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Featured Application: Mobile game adjustment towards a player is proposed based on an exam-
ple of a puzzle game. The research goal is mobile game adaptation and personalization according
to recognized user preferences. Additionally, an approach to graphic interface scaling according
to a player mobile device is presented.

Abstract: Mobile app markets have faced huge expansion during the last decade. Among different
apps, games represent a large portion with a wide range of game categories having consumers in
all age groups. To make a mobile game suitable for different age categories, it is necessary to adjust
difficulty levels in such a way to keep the game challenging for different players with different playing
skills. The mobile app puzzle game Wonderful Animals has been developed consisting of puzzles,
find pairs and find differences game (available on the Google Play Store). The game testing was
conducted on a group of 40 players by recording game level completion time and conducting a survey
of their subjective evaluation of completed level difficulty. The study aimed to find a mechanism to
adjust game level difficulty to the individual player taking into account the player’s achievements on
previously played games. A pseudo-algorithm for self-learning mechanism is presented, enabling
level difficulty adaptation to the player. Furthermore, player classification into three classes using
neural networks is suggested in order to offer a user-specific playing environment. The experimental
results show that the average recognition rate of the player class was 96.1%.

Keywords: machine learning; neural network; mobile game; smartphones; graphical user interface

1. Introduction

During the last two decades, mobile phones have become part of everyday life and an
unavoidable part of our social connecting, Internet surfing, photographing, entertaining,
gaming, etc. It is estimated that nowadays, more than 5 billion people own a mobile device,
of which more than 60% are smart devices [1]. Analysis of users’ interactions with their
mobile devices has gained research attention since recognition of users based on their
personality traits can be used for the personalization of content and mobile services [2].
App stores offer more than 3.04 million mobile applications [3]. Besides the significance of
the graphical presentation in mobile applications, recognition and accommodation to the
user is one of the aspects that should not be avoided if the application is striving to satisfy
the user. In [4], aesthetic qualities of app icons were analyzed, especially the characteristics
of the app icon that are related to users’ willingness to interact with an app. The ubiquity
of mobile smartphones has changed the technological context, communicative possibilities,
and media interactions people experience [5].

Mobile phones are today’s de facto personal computers, which are increasingly pow-
erful in terms of computation, sensing and interaction capabilities [6]. Both hardware
and software have been significantly improved in recent years, enabling and motivating
the development of new applications (apps) [7]. User satisfaction, which is one of the
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measurements of user experience, is a key element for the sustained consumption of mobile
phone services [6]. Employing new multimedia technologies in teaching, which include
video games, learner’s satisfaction, motivation and comprehension, are studied in [8].

In personality psychology, the main goal is to predict and explain someone’s actual
behavior based on personality traits [9]. In research [10], it is suggested that personality
traits predict mobile application usage in several specific categories such as communication,
photography, gaming, transportation and entertainment. Their study demonstrated how
individual differences can be effectively related to actual behavior. In [11], a recommender
system is proposed using the interactional context of the user, which involves past sessions
of the user and other users, but also the current session of the user. Analysis of different
usage patterns of mobile alarm app was presented in [12], with the intention to understand
users’ preferences in choosing different wake-up tasks.

Intelligent models and their applications are the right path to improve complex sys-
tems. The formulation of mathematical models is of key importance for understanding
and optimizing complex systems [13,14]. In [15], it is shown that for any two learning
algorithms A and B, there are equally “as many” targets for which algorithm A has lower ex-
pected error than algorithm B as vice versa. So, it can be concluded that there is no algorithm
suitable for all problems. Neural networks, including many variants and algorithms such
as deep neural networks (DNN), extreme learning machine (ELM), and dynamic extreme
learning machine (DELM) have found a wide range of implementations in many areas
such as image classification, speech recognition, big data stream classification, biomedical
applications, system modeling and prediction [16,17]. Recurrent neural networks as repre-
sentative of deep learning techniques have become an important part of natural language
understanding, speech synthesis, and video processing [18]. In [19], the main objective was
to classify acted emotion speech in five emotion categories using multilayer perceptron
(MLP) with several different topologies.

