herd
algorithms (KHA) [8], gravitational search algorithms [9], etc. In the above-mentioned
works, the action of competitors is first explained using the normal probability distribution
function (PDF), followed by the solution of the benefit maximization problem. Moreover,
the issue was only addressed for traditional power sources.

In open bidding procedures, traditional renewable generation (RES) companies par-
ticipate in the bidding procedures. In the deregulated electric industry, it ensures market
fairness and improved RES use [10]. Of all forms of renewable energy sources, the most
popular source of renewable energy is wind because of its low cost, and the use of wind
energy is rapidly increasing these days [11]. The development of strategic bidding when
considering the involvement of wind power suppliers has been the subject of extensive
research. The biggest drawback of wind energy generation is the unpredictability and
volatility of wind speed, which always results in deviations from the actual power output
in real time [12]. The existence of volatility makes bidding more difficult for market partic-
ipants in the restructured energy marketplace [13]. There has been a concerted effort in
previous decades to address issues that have arisen in the field of wind energy sources in
a global environment. The bidding issue is solved, with the aim of minimizing running
costs by only considering wind sources [10–13], whereas the problem has been addressed
with RESs for dispatching and scheduling of generating services by taking into account the
overestimation and underestimation costs that are correlated with RE production surpluses
and shortfalls [14,15]. Uncertain wind power generation raises the cost of imbalance and
the fines that come with wind turbines. As a result, income for wind energy providers is
reduced. Therefore, accurate wind power modelling is needed to reduce the uncertainty
and maximize benefit [16].

According to the literature review, there are many optimization strategies that can
be applied to the issue of bidding approach and optimize supplier benefit. Heuristic
optimization techniques such as the particle swarm optimization algorithm (PSO) [5],
genetic algorithm (GA) [6], bat inspired technique (BIT) [7], krill herd algorithm (KHA) [8],
gravitational search algorithm [9] have main limitations in their sensitivity to the choice of
parameters, such as the inertia weight and learning factors in PSO, crossover and mutation
probabilities in GA, the requirement of parameter tuning, a poor control strategy the and
lack of exploration capability in BIT, poor exploitation capability in KHM, and population
initialization in GSA.

Tuning of parameters determines the effectiveness of heuristic tailored strategies.
The methods with fewer parameters tuned have the highest precision. Thereby, Rashedi
et al. [17] propose a new heuristic solution a called gravitational search algorithm (GSA)
that focuses on the gravitational law and mass exchanges. GSA is based on Newton’s
theorem, which states that any particle in the space attracts every other particle with
a force equal to the product of their masses and inversely proportional to the square
of their separation. Moreover, GSA is straightforward, scalable, and fast to adopt as
compared to other evolutionary methods, and it can also find global optimal solutions.
However, GSA has the downside of premature convergence, which will greatly reduce
the algorithm’s global search ability, and hence GSA’s performance needs to be improved.
In [18], Tizhoosh proposed the principle of opposition-based learning (OBL). The key theory
behind OBL is to consider estimation and its inverse estimate (i.e., guess and opposite
guess) at the same time in order to improve the calculation for the current candidate
explanation. The population initialization in GSA is random, and the operation approach
with various parameters is also random. Convergence can be reached easily when the guess
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made at random is not that far off the desired outcome. On the other hand, the random
guess could be far from the best outcome. This bad scenario will result in more time spent
looking for the best solution, or, in the worst-case scenario, a non-optimal solution. Without
possessing some prior knowledge of the case, it is difficult to make the right initial estimate.
Therefore, the method should logically be searching at all potential alternatives or, to be
more precise, it should also search in the opposite direction. Therefore, the OBL has been
used to speed up the convergence rate of the GSA in this article. As a result, our suggested
method is known as the opposition-based gravitational search algorithm (OGSA).

Is it possible to integrate the opposite number concept during population initialization
as well as the generation of new populations during the GSA evolutionary phase described
in [17]? Is it possible to draw a rational conclusion based on the proposed algorithm’s
performance on a set of power system optimization problems, such as strategic bidding?
In light of the above, the aim of this study is to test the proposed algorithm’s optimizing
efficiency on some real-world power system optimization problems, such as the solution of
strategic bidding for optimizing generating utilities’ benefit in a dynamic electricity sector.
To optimize benefit value for generating utilities, a considered bidding technique is devised
that includes wind power. In order to quantify the total benefit, a composite market clearing
price for traditional and wind power supplies is taken into account. An actual modeling
of wind uncertainty was developed using Weibull pdf in order to reduce forecasted error
while retaining the benefit. Furthermore, the wind power probabilities were normalized to
represent real-world scenarios. In addition, the Weibull pdf provided wind power scenarios
are reduced using the forward-reduction algorithm. To calculate the anomalies of wind
power, cost functions for underestimation and overestimation were used. The proposed
bidding model is tested on IEEE-30 and 57 bus test systems, respectively, and is solved
using OGSA. The procedure is clearly applicable in this regard and appropriate due to its
effectiveness. The rest of the paper is presented as follows: Section 2 describes the statistical
modeling of bidding strategy problem; methods and materials are given in Section 3;
Section 4 presents the main results and the discussion of them; finally, the main conclusions
are given in Section 5.

2. Statistical Modeling of Bidding Strategy Problem

It is supposed that every power supplier (PS) is needed to send a bid to POOL as a
non-decreasing linear supply feature in a single-sided POOL-based energy market, and the
running cost function of any generating unit is given by Equation (1)

PCm(Pgm) = amPgm + bmPg2
m (1)

where: m is the number of PS; bid constraints of the mth PS are am and bm; and Pgm is the
real power quantity of the mth PS.

In a single-side bid model, the mth PS is submit the linear supply bid function which
is non-decreasing according to Equation (2),

CPm(Pgm) = πm + φmPgm, m = 1, 2, . . . . . . , CPS (2)

where πm and φm are bid parameters that are required to be non-negative.
If the PS offers have been completed and submitted to ISO, the ISO compares the

power supply with the overall demand of the system. After the matching, ISO decided the
market clearing price (MCP) and cleared the marketplace. The bid function, power balance
constraint, and power inequality constraint of the mth PS are given by Equations (3)–(5).

πm + φmPgm = R (3)

cps

∑
m=1

Pgm +
wg

∑
n=1

Wgn = Q(R) (4)

Pgmin,m ≤ Pgm ≤ Pgmax,m (5)
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where: Wgn is the forecasted wind power generation output for bidding in MW, n is the
number of wind power suppliers, Pgmin,m and Pgmax,m are the minimum and maximum
active power generation by the mth power supplier, the MCP is R, and the projected load
by the market operator is Q(R). It is assumed that Q(R) is given by Equation (6)

Q(R) = Lc − K ∗ R (6)

where: Lc is constant; K = 0 is non-negative load price elasticity.
For deciding MCP and calculation of the amount of bid power, ISO considered Equa-

tions (3) and (4) and ignored Equation (5). The MCP and amount of bid power are calculated
by Equations (7) and (8), respectively.

R =

Lc −
wg
∑

n=1
Wgn +

cps
∑

m=1

πm
φm

k +
cps
∑

m=1

1
φm

(7)

Pgm =
R− πm

φm
(8)

If the amount of bid power in Equation (8) exceeds its limits, it will be fixed by
Equation (5).

After the calculation of MCP and the amount of bid power, the profit of the mth PS
can be calculated. Therefore, in this work, the main objective is to increase the earnings of
the mth PS in the presence of renewable PS according to Equation (9)

Maximize : F(πm, φm) = R× Pgm − PCm(Pgm) + R×Wgn − IMC(Wgn) (9)

Here, IMC(Wgn) is the imbalance cost related to wind power in USD/MW.
The cost function of all thermal generating utilities is given by Equation (1). The un-

derestimation and overestimation costs make up the running costs of an mth wind power
generation utility. Due to its intermittent existence, wind sources are susceptible to both
overestimation and underestimation. The expenditure task of wind power suppliers is
given by Equation (10):

IMC(Wgn) = Oc(wg) + Uc(wg) (10)

where, Oc(wg) and Uc(wg) are the overestimation and underestimation cost related to
wind power in USD.

The penalty cost for overestimation is represented by the first term, and the penalty
cost for underestimation is represented by the second term, which are given by Equations
(11) and (12):

Oc(wg) = Ko ∗
Wg∫
0

(Wg −Wa) ∗ fWa(Wa) ∗ dWa (11)

where Ko is the penalty coefficient for overestimating power.

Uc(wg) = Ku ∗
Wmax∫
Wg

(Wa −Wg) ∗ fWa(Wa) ∗ dWa (12)

where Ku is a fine for the lack of situational advantages per USD/kWh owing to underesti-
mation of the capacity.

3. Methods for Solving Proposed Bidding Strategy

This section is provided the different methods that are utilized to solve the proposed
bidding strategy. Section 3.1 gives the probabilistic modeling of interrelated bidding
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coefficients behavior. Sections 3.2 and 3.3 are provided the uncertainty modeling of the
wind power source. In Section 3.4 is presented the OGSA technique for the solution of the
proposed bidding strategy.

3.1. Probabilistic Strategy

Generally, in the sealed bidding process, the bidding information is kept confidential,
but bidding information of previous bidding processes can be obtained. In the light
of this information, PS’s can guess about the market clearing and estimate the MCP.
Therefore, each PS tries to guess the bidding method and behaviour of other suppliers.
However, they face the problems when they try to guess the behaviour of the rival. Due
to the interrelation of bid parameters, PS’s used the joint probability distribution function
(PDF) according to Equation (13) for guessing the behaviour of the rival.

pdf(πm, φm) =
1

2πσm(π)σm(φ)
√

1−ρ2
m
× exp

{
− 1

2(1−ρ2
m)[(

πm−µ
(π)
m

σ
(π)
m

)2
+

(
φm−µ

(φ)
m

σ
(φ)
m

)
− 2ρm(πm−µm

(π))(φm−µm
(φ))

σ
(π)
m σ

(φ)
m

]} (13)

This PDF can be displayed in a compact form by Equation (11)

(πm, φm) ∼ N

{[
µ
(π)
m

µ
(φ)
m

]
,

 (σ
(π)
m )

2
ρmσ

(π)
m σ

(φ)
m

ρmσ
(π)
m σ

(φ)
m (σ

(φ)
m )

2

 (14)

Here, the collective distribution parameters are µ
(π)
m , µ

(φ)
m , σ

(π)
m and σ

(φ)
m , the coefficient

of correlation between πm and φm is ρm. µ
(π)
m and µ

(φ)
m are the mean and σ

(π)
m and σ

(φ)
m are

the standard deviations of the πm and φm, respectively.

3.2. Modeling of Wind Energy Sources

Given the existence of wind, to contend with fair bidding, the instability associated
with wind speed needs to be handled. Instability with wind speed is usually represented
by utilizing a two-parametric function called Weibull PDF. The meanings are given by
Equation (15):

Wpd f =
k
c

(v
c

)(k−1)
(

exp
(
−v

c

)k
)

(15)

where: k and c are the shape and scale factors, respectively; v is the wind speed in meters
per second. These parametric standards can be estimated using the known mean (µhws)
and standard deviation (σstd) by Equations (16) and (17)

k =

(
σstd
µhws

)(−1.086)
(16)

c =

 µhws

Γ
(

1 +
(

1
k

))
 (17)

Diverse scenarios are produced by utilizing wind velocity data, which are collected
from anemometers. Anemometers are used to measured wind speed in selected wind farm
locations at different heights. To analyse similar patterns, first, 1000 scenarios are generated
randomly using the Weibull distribution, which are further changed into corresponding
power scenarios to adequate hub heights. In certain cases, the heights of the center and
the anemometers are not equivalent. In these conditions, the wind speed is estimated by
Equation (18)

v(hest) = v(hrkh)

(
hg

hkah

)(γ)

(18)
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where: v(hest) is estimated wind speed at an appropriate turbine hub height; v(hrkh) is
traced wind speed at acknowledged hub altitudes; hg is generator wind turbine base height
(m); hkah is anemometer in place height; and γ is the shear coefficient parameter governing
the irregularity and environment circumstance of the surface.

The measured wind velocities are changed into wind energy with the wind turbine
energy curve. The energy curve is a relationship between wind speed and wind power
given by Equation (19)

Wa(v) =


0 v ≤ vin

1
2 ηp(v)ρAsv3 vin ≤ v ≤ vr

Wr vr ≤ v ≤ vo
0 v ≥ vo

(19)

where ηp(v), Wr and Wa(v) are efficiency, rated output and available power at a given
wind speed of wind producers, respectively; ρ is the air density (kg/m3); As is the swept
field of a wind turbine’s rotor. Additionally, vin, vr and vo are the cut in, rated and cut out
wind speed limits.

The produced inconsistent wind energy can be integrated into the distribution by
means of the power curve to predict the likelihood of wind power in a range of working
zones.

Linear wind output probability can be defined as

fw(vin ≤ v ≤ vr) =

(
kzvin
cWr

)[
(1 + zWa/Wr)vin

c

]
×
{
−
[
(1 + zWa/Wr)vin

c

]k
}

(20)

where z = (vr−vin)
vin

The probability of zero wind production can be given by Equation (21)

fw[ (v ≤ vin) and (v ≥ vo)] = 1− exp
[
−
(vin

c

)k
]
+ exp

[
−
(vo

c

)k
]

(21)

Finally, the rated wind output probability is calculated by Equation (22)

fw(v r ≤ v ≤ vo) = exp
[
−
(vr

c

)k
]
+ exp

[
−
(vo

c

)k
]

(22)

3.3. Characterization of Uncertainty of Wind

There are 1000 wind scenarios formed. However, the possibility of some events may
be extremely low. In addition, the odds of some situations may be the same. Subsequently,
scrutinizing the scenarios is necessary to achieve a substantial smaller number of scenarios,
while showing outstanding scenarios of lesser and the same possibility. The diminution
will be such that it does not change the stochastic properties. The number of decreased
scenarios builds upon the form and complexity of the difficulty to be optimized and should
be concentrated to or below one-quarter of the possibilities produced [19].

The Kantorovich Distance Matrix (KDM) is employed for the scenario reduction [19].
KDM is based on the difference between the Euclidian possibilities and their related
probabilities. It reduces the nearest and lowest-probability scenarios. The following steps
are employed to measure the KD matrix.

Step I: For every case, measure the Euclidian distance to other imaginable circum-
stances. Of any two separate possibilities υi and υj, the distance is calculated by Equa-
tion (23)

KD
(

υi, υj
)
=

(
ηl

∑
l=0

(
vi

l − vj
l

)2
) 1

2

(23)
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Step II: Locate the nearest minimum detachment min
{

KD
(
υi, υj)} for each possibility

υi to the possibility υj, j 6= i.
Step III: Reproduce or multiply with corresponding probability obtained in Step II.

min
{

KD
(

υi, υj
)}
× P

[
υi
]

(24)

Step IV: Reduce the smallest gap and the least possible scenario. Then, apply the
likelihood of the eliminated scenario to the next closest scenario.

Step V: Complete Steps II–IV again until the criterion of stoppage has been reached.
KDM is utilized to obtain the expected wind (Wg) energy, and the correct probability

is determined by Equation (25)

Wg =
υi

∑
i=1

Wai × probi (25)

where probi is the possibility of decreased ith generated scenario.

3.4. Oppositional Gravitational Search Algorithm

Authors proposed a new heuristic solution GSA to solve non-differentiable and non-
linear optimization problems in [17]. Each driving force in GSA offers a healthier approach
to the difficulty. In the shape of a flowchart, Figure 1 shows the solution protocol.
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3.4.1. Population Initialization

Given a structure consisting of N agents (masses), the kth agent place can be defined
by Equation (26)

λk = (λ1
k , . . . . . . , λD

k , . . . . . . , λM
k ) For k = 1, 2, . . . . . . , N (26)

where: λD
k ∈ [LD

k , UD
k ], D = 1, 2 . . . . . . , M, is the kth agent place in the Dth aspect; M is

the aspect of the search space; LD
k , UD

k are the lesser limit and higher bound limits of kth
agents in the Dth aspect.
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3.4.2. Modification in GSA

The theory of opposition-based learning was defined by Tizhoosh [18]. The author
took into account both the current and conflicting agents in sequence to provide a clearer
estimate of the contemporary representative result. In comparison to random agent solu-
tions, it is inferred that a conflicting agent has healthier optimal solutions. The positions
of the conflicting agent (Oλk) are fully established by the components of λk according to
Equation (27)

Oλk = [Oλ1
k , . . . . . . , OλD

k , . . . . . . , OλM
k ] (27)

where OλD
k = LD

k + UD
k − λD

k with OλD
k ∈ [LD

k , UD
k ] is the kth opposite location of the

agent in the Dth aspect of the oppositional community

3.4.3. Fitness Function

The best solution of Equation (9) is used as the fitness purpose in this case. When OGSA
begins an iterative procedure, a combined inhabitant {λ, Oλ} is created, where it meets all
of the constraints. From the created current population {λ, Oλ}, assortment strategies are
used to pick the N number of most fitting agents λ according to Equation (28).

λk(i) =
{

Oλk(i) i f f it(Oλk(i) > f it(λk(i))
λk(i) otherwise

(28)

The algorithm judges the power of an agent and its opposing agent at the same time.
The agent with the higher fitness score is used for further calculations, while the additional
agent is useless.

3.4.4. Agents Acceleration

The strength assessment is used in GSA to determine each agent’s mass. The mass of
each agent is intended as follows:

Mk(i) =
mk(i)

N
∑

l=1
ml(i)

(29)

being mk(i) =
f itk(i)−worst(i)
best(i)−worst(i)

where: Mk(i) is the normalized mass of kth agent at the ith iteration; worst(i), best(i)
are the worst and best fitness of all agents, respectively, at the ith iteration. The acceleration
aD

k (i) acting on the kth agent at iteration i is evaluated by Equation (30)

aD
k (i) = ∑

l ∈ Gbest,
l 6= k

randl G(i) Mk(i)
Rkl(i)+E (λ

D
l (i)− λD

l (i)) (30)

where: the position of the first 2% of agents is Gbest with the best assessment of fitness;
extreme mass randl is the standardized random number between interval [0, 1]; Rkl(i) is the
Euclidean detachment linking two agents kth and lth at the ith iteration; E is a diminutive
optimistic constant. The gravitational function G(j) is communicated by Equation (31)

G(i) = G×
(

1− iteration
Total iteration

)
(31)

being G = c max
D∈{1,2,......,M}

(∣∣λD
U − λD

L
∣∣), and c is exploration limitation.
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3.4.5. Position and Velocity Updating of the Agents

The location and velocity of the agents are determined by Equation (30) in the next
(i + 1) iteration. {

vD
k (i + 1) = randk × vD

k (i) + aD
k (i)

λD
k (i + 1) = λD

k (i) + vD
k (i + 1)

(32)

where randk is a random number linking space [0, 1]; vD
k (i) is the velocity of kth agent

at Dth aspect during the ith iteration; λD
k (i) is the location of kth agent at the Dth aspect

during the ith iteration.

3.4.6. Solution Process of OGSA

The following are the key steps of the OGSA for the bidding strategy problem:

1. Set the parameters of the proposed OGSA and the input data of the considered test
systems for the bidding strategy.

2. Create an initial population λ as random for φm in the interval between [bm, M× bm],
and value of M is assumed to be 10.

3. Calculate the market clearing price and dispatch for each generating unit.
4. Calculate each generator’s benefit after setting power generation limits and balancing

the system load.
5. Create opposite population Oλ. Therefore, determine the market clearing price and

dispatch for each generating unit.
6. Calculate each generator’s benefit after setting power generation limits and balancing

the system load.
7. Assess the fitness function for both random and oppositional populations.
8. As the actual population, choose the N most fitting agents from the current and

opposing populations.
9. Calculate the mass of each agent as well as the gravitational constant.
10. Determine the acceleration of agents.
11. Update the agent’s velocity and location, respectively.
12. Proceed to Step 3 if the full number of iterations has not been reached; otherwise, the

process should be terminated and the best bidding technique printed.

4. Results and Discussion

The IEEE- 30 bus [16] and IEEE-57 bus [16] have been used to model the bidding
strategy in an emerging power market. The load demands for 30-bus and 57-bus networks
are 500 and 1500 MW, respectively. The bidding technique is first devised on a standard
evaluation bus scheme. Second, it is analyzed using an updated framework that takes into
account one renewable energy source, wind power, with a capacity of 200 MW. The sug-
gested strategy was tested in a MATLAB R-2014a environment with 4 GB of RAM and an i5
Core Processor. The OGSA is put to the test with a search agent that prefers 1000 iterations.
The number of individual runs was set to one hundred.

An average wind speed for 1 (12:00–13:00) hour in August 2005 in Barnstable city,
USA [20], was used to estimate renewable wind supply, with a hub height of 39 m. In this
proposed work, the average wind speed capacity curve for a VENSIS-100 wind turbine
with 2.50 MW and 100 m hub height [21] was used to calculate wind power. The density of
the air was 1.242 kg/m2. Using past data of a specified wind speed, demonstration of wind
speed is possible with various potential PDFs (Normal, Weibull, and Rayleigh), as seen
in Figure 2, and the Weibull PDF is considered to be the most suitable since the statistics
are better suited to the distribution, as seen in Table 1. The shape and scale parameters for
100 m hub height were found to be 3.49 and 8.13, respectively, and are given in Table 2,
having calculated the mean and variance of the wind speed.
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Figure 2. Different probability distribution functions of wind speed.

Table 1. Variance, mean, and log likelihood values for different probability distribution functions of
wind speed.

Rayleigh PDF Weibull PDF Normal PDF

Variance 6.4984 2.84011 2.7568
Mean 4.87676 5.25439 5.25484

Log Likelihood −65.3438 −59.1945 −59.2052

Table 2. Parameters values of wind speed.

Height of Hub k c (m/s)

39 m 3.49 5.84
100 m 3.49 8.13

For precision, 1000 wind speed scenarios were developed and translated to power sce-
narios at the appropriate hub height. Weibull probability densities for the generated power
scenarios are shown in Figure 3. Following scenario generation, scenario reduction was
carried out using the likelihood distance method known as the Kantorovich distance [19]
to construct a wind power model that takes into account uncertainty. Initially, 1000 sce-
narios were developed, from which 10 reduced scenarios were derived using likelihood
distance [19]. Table 3 shows the associated diminished scenario performance as well as
the likelihood of its occurrence. Equation (25) is used to calculate the possible wind power
from this decreased situation, which is 51.95 MW.
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Table 3. Power outputs of wind and their cooresponding probabilities for a smaller number of
10 scenarios.

Concentrated Scenario Wind Power (MW) Probability of Incidence

1 10.56 0.142
2 28.65 0.283
3 54.86 0.325
4 81.43 0.144
5 103.5 0.049
6 121.7 0.029
7 136.7 0.013
8 155.8 0.01
9 178.3 0.002
10 191.2 0.002

For the first case, input data of the IEEE 30-bus system were taken from reference [16].
In a dynamic power market, bidding criteria are primarily used to develop bidding strate-
gies. As a result, it is measured with the help of a joint PDF (Equation (13)) and optimized
by the proposed OGSA methodology. For generating utilities, these bidding coefficients
cannot be chosen individually in order to maximize profits. Therefore, each utility was
given πm of bidding, and φm is estimated using OGSA in the range (bm, 10bm). Then, us-
ing the optimized bidding parameters, MCP is calculated. The net benefit of generating
electricity and overall power dispatch for this case is estimated using the calculated MCP.
Table 4 summarizes the results of various optimization techniques, such as OGA, GSA [16],
GA [22], and PSO [23]. In addition to other strategies, Table 4 indicates that the overall
benefit of the method has risen to USD 5317.72 for OGSA. As opposed to MCP prices of
USD 12.55/MW, USD 12.89/MW, and USD 13.94/MW achieved by GA, PSO and GSA, the
market is now open at MCP value USD 14.15/MW by OGSA, which is the largest value.
As a result, the proposed OGSA methodology outperforms the algorithms described above.

To determine the impact of RESs on the bidding strategy model, wind energy was
studied along with thermal power plants. Due to the presence of alternative energy sources,
the MO modifies the current demand of the system by eliminating wind power generation.
The MCP value and bidding parameters are adapted for the adjusted system demand for
wind. The cost of a wind energy source is measured by taking into account the uncertainty
of the source.

The coefficients ko and ku were taken from reference [16] to calculate the cost of
overestimation and underestimation. Table 5 shows the optimal strategic bidding outcomes
using GSA [16], GA [22], PSO [23], and OGSA on the standard test scheme with wind power.
OGSA outperforms the other algorithms in this case as well. Table 5 shows that MCP in the
presence of a wind source is USD 12.80/MW. This MCP value is lower than the previous
value of USD 14.15/MW obtained from Table 4, which was calculated using OGSA without
a wind source. The MCP, net benefit for TPS, and WPS using OGSA are USD 12.80/MW,
USD 4256.5, and USD 250.3035, respectively. Table 5 shows that when, wind energy is
taken into account, the amount of electricity that needs to be dispatched from thermal
generation sources decreased to 448.05 MW. Taking into account the uncertainty, the cost
of a wind supply is estimated to be USD 414.6565. Since the cost of overestimation USD
42.2995 is smaller than the cost of underestimation USD 372.3570, utilities that have wind
energy sources would be allowed to compete for more electricity.
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Table 4. Optimal bidding results for the IEEE standard 30-bus without including wind power.

PSs πm
GA [22] PSO [23] GSA [16] OGSA

φm PG Profit φm PG Profit φm PG Profit φm PG Profit

1 2.0 0.044090 160 1592.4 0.042666 160 1645.73 0.049231 160 1815.32 0.049984 160 1848.47
2 1.75 0.19429 75.05 712.19 0.211031 74.81 735.14 0.224134 77.45 839.65 0.223528 78.68 867.49
3 1.0 0.300167 57.94 459.54 0.436374 49.28 433.95 0.722945 40.95 425.33 0.680919 42.5 446.15
4 3.25 0.094465 100 846.85 0.103585 100 880.18 0.097653 100 986.18 0.099466 100 1006.9
5 3.0 0.280553 53.50 439.52 0.275273 57.95 488.96 0.289934 60.80 573.06 0.307913 59.41 574.36
6 3.0 0.280553 53.50 439.52 0.275273 57.95 488.96 0.289934 60.80 573.06 0.307913 59.41 574.36

MCP 12.55 12.89 13.9458 14.15
Profit 4490.02 4672.93 5212.6 5317.72

Total PG 500 500 500 500

Table 5. Optimal bidding outcomes with wind power for the IEEE standard 30-bus.

PSs πm
GA [22] PSO [23] GSA [16] OGSA

φm PG Profit φm PG Profit φm PG Profit φm PG Profit

1 2.0 0.043369 160 1429.56 0.048167 160 1464.98 0.049575 160 1572.05 0.049242 160 1632.5
2 1.75 0.195359 63.36 549.71 0.197386 61.51 549.30 0.215113 59.69 574.8 0.189561 70.19 689.57
3 1.0 0.561368 32.04 273.38 0.596858 28.84 258.24 0.453362 35.26 325.15 0.647421 30.11 298.72
4 3.25 0.088848 100 745.08 0.084439 100 767.22 0.104385 97.96 818.8 0.109269 99.31 866.43
5 3.0 0.258245 46.32 341.72 0.230275 48.85 368.05 0.251243 47.57 391.8 0.303061 44.22 384.64
6 3.0 0.258245 46.32 341.72 0.230275 48.85 368.05 0.251243 47.57 391.8 0.303061 44.22 384.64

MCP 11.53 11.76 12.4253 12.80
Total Profit for

TPS 3681.16 3775.86 4074.4 4256.5

Total PG for TPS 448.05 448.05 448.05 448.05
Wg 51.95 51.95 51.95 51.95

Oc(wg) 38.1026 38.8627 41.0612 42.2995
Uc(wg) 335.4122 342.1030 361.4568 372.3570

IMC(Wgn) 373.5148 380.9656 402.5180 414.6565
Profit for WPS 225.4687 229.9664 242.9763 250.3035

After that, the usefulness of the suggested technique was put to the test on a standard
IEEE 57-bus system. The data for the IEEE-57 bus system used were taken from refer-
ence [16]. The bidding strategy was simulated with and without a wind source. In this
case, the MCP is determined first in a dynamic power market using an optimal bidding
parameter. The net benefit of generating electricity, as well as the dispatching of overall
capacity, are then calculated and input into Table 6. Table 6 shows that the demand fin-
ished at an MCP value of USD 12.97/MW, generating utilities benefit is USD 14,077.77
when using OGSA without wind, which are the largest as compared to GSA [16], GA [22],
and PSO [23].

When a wind supplier is included in the IEEE 57-bus system to model a bidding
plan, SO modifies the current demand of the system by subtracting wind power output
from real demand. Changed demand is used to calculate bidding coefficients and MCP
value. The cost of a wind energy source is determined by estimating overestimation
and underestimation costs. Table 7 shows that, when the wind power is mixed with
thermal power, the MCP value drops to USD 12.61 per MW, relative to USD 12.97 per MW
without wind power and the corresponding net benefits for TPS and WPS using OGSA are
USD 13,417.84, and USD 246.5881, respectively. Moreover, the estimated overestimation
expense is USD 48.78, which is less than the underestimation cost of USD 356.54 for wind.
It is evident from Table 7 that OGSA provides better results for the IEEE 57-bus system
compared to GSA [16], GA [22], and PSO [23].
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Table 6. Optimal bidding results for the IEEE standard 57-bus without including wind power.

PSs πm
GA [22] PSO [23] GSA [16] OGSA

φm PG Profit φm PG Profit φm PG Profit φm PG Profit

1 1.7365 0.019718 530.23 5065.65 0.020393 520.21 5058.66 0.021819 510.26 5238.34 0.022239 505.16 5241.2
2 10 0.095015 23.07 45.23 0.098836 23.73 50.02 0.092598 30.99 79.34 0.076760 38.7 99.99
3 7.1429 0.078495 64.32 295.35 0.082602 62.98 299.48 0.081198 70.53 368.62 0.088860 65.58 351.7
4 10 0.095015 23.07 45.23 0.098836 23.73 50.02 0.092598 30.99 79.34 0.076760 38.7 99.99
5 1.8 0.020843 498.08 4724.32 0.021487 490.3 4732.82 0.02278 485.52 4945.47 0.023240 480.23 4944.7
6 10 0.095015 23.07 45.23 0.098836 23.73 50.02 0.092598 30.99 79.34 0.076760 38.7 99.99
7 2.4390 0.028839 338.18 3023.63 0.02788 355.3 3216.81 0.030615 340.71 3275.32 0.031635 332.92 3240.2

MCP 12.19 12.35 12.87 12.97
Total Profit 13,244.65 13,457.81 14,065.79 14,077.77

Total PG 1500 1500 1500 1500

Table 7. Optimal bidding outcomes with wind power for the IEEE standard 57-bus.

PSs πm
GA [22] PSO [23] GSA [16] OGSA

φm PG Profit φm PG Profit φm PG Profit φm PG Profit

1 1.7365 0.020926 481.97 4466.11 0.022242 460.8 4367.64 0.021140 503.3 4923.36 0.021315 510.02 5102.39
2 10 0.093054 19.58 31.85 0.085062 23.34 40.90 0.095375 24.9 52.94 0.118167 22.07 52.68
3 7.1429 0.055503 84.31 344.03 0.070490 68.70 299.17 0.089745 58.3 280.91 0.086831 62.94 315.82
4 10 0.093054 19.58 31.85 0.085062 23.34 40.90 0.095375 24.9 52.94 0.118167 22.07 52.68
5 1.81 0.021983 455.45 4186.68 0.020178 504.3 4573.59 0.021931 481.7 4671.9 0.023482 459.83 4584.5
6 10 0.093054 19.58 31.85 0.085062 23.24 40.90 0.09375 24.9 52.94 0.118167 22.07 52.68
7 2.4390 0.025527 367.57 3124.72 0.027791 344.3 344.26 0.030105 330.1 3017.93 0.029132 349.05 3257.04

MCP 11.82 11.99 12.38 12.61
Total Profit for

TPS 12,217.07 12,459.12 13,052.93 13,417.84

Total PG for TPS 1448.05 1448.05 1448.05 1448.05
Wg (MW) 51.95 51.95 51.95 51.95

Oc(wg) 39.0609 39.6227 40.9115 41.6716
Uc(wg) 343.8484 348.7938 360.1390 366.8298

IMC(Wgn) 382.9093 388.4165 401.0505 408.5014
Profit for WPS 231.1397 234.4640 242.0905 246.5881

Findings for IEEE 30- and 57-buses indicates that inclusion of the wind energy in
the bidding process has a significant impact on MCP, individual generation dispatch, and
complete generation dispatch for conventional power supplies. The utilization of wind
power reduces the MCP, thus benefiting the traditional generators. Moreover, when KDM
is involved for handling uncertainty related to wind power, overestimation of uncertainty
is much lower than underestimation of wind power generation. If the underestimation is
positive, this would enable wind power providers to bid the extra power into the real-time
market. Furthermore, the bidding strategy proposed in this paper by utilizing OGSA is
better suited to obtaining power suppliers’ profits in comparison to the GSA [16], GA [22],
and PSO [23] techniques.

Through comparing simulation outcomes with GSA, PSO and GA, the superiority of
the OGSA algorithm is shown. The success of evolutionary algorithms cannot be judged by
the outcome of a single run due to their randomness. To draw a clear conclusion about the
success of the algorithms, several trials with various initializations should be run. It should
be noted that an algorithm is only called stable if it can provide suitable results under a
variety of operating conditions, since the algorithms OGSA, GSA, PSO, and GA are all
random. Therefore, for each method, the bidding data were run 20 times. Table 8 provides
a comparative analysis of the results of various techniques for robustness and validation
of the OGSA method. It can be deduced that the standard deviation is lowest for the
OGSA technique in comparison to others for the IEEE 30-bus and IEEE 57-bus methods,
respectively. Moreover, OGSA produces better outcomes in terms of best, worst, and mean.
Therefore, the accuracy of the proposed method is better and allows producers to earn a
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higher profit by utilizing OGSA. According to the result analysis, the OGSA technique is
more effective, accurate, and modeling the bidding technique is possible for the IEEE30-bus
and IEEE 57-bus systems, respectively.

Table 8. Comparative analysis of the results of various techniques for robustness of the OGSA
method for IEEE standard 30-bus and 57-bus.

Takings

IEEE 30-Bus IEEE 57-Bus

GA [22] PSO [23] GSA
[16] OGSA GA [22] PSO [23] GSA

[16] OGSA

Best 4490.02 4672.93 5212.59 5317.719 13,244.65 13,457.81 14,065.79 14,077.77
Worst 3941.41 4253.56 4798.86 4944.638 11,448.63 12,009 12,982.51 13,212.03
Mean 4187.19 4395.08 4944.70 5046.50 11,927.7 12,509.51 13,446.45 13,590.17

SD 155.87 124.91 109.75 94.66 415.5907 386.71 350.59 262.77

Discussion

This research focuses solely on bidding techniques that combined renewable energy
sources while minimizing the uncertainties and disadvantages associated with wind energy.
In addition, a statistical model for calculating the market clearing price (MCP) in the
presence of wind energy sources is proposed. The Weibull distribution of probability
is used to tackle wind speed uncertainties, which are then converted into wind power.
Furthermore, the KDM process is used to reduce the number of wind power measurements.
Moreover, the variability of renewable energy is calculated in terms of overestimation
and underestimation. This task is accomplished using the OGSA optimization technique.
The model and method introduced in this study provide a comprehensive approach to
investigating the issue of supplier profit maximization. These protocols can assist electricity
market participants in successful implementation of bidding policies and maximization of
their individual profits by enhancing their strategic advantage in electricity markets.

5. Conclusions

This research presents a novel OGSA to model the best bidding approach in a dynamic
energy market, taking into account the renewable energy sources and market constraints.
The exploration and exploitation phases of the above optimization algorithm are modified
by properly adapting them. The proposed OGSA methodology is put to the test using cer-
tain common benchmark functions in order to equate its results to that of other techniques,
being the most superior one for the current business strategy shifts scenario. Furthermore,
the uncertainties of the wind source are modelled using the Weibull distribution func-
tion. The bidding plan is planned with and without wind power. Normal PDF is used
to find the benefit maximization of each utility when taking into account the information
of competitors. The effect of wind energy on bidding strategies lowers thermal power
generation and lowers the market clearing price. For the IEEE 30-bus and IEEE 57-bus
systems, optimal bidding strategies have been developed. When compared to GA, PSO,
and GSA techniques, the proposed OGSA technique produces the best results in terms
of accuracy and viability for optimizing the benefit of the generation utilities. While the
algorithms have the potential to incorporate certain regulatory limitations, the theoretical
implementation has been based primarily on a price-driven economic competition model.
The theory and algorithm demonstrated how a provider could decide the rates at which
a given volume of generation could be offered to the grid system, taking into account
competitor prediction behaviour, wind power volatility, and planned system specifications.
Allowances for variability in these variables were successfully included, which is a key as-
pect of the model. Furthermore, the current work only considers symmetrical information,
allowing the ith supplier’s conclusions about the jth, and vice versa, to be symmetrical.
For further studies we will extend this study for unsymmetrical information, because this
model is not appropriate for unsymmetrical details, which helps some suppliers to make
better estimates than others.
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