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Abstract: Short-term traffic speed prediction plays an important role in the field of Intelligent
Transportation Systems (ITS). Usually, traffic speed forecasting can be divided into single-step-ahead
and multi-step-ahead. Compared with the single-step method, multi-step prediction can provide
more future traffic condition to road traffic participants for guidance decision-making. This paper
proposes a multi-step traffic speed forecasting by using ensemble learning model with traffic speed
detrending algorithm. Firstly, the correlation analysis is conducted to determine the representative
features by considering the spatial and temporal characteristics of traffic speed. Then, the traffic
speed time series is split into a trend set and a residual set via a detrending algorithm. Thirdly,
a multi-step residual prediction with direct strategy is formulated by the ensemble learning model of
stacking integrating support vector machine (SVM), CATBOOST, and K-nearest neighbor (KNN).
Finally, the forecasting traffic speed can be reached by adding predicted residual part to the trend
one. In tests that used field data from Zhongshan, China, the experimental results indicate that the
proposed model outperforms the benchmark ones like SVM, CATBOOST, KNN, and BAGGING.

Keywords: traffic speed multi-step prediction; direct strategy; speed detrending; ensemble learning

1. Introduction

Various types of vehicles have pushed human society forward by making the mobility
of people and goods possible, providing faster and more comfortable travel experience,
facilitating social interactions, and so on. Nevertheless, the rapidly increasing number
of vehicles has also brought some severe problems into worldwide cities. Apart from
consequences like global warming and fossil fuel depletion, traffic congestion is one
of the most negative effects that can be perceived by each traffic participant and it can
inevitably result in a series of problems, such as traffic accidents, energy overconsumption,
and significant travel delay [1]. In 2017, INRIX released the Urban Mobility Scorecard
Annual Report, which showed that traffic congestion was a significant challenge in a large
number of major cities around the world. According to this report, urban Americans spent
a total of an extra 8.8 billion hours and purchased an extra 3.3 billion gallons of fuel because
of congestion in 2017, giving a direct congestion cost of $166 billion [2]. Transportation and
traffic researchers believe that the Intelligent Transportation Systems (ITS) is a promising
solution to improve transportation management and can provide much better services
that can eventually lead to less congestion than traditional methods [3,4]. Among such
services, traffic prediction plays an important role in ITS because forecasting information
can be utilized to support traffic guidance, signal optimization, and so on. For example,
travelers can re-plan their traveling paths to avoid congestion and incidents, which could
save their time and cost by using the forecasting information, such as traffic speed, travel
time, and traffic condition [5]. Morever, accurate and timely speed prediction have also
been key issues in traffic prediction horizon, even in the ITS horizon. Correspondingly,
it has led to an intensive body of works about traffic speed prediction in the recent years.
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However, some major challenges about short-term traffic forecasting have been pointed
out as follows [6,7]:

(1) Traffic prediction based on spatial-temporal characteristics.
(2) Further exploration of Artificial Intelligence (AI) in traffic flow prediction.
(3) Multi-step prediction for real-life ITS applications to provide relatively long-term

future traffic situation for road users and government.

Based on the aforementioned issues, a novel multi-step speed prediction model is
proposed by considering spatial-temporal dependencies and using ensemble learning. The
developed method separates original data into mean and residual time series, and then
employs direct strategy and the ensemble learning framework of stacking algorithm to
multi-step-ahead forecast the residual time series. Main contributions of this paper are
listed as follows:

(1) A novel multi-step prediction with detrending and direct strategy is achieved by
the ensemble learning model of stacking (DDSELM) to forecast travel speed using
spatial-temporal characteristics.

(2) The proposed multi-step model is validated by using a very large field dataset of
hourly average link traffic speed, which reveals it has good performance.

The remaining part of this paper is organized as follows: In Section 2, a summary of the
state-of-the-art research in exploring traffic speed prediction is presented. Then, Section 3
formulates a new multi-step prediction model with ensemble learning. Subsequently,
a field dataset of Zhongshan, China, is employed to validate the effectiveness of our model
in Sections 4 and 5, respectively. Finally, the conclusion and future work are presented in
Section 6.

2. Related Work

In this section, a relevant background review about works on traffic speed predic-
tion including parametric methods and non-parametric methods [8,9], machine learning,
and multi-step prediction is provided.

Parametric methods, a well-structured family of models, estimate the model parame-
ters based on the training data and have been widely used to conduct traffic forecast. For
example, the auto-regressive integrated moving average (ARIMA) model was proposed in
1970s to predict short-term freeway traffic data [10]. Additionally, Voort et al. [11] proposed
a KARIMA prediction model to forecast traffic flow, which combined Kohonen maps with
ARIMA time series. Then, Williams et al. [12] provided a theoretical and empirical analysis
of a seasonal ARIMA method, and Kumar et al. [13] extended it into the scenarios of the
limited input data. In Kumar’s scheme, the prediction of the next day situation (24 h, start
from the prediction moment) was only based on the historical data in the last three days.
In 1984, Okutani et al. [14] applied Kalman filtering (KF) theory to traffic prediction and
proved that KF could perform well in traffic prediction, and Guo et al. [15] introduced
the adaptive KF approach to forecast stochastic short-term traffic flow. Along this line,
Mir et al. [16] presented a KF model for travel speed prediction by minimizing the variance
between the real-time speed measurement and its prediction. Zambrano-Martinez et al. [17]
presented an intuitive formula to predict link travel time based on the degree of traffic
congestion for route choice optimization.

Unlike the parametric methods, non-parametric ones have ability to flexibly capture
the stochastic and nonlinear features of traffic state (i.e., speed, flow, occupancy, travel
time). Vlahogianni et al. [8] pointed that traffic forecasting methods with computational
intelligence (CI) have gradually replaced the traditional statistical ones, because they
need no or little prior assumptions for input variables. As typical representatives, artifi-
cial neural networks (ANNs) have been successfully applied in many transportation do-
mains [18,19]. ANNs are mathematical models that formulate information processing sys-
tems by imitating the structure and function of the neural network of the brain. For example,
Vlahogianni et al. [20] proposed an advanced, genetic algorithm based multi-layered struc-
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tural optimization strategy to predict traffic flow. Different from ANNs, Zhang et al. [21]
proposed wavelet-based higher-order spatial-temporal (Wavelet-HST) method to accu-
rately predict network-scale traffic speed with an improvement of 7.8%∼10.5% in the root
mean square error than other six benchmark methods. Moreover, Cai et al. [22] improved
the original KNN model based on spatiotemporal correlation for traffic prediction.

In recent years, with the rapid development of machine learning and deep learning
techniques, more and more ITS researchers have begun to adopt these kinds of techniques
for high-accuracy traffic prediction. As pointed out by Ma et al., the LSTM-NN can over-
come the problem of back-propagated error decay by using memory blocks and has a better
capability for time series prediction with long temporal dependency [23]. Additionally, a
single-step support vector machine (SVM) with spatiotemporal parameters was proposed
in 2017, which provided short-term traffic speed prediction results (5-min) with error rang-
ing from 3.31% to 15.35% [24]. Moreover, Dong et al. [25] developed an extreme gradient
boosting (XGBOOST) model with wavelets decomposition and reconstruction to predict
the short-term traffic flow, which outperformed SVM.

Although single models are studied by many researchers and proved to be suitable
for many cases, they still have some shortcomings [25]. Alternatively, it is a much better
way to fuse the results from different prediction methods combined one to achieve better
prediction accuracy than single predictor. For example, the ensemble learning models have
been proved to achieve much better performance in prediction accuracy than individual
ones [26]. Nowadays, ensemble learning has been used in many fields of traffic prediction,
such as traffic sign detection and recognition [27], traffic speed [28], short-term traffic
volume [29], and traffic incident detection [30].

However, current ensemble methods are not explicitly designed to deal with spa-
tiotemporal data, and how to effectively ensemble multiple models while utilizing the
spatiotemporal information remains a challenging, but practical, problem.

There is a tendency that more and more scholars draw their attentions on multi-
step prediction. Usually, multi-step traffic prediction can provide drivers and traffic
agencies more chances and time to pre-make better decisions than one-step prediction.
Zhang et al. [31] reported a hybrid deep ensemble approach by integrating 3D convolu-
tional neural network (CNN) with ensemble empirical mode decomposition (EEMD),
and yielded the high performance regardless of prediction time step increases from 1 to 6.
Notably, although the prediction time step increases, the evolving fuzzy neural network
(EFNN) model with the consideration of the periodic pattern can also outperform other
models (ANN, SVM, ARIMA, vector autoregressive model) with smaller prediction errors
and slower raising rate of errors [5]. Zhang et al. [7] proposed a novel deep learning frame-
work named attention graph convolutional sequence-to-sequence model (AGC-Seq2Seq)
to accurately capture the temporal heterogeneity in multi-step traffic speed prediction.
Papathanasopoulou et al. [32] embedded a microscopic traffic simulation of car-following
model into dynamic multi-step traffic prediction and leaded to less than 10% error in speed
prediction even for ten steps into the future.

3. Prediction Methodology

Previous studies show that ensemble learning can be used for traffic prediction with
good performance. Thus, this paper will develop an ensemble learning model for multi-
step traffic speed forecasting with direct strategy, namely DDSELM, to process the given
time series data. Firstly, the correlation analysis is conducted to identify the key factors
affecting speed forecasting. Then, a detrending algorithm is developed to divide the speed
dataset into trend part (i.e., mean set) and residual one, and then this study employs
direct strategy and ensemble learning of stacking to predict multi-step residuals. Finally,
the multi-step residuals combined with the trend sets can form the final predict results.
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3.1. Direct Strategy

The direct strategy was firstly proposed by Cox in 1961 in the fields of multi-step
prediction. This strategy needs to establish a set of models for each step. Input variables of
direct strategy depend on observed values instead of predicted ones [33,34]. For example,
the framework of direction strategy is shown in Figure 1.
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3.2. Feature Construction

Notably, representative features determine the performance of forecasting modeling.
In order to determine the appropriate model inputs, this study chooses initially the ten spa-
tiotemporal candidate variables of travel speed and flow for correlation analysis, as shown
in Table 1, which involve the time of day, day of week, and upstream and downstream con-
nected links. Correlation analysis is a statistical analysis method that studies the correlation
between two or more random variables. Among them, the Pearson correlation coefficient
proposed by Pearson in 1895 is one of the most influential coefficients in correlation analysis
to select the final representative features for the prediction model [35].

Table 1. Constructed feature candidates for the prediction model.

Representative Feature Descriptions

v(d,t) Speed at time t, day d
v(d−1,t) Speed at time t, day d − 1
v(d−2,t) Speed at time t, day d − 2
v(d−3,t) Speed at time t, day d − 3

v(d−1,t+1) Speed at time t + 1, day d − 1
v(d−2,t+1) Speed at time t + 1, day d − 2
v(d−3,t+1) Speed at time t + 1, day d − 3

v(u,t) Upstream speed at time t, day d
v(d,t) Downstream speed at time t, day d

flow(d,t) Flow at time t, day d

3.3. Detrending

Since traffic speed time series used in this paper are different spatio-temporal charac-
teristics (i.e., workdays or weekends, peak or off-peak hours), it is reasonable to split speed
time series into its mean trends and residuals via detrending algorithm, and develop the
model to predict the residual time series. Following the previous literature [36], a simple
average method was used to find out the trend, which takes the average of daily traffic
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speed series into account in Equation (1). Among, the speed observation at the tth hour
belonging to the dth day can be formulated as follows:

v(d,t) =
1

24

24
∑

t=1
v(d,t) + rv

(d,t)

f low(d,t) =
1

24

24
∑

t=1
f low(d,t) + r f low

(d,t)

(1)

where the first item on the right of the equation represents the average speed(flow) of the
dth day; rv

(d,t) (r f low
(d,t) ) represents the speed(flow) residual at the tth hour on the dth day,

which constitutes the speed(flow) residual time series. Next, a predicted model will be
introduced to forecast the residuals.

3.4. Ensemble Learning

As aforementioned, the ensemble learning can perform well in dealing with regres-
sion and classification tasks. Bagging, boosting, and stacking are the three conventional
ensemble learning algorithms to integrate weak models into a strong one for applications
in different fields [37]. The final prediction of bagging algorithm is equal to the average of
all base learners or underlying models. The common boost model is Adaboost. Boosting is
an ensemble meta-algorithm that builds a model by iteratively training a new model to
emphasize the misclassified training samples from the previous model.

Depending on the combination structure, the stacking regression is an ensemble
learning technique to combine multiple regression models via a meta-regressor, which was
first introduced by Wolpert in 1992 [38]. Firstly, each individual prediction model is trained
based on the complete training set. Then, the meta-regressor is fitted based on the outputs–
meta-features–of the individual predictor. Thus, it can be found that stacking algorithm
depends on meta-regressor learning mechanism to combine all underlying predictors,
and goes beyond simple weighting mechanisms with the comparison of boosting and
bagging.

3.5. Performance Indices

In this study, there are four traditional measurement of effectiveness (MOE) indices
to evaluate the developed prediction method, such as mean absolute error (MAE), Mean
absolute percentage error (MAPE), mean square error (MSE) and coefficient of variation
(CV). CV is widely used in fields of engineering or applied statistics when doing quality
assurance studies. The detailed calculation formulas of these indices are expressed as
follows:

MAE =
1
N

N

∑
n=1

∣∣∣v(d,t) − v̂(d,t)

∣∣∣ (2)

MAPE =
1
N

N

∑
n=1

∣∣∣v(d,t) − v̂(d,t)

∣∣∣
v(d,t)

(3)

MSE =
1
N

N

∑
n=1

(
v(d,t) − v̂(d,t)

)2
(4)

CV =
σ̂

µ̂
(5)

where v(d,t) and v̂(d,t) represent the actual and the predicted traffic speeds, respectively. N
is the number of test samples, µ̂ denotes the average value of predicted speed, and σ̂ is the
standard deviation of the predicted speed.

In this study, the stacking regression models contain three basic underlying learners
of SVM, CATBOOST, and KNN, and the meta-regressor is the ridge regression method.
The framework of the proposed method is showed in Figure 2.
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4. Case Study

The proposed model will be evaluated with traffic data collected by ITS with Internet
Plus from the department of the Zhongshan Traffic Police Detachment. Zhongshan is
one of the pilot cities to implement ITS applications in China, which has the ability to
automatically collect city-level traffic flow data at signalized intersections. The testbed
is selected on Xingzhong Rd with two-way six motorized lanes, which is the busiest and
most congested south–north corridors in the Zhongshan downtown area [39]. Northbound
and southbound traffic flow were collected by loop detectors located several meters before
the stopline at the signalized intersection between Zhongshan Rd. and Tiyu Rd., and the
two-way link travel speed was collected by floating car detection in Figure 3. In this
study, the pilot dataset with the time interval of 1 h on Xingzhong Rd, was recorded over
five weeks from 21 October to 24 November 2018. Referring to the correlation analysis
mentioned above, this paper selected 10 representative features to calculate the Pearson
correlation analysis as shown in Tables 2 and 3.
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Table 2. Pearson correlation coefficients for northbound traffic on Xingzhong Rd.

v(d,t) v(d−1,t) v(d−2,t) v(d−3,t) v(d−1,t+1) v(d−2,t+1) v(d−3,t+1) flow(d,t) v1(d,t) v2(d,t)

v(d,t) 1 0.835 0.813 0.808 0.687 0.684 0.675 −0.801 0.782 0.874
v(d−1,t) 0.835 1 0.835 0.811 0.732 0.685 0.687 −0.796 0.775 0.823
v(d−2,t) 0.813 0.835 1 0.835 0.695 0.736 0.685 −0.793 0.751 0.796
v(d−3,t) 0.808 0.811 0.835 1 0.690 0.695 0.734 −0.797 0.734 0.803

v(d−1,t+1) 0.687 0.732 0.695 0.690 1 0.835 0.811 −0.750 0.689 0.692
v(d−2,t+1) 0.684 0.685 0.736 0.695 0.835 1 0.835 −0.739 0.668 0.671
v(d−3,t+1) 0.675 0.687 0.685 0.734 0.811 0.835 1 −0.737 0.644 0.680
flow(d,t) −0.801 −0.796 −0.793 −0.797 −0.750 −0.739 −0.737 1 −0.772 −0.829
v1(d,t) 0.782 0.775 0.751 0.734 0.689 0.668 0.644 −0.772 1 0.815
v2(d,t) 0.874 0.823 0.796 0.803 0.692 0.671 0.680 −0.829 0.815 1

Table 3. Pearson correlation coefficients for southbound traffic on Xingzhong Rd.

v(d,t) v(d−1,t) v(d−2,t) v(d−3,t) v(d−1,t+1) v(d−2,t+1) v(d−3,t+1) flow(d,t) v1(d,t) v2(d,t)

v(d,t) 1 0.752 0.716 0.706 0.540 0.518 0.536 −0.694 0.834 0.870
v(d−1,t) 0.752 1 0.778 0.735 0.614 0.562 0.543 −0.716 0.757 0.789
v(d−2,t) 0.716 0.778 1 0.773 0.557 0.614 0.563 −0.712 0.700 0.766
v(d−3,t) 0.706 0.735 0.773 1 0.543 0.554 0.616 −0.697 0.687 0.784

v(d−1,t+1) 0.540 0.614 0.557 0.543 1 0.778 0.735 −0.639 0.528 0.603
v(d−2,t+1) 0.518 0.562 0.614 0.554 0.778 1 0.773 −0.627 0.515 0.592
v(d−3,t+1) 0.536 0.543 0.563 0.616 0.735 0.773 1 −0.623 0.508 0.604
flow(d,t) −0.694 −0.716 −0.712 −0.697 −0.639 −0.627 −0.623 1 −0.699 −0.773
v1(d,t) 0.834 0.757 0.700 0.687 0.528 0.515 0.508 −0.699 1 0.809
v2(d,t) 0.870 0.789 0.766 0.784 0.603 0.592 0.604 −0.773 0.809 1

Where, v1(d,t)(v2(d,t)) represents the tth-hour upstream(downstream) speed on the dth day.
Tables 2 and 3 show the correlation between different spatial-temporal speed and

flow, respectively. One can find that the correlation between current interval and the same
historical interval in the past days is relatively high, regardless of the day of week. The link
travel speed at time t also has a strong correlation with the upstream and downstream ones
at the lowest of over 0.782. However, the correlation between the speed at interval t and
t + 1 in the historical days decreases with the passage of time. This is because the traffic
flow has a certain randomness and the current traffic state at interval t has a significant
difference from the interval t + 1 in the historical days. In addition, the current speed has
a negative correlation with the current flow, which indicates that the higher the speed is,
the lower the flow is. Notably, the correlation between the variables on the northbound
links is higher than the southbound, which is mainly because the northbound traffic is
relatively more stable and has less fluctuation than the southbound. According to statistical
analysis, those variables that have a high correlation degree of ≥0.6 [40] could be allowed
for detrending. After detrending, the residual set would be inputs in this study. Input
variables of the proposed DDESLM model are shown in Table 4.
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Table 4. Input candidates of the proposed prediction model in this study.

Representative Feature Descriptions

v̂di f
(d,t+h)

Predicted speed difference between predicted speed and daily average value at time t + h belonging to the dth day
h Prediction time step into the future, h ≥ 1

vdi f
(d,t)

Speed difference between measured speed and daily average value at time t belonging to the dth day

vdi f
(d−1,t)

Speed difference between measured speed and daily average value at time t belonging to the d-1th day

vdi f
(d−2,t)

Speed difference between measured speed and daily average value at time t belonging to the d-2th day

vdi f
(d−3)

Speed difference between measured speed and daily average value at time t belonging to the d-3th day

f lowdi f
(d,t)

Flow difference between measured traffic flow and daily average value at time t belonging to the dth day

vupdi f
(d,t)

Upstream speed difference between measured speed and daily average value at time t belonging to the dth day

vdowndi f
(d,t)

Downstream speed difference between measured speed and daily average value at time t belonging to the dth day

5. Discussion

The experimental in this study is operated on a Windows 10 64-bit PC with 4.00
GHz Intel(R) Core(TM) i7-4790K CPU and a 16 GB memory. The software used in our
experiment is Jupyter 6.1.1 and Python 3.6. The key parameters of four benchmark models
are shown in Table 5.

Table 5. The key parameters of four benchmark models in Python.

Model Base Learner Mega Learner Descriptions

KNN
√

n_neighbors = 3

CATBOOST
√ Depth = 8, learning_rate = 0.8, loss_function = ‘RMSE’,

random_seed = 18
SVM

√
C = 100, gamma = 0.01, kernel = ‘rbf’

RIDGE REGRESSION
√

Alpha = 17, random_state = 1

Where n_neighbors mean the number of nearest neighbors; depth denotes the depth of
trees; learning_rate is used for reducing the gradient step, which affects the overall time of
training: The smaller the value, the more iterations are required for training; loss_function
represents the a certain metric during model training; C limits the importance of each point;
gamma controls the width of the Gaussian kernel; kernel means kernel function; alpha
means regularization strength; and random_state means the seed of the pseudo random
number generator to use when shuffling the data while random_seed is the same with
random_state.

The proposed forecasting models in this study are evaluated by comparing with
four other predictors: SVM, CATBOOST, KNN, and BAGGING (the average result of
SVM, CATBOOST, and KNN into an ensemble learning). SVM could deal with overfitting
problem and have good generalization performance because SVM can construct a mapping
from one dimensional input vector into high-dimensional space by the use of reproducing
kernels. Furthermore, the SVM is also slow in the test phase due to the high algorithm
complexity and needs a large memory capacity to calculate. CATBOOST uses an efficient
gradient modification of ordered boosting to overcome the problem of target leakage, and it
performs well in small datasets, but training a CATBOOST model requires a great deal of
time and compute memory. KNN is suitable for small datasets but it is usually hysteretic in
time series. BAGGING is a combination of KNN, SVM, and CATBOOST, and outperforms
each individual method.

5.1. Prediction Accuracy

The MOE results of the proposed DDSELM and other four benchmark models are
drawn in Figure 4 on southbound and northbound road links. Each subfigure shows one
performance index of five prediction models under three scenarios with three kinds of
prediction steps [1 h (60 min), 2 h (120 min), 3 h (180 min)] into the future. For the different
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steps in Figure 4, one can find that the prediction accuracy of each models is decreasing
with the increase of the prediction step regardless of the southbound or northbound links.
This result is consistent with the results of existing studies [30,33], which found that it is
particularly difficult to conduct multi-step-ahead prediction due to the randomness and
uncertainty of the travel speed.
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As shown in Figure 4, the ensemble learning models of the proposed DDSELM can
yield many more benefits than individual models (SVM, CATBOOST, and KNN) and ensem-
ble one (BAGGING) regardless of the ahead-prediction step. In particular, the developed
DDSELM in this study can outperform four kinds of benchmark models. In particular,
the KNN, an individual method, performs better than SVM and CATBOOST for one-step-
ahead prediction, but it also suffers many more errors than the two other individual ones for
three-step-ahead prediction in Figure 4a. Compared with KNN, DDSELM always has good
performance regardless of the road direction and prediction steps, among which the MAPE
of northbound DDSELM is 1.16% lower (7.08% versus 8.24%) than KNN in one-step-ahead
prediction, 1.58% (8.77% versus 10.35%) in two-step-ahead prediction, and 1.56% (10.34%
versus 11.90%) in three-step-ahead prediction, respectively. In Figure 4b, the MAPE of
southbound DDSELM is 2.10% lower (14.90% versus 17.00%) than KNN in one-step-ahead
prediction, 1.05% (16.99% versus 18.04%) in two-step-ahead prediction, and 4.30% (17.82%
versus 22.12%) in three-step-ahead prediction, respectively. Notably, the prediction ac-
curacy of the northbound DDSELM is better than southbound, which might be that the
correlation between travel speed of the northbound links is higher than the southbound.

Furthermore, a more detailed analysis about the two ensemble models of DDSELM
and BAGGING was conducted for the multi-step-ahead prediction over a weekday of
Wednesday and a weekend of Saturday in Figure 5. Regardless of the ahead-prediction
step size, the performance of these two ensemble models performs much better during
the off-peak hours (9:00~16:00) than peak ones (7:00~8:00 and 17:00~18:00), and DDSELM
is especially better than BAGGING. The reason might be because BAGGING only uses
the average of all underlying prediction outputs to make up for the shortcomings of each
individual prediction model, but DDSELM uses the ridge regression algorithm in the
mega learner. The ridge regression uses L2 regularization for reducing the prediction error.
During the peak hours, both southbound and northbound predictions have much higher
accuracy in the morning peak period (7:00~9:00) than evening (17:00~19:00). As far as the
evening peak period, single-step prediction is better than multi-step-ahead for the north-
bound segments. This is because the traffic flow during the evening peak hours was much
larger than the morning and there was a sharp drop in travel speed around 17:00. Therefore,
there is a certain difference in the accuracy of two-way prediction. Compared with the
accuracy of weekdays, accuracy of one-step-ahead northbound prediction on weekends
slightly increases (8.36% to 7.54%), while the accuracy of one-step-ahead southbound pre-
diction decreases (9.60% to 13.79%). The multi-step prediction (two-step-ahead prediction
and three-step prediction) also has a similar trend, namely, prediction accuracy increases
in northbound while decreasing in the southbound direction. This may be because the
southbound data itself is less relevant than the northbound data in Tables 2 and 3.



Appl. Sci. 2021, 11, 4423 11 of 15
Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 16 
 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

Figure 5. The prediction comparisons by two ensemble methods on Wednesday and Saturday:(a) 
one-step-ahead prediction result on Wednesday in northbound; (b) two-step-ahead prediction re-
sult on Wednesday in northbound; (c) three-step-ahead prediction result on Wednesday in north-
bound; (d) one-step-ahead prediction result on Saturday in northbound; (e) two-step-ahead predic-

Figure 5. The prediction comparisons by two ensemble methods on Wednesday and Saturday:(a) one-step-ahead prediction
result on Wednesday in northbound; (b) two-step-ahead prediction result on Wednesday in northbound; (c) three-step-ahead
prediction result on Wednesday in northbound; (d) one-step-ahead prediction result on Saturday in northbound; (e) two-
step-ahead prediction result on Saturday in northbound; (f) three-step-ahead prediction result on Saturday in northbound;
(g) one-step-ahead prediction result on Wednesday in southbound; (h) two-step-ahead prediction result on Wednesday in
southbound; (i) three-step-ahead prediction result on Wednesday in southbound; (j) one-step-ahead prediction result on
Saturday in southbound; (k) two-step-ahead prediction result on Saturday in southbound; (l) three-step-ahead prediction
result on Saturday in southbound.
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5.2. Prediction Stability

Figure 6 shows the boxplots for the one-week prediction error and one will find that,
for the northbound prediction, the number of positive errors is larger than the number of
negative errors for different prediction steps; that is, most northbound prediction outputs
are larger than the observed values, whereas the number of positive errors is roughly equal
to the number of negative errors for the southbound traffic. For the same prediction step,
the fluctuation of the northbound prediction errors is smaller than southbound. For exam-
ple, the northbound one-step prediction error range is [−7.57,17.12], while southbound is
[−16.06,17.50].
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Figure 6. Comparison between the real speed and the predicted speed in boxplots: (a) one-step-ahead prediction error in
northbound; (b) two-step-ahead prediction error in northbound; (c) three-step-ahead prediction error in northbound; (d)
one-step-ahead prediction error in southbound; (e) two-step-ahead prediction error in southbound; (f) three-step-ahead
prediction error in southbound.

The cumulative distribution function (CDF) is an integral of the probability density
function, which provides a complete description of the probability distribution of a real
random variable. The CDFs of five prediction models are plotted in Figure 7, where the x
axis is the deviation of prediction error, and the y axis is the cumulative probability. One
can found out that the sequence of model prediction performance from good to bad is
DDSELM, BAGGING, KNN, CATBOOST, and SVM. The DDSELM also can provide much
more stability than others. For northbound prediction, the 83.33% of its one-step-ahead
prediction has error less than 10%, 71.42% for two-step-ahead, and 70.83% for three-step-
ahead, respectively. Correspondingly, the prediction error of less than 10% accounts for
71.42% for one-step-ahead, 60.11% for two-step-ahead, and 58.76% for three-step-ahead for
southbound prediction, respectively.
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The CV is an important indicator to measure the diversity of data. Compared with
other prediction models, the CV of DDSELM has the minimum score regardless of predic-
tion step as shown in Figure 8. Compared with other four models, DDSELM has lower
CV, reaching 0.09, 0.10, and 0.11 for one-step-ahead, two-step-ahead, and three-step-ahead
prediction, respectively, in Figure 8a. In the south direction, the CVs are similar to those of
north direction except the south direction has higher CVs because of the lower correlation
mentioned in Section 4.
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6. Conclusions

In order to tackle the challenge of multi-step traffic speed prediction, we proposed
an ensemble model, i.e., the Detrending and Direct Strategy Ensemble Learning Model
(DDSELM). The detrending technique could separate original dataset into mean trends
and residuals, and the direct strategy could decrease the cumulative error in the prediction
process. To validate the effectiveness of our model, we used several benchmark models
as a comparison model, including SVM, CATBOOST, KNN, and BAGGING, based on a
field dataset collected in the city of Zhongshan, China. Predictive results showed that our
model outperformed four benchmark ones in terms of the MAPE, MAE, MSE, and CV
under three prediction intervals. For one-step-ahead prediction, the MAPE of DDSELM
for northbound segments is 7.08% (14.90% for southbound segments). For two-step-ahead
and three-step-ahead prediction, the MAPE of DDSELM for northbound segments is 8.77%
and 10.34% (16.99% and 17.82% for southbound segments), respectively. In future works,
it is necessary to consider the impact of road network characteristics and specific incidents
on prediction accuracy. Moreover, the proposed model can also be integrated into some
advanced ITS to alleviate traffic congestion, for example, real-time route planning systems,
traffic management systems, and traffic signal control systems.
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