While playing a mobile game, a player is in a specific interaction with the game. Such
an interaction can be observed as a kind of human–machine interaction (HMI). In HMI,
human recognition and classification is an important topic that has been in research focus
during the last few years, whether it is based on voice analysis, facial image analysis,
human behavior analysis [20,21]. Additionally, analysis of the electroencephalography
(EEG) signals, as part of a brain–computer interface (BCI), has been exploited due to
more available devices with high-resolution measurements, facilitating a new modality
of interaction between the users and computer systems, with applications ranging from
devices for disabled people to entertaining games [22,23]. According to [23], game players
expect to have a long-term relationship with mobile games. Some possible approaches in
developing this relationship include player rewarding, bonus features for achievements,
a level system, etc. It is important to reflect the user’s experience and needs that occur
during the actual user’s use of the product in order to develop a product that fits the user’s
experience [24]. There are more neural correlations encoded in EEG signals, such as user
preferences, valence of an emotion and task difficulty and complexity. Detection of the
consumer preferences using a deep learning approach based on EEG signals is presented
in [25]. In order to adapt a mobile game to a specific player, it is necessary to recognize
their capabilities/skills. Considering neural networks as a powerful and state-of-the-art
classification tool for various research problems, in this paper, they are used for player
classification, and consequently, game adaptation to the recognized player category.

The paper is organized as follows: the Introduction and description of the mobile
application used in research is given in Section 2. Adjustment of the graphical user interface
in the app is described in Section 3. The algorithm of the self-learning mechanism for game
level difficulty adaptation is presented in Section 4. In Section 5, game adaptation and
personalization based on recognized player category is proposed. Player classification is
carried out using neural networks. Finally, in Section 6, the conclusion and directions for
further research are given.
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2. System Description

Wonderful Animals is a mobile game application developed for the Android platform
using the Java programming language in Android Studio [26]. The mobile application
consists of three different games: puzzles, a memory game and a spot-the-difference
game. The main menu of the game presents all available games and their levels, which
are shown after a player deploys the game. The game main menu is shown in Figure 1.
The game interface is made to be very intuitive for users of all age categories. Android apps
are event-driven; i.e., all interaction between the app and the user happens through events
such as touching and swiping [27]. The app has been tested on different age categories and
has been shown to be easy to use without confusing user interface elements.
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Puzzles are the first and main part of the game and they are grouped in four levels of
complexity. Task complexity evaluation is based on the assumption that the more complex
task that is connected with the higher probability that the task will be difficult to perform,
and the mental effort and possibility of errors will increase [28]. The first level has five
puzzles consisting of four pieces and they are shown in the first row of the main menu;
the second level has 10 puzzles consisting of nine pieces (icons in the second and third row
of the main menu); the third level contains 10 puzzles consisting of 16 pieces (icons in the
fourth and the fifth row of the main menu); finally, the fourth level consists of five puzzles
with 25 pieces each (icons shown in the sixth row of the main menu). When a player
has tapped (chosen) one of the puzzles, pieces of that puzzle are shown on the screen.
The player drags a piece of the puzzle to an outlined grid of the final picture. The player
drops a piece of the puzzle into some segment of the grid and, if the placement of piece is
correct, it stays shown as part of final picture. When the puzzle is completed, the player
receives their completion time, shown on the screen. Every game level has a predefined
time, which is limit for the player to complete the puzzle and receive the congratulation
message “Wonderful!!!”. So, only the player who has finished the game level in less than
the predefined time will receive the message “Wonderful!!!”.

The second game in the application is a memory game. The memory game (find pairs
or simply “pairs” in the application) is a game of matching pairs among many pictures,
in particular matching pairs of animals. The success in this game depends on player
memory and concentration. There are three levels of complexity: a level with 10 pairs,
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a level with 15 pairs, and finally, a level with 20 pairs. When a player starts, for example,
the first level memory game, 20 grey squares are shown on the screen, hiding 10 pairs
of animals that are randomly placed. The player chooses and taps two grey squares on
the screen. Pictures of animals behind these two chosen squares are shown for a while.
The player needs to memorize what pictures are behind them in order to match its pair.
When all pairs are found, the player receives their level completion time, shown on the
screen. Additionally, if the player was fast and successful (if he/she had finished the game
level within less than the predefined time), they receive the message with the congratulation:
“Wonderful!!!”.

The third game is a game to find the difference (spot the difference). The player must
find a requested number of differences between two otherwise identical images of animals.
When a player spots a difference, he/she taps on it; if it is the correct position of difference,
a ticked line is shown on the screen. When a player has found all the differences, a level
completion time is shown, and as with the other two games, if they were fast in solving
the task, a congratulation message “Wonderful!!!” is shown on the screen. There are three
levels of the game: images with three, four and five differences.

3. Graphical User Interface Adjustment According to the User’s Screen

On the marketplace of mobile phones, there are many models of phones with various
configurations, including different screen resolutions and screen sizes. Due to the flexibility
of app development languages and a lack of standards, each mobile app is very different
from other apps. Furthermore, the graphical user interfaces for similar functionalities are
rarely consistent or similar [29]. It should be noted that mobile phone manufacturers mark
the longer side of the screen as the screen width and the shorter side as screen height.
This notion is inherited from the TV and computer monitor technology and it corresponds
to the horizontal orientation of the screen. In that sense, the screen aspect ratio is defined
as the ratio of the longer screen side to the shorter screen side. On the market, there are
screens with various screen aspect ratios, e.g., 16:9, 18:9. In Wonderful Animals, a vertical
screen orientation is set as the default orientation (as shown in Figure 1). Due to the vertical
orientation, the longer screen side is noted as the screen height, and the shorter screen side
is noted as the screen width. This notion is used in the rest of the paper. In order to be able
to adapt the graphical user interface of every part of the game to a variety of phone models
regarding different screen resolutions and sizes, a mathematical model of graphical user
interface adjustment is developed.

Firstly, the background image has to be properly displayed on the screen. Proper
background image scaling must satisfy two conditions: (1) the original aspect ratio of the
image has to be preserved; and (2) after the background image is scaled, there should not
exist any white space on the screen (space on the screen not covered by the background
image). When the game starts, it gathers information about the screen width and screen
height in pixels (by using the Android system functions). Afterwards, the screen ratio is
calculated according to Equation (1):

Rs =
heights

widths
, Rs > 1 (1)

where heights is the screen height in pixels and widths is the screen width in pixels.

Theorem 1. For a given screen display whose aspect ratio is Rs and a given background image
whose aspect ratio is Rb, there is an adequate image scaling, regarding at least one image dimension
and preserving the image Rb, which occurs without empty space on the screen.

Proof of Theorem 1. Let us define screen aspect ratio Rs and background image aspect
ratio Rb, as defined by Equation (2), respectively:

Rs =
heights

widths
and Rb =

heightb
widthb

, where Rs > 1, Rb > 1 . (2)
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Three cases are considered:

Case 1: For the case of Rs = Rb it is possible to scale the background image regarding both
dimensions of the screen, width and height.

(a) If the background image width is set to the screen width, i.e., x = widths then the
image height should be scaled as y = widths ∗ Rb = widths ∗ Rs, which implies
y = heights.

(b) If the background image height is set to the screen height, i.e., y = heights, then the
image width should be scaled as x = heights ∗ 1

Rb
= heights ∗ 1

Rs
, which implies

x = widths.

Hence, Theorem 1 is proved for case 1.

Case 2: For the case Rb > Rs (Equation (3)), it is possible to scale the background image
regarding one dimension of the screen, namely screen width.

Rb > Rs, Rb = Rs + ξ, ξ > 0 (3)

(a) If the background image width is set to the screen width, i.e., x = widths, then the
image height should be scaled as y = widths ∗ Rb = widths ∗ (Rs + ξ); furthermore,
the image height is y = widths ∗ Rs + widths ∗ ξ = heights + widths ∗ ξ, which implies
that y > heights.

(b) If the background image height is set to the screen height, i.e., y = heights, then the
image width should be scaled as x = heights ∗ 1

Rb
= heights ∗ 1

Rs+ξ ; furthermore,

the image width is x < heights
Rs

i.e., x < widths. In this case, empty space will be visible
on the screen because the scaled image width is smaller than the screen width.

Hence, Theorem 1 is proved for case 2.

Case 3: For the case Rb < Rs (Equation (4)), it is possible to scale the background image
regarding one dimension of the screen, namely the screen height.

Rb < Rs, Rb = Rs − ξ, ξ > 0 (4)

(a) If the background image width is set to the screen width, i.e., x = widths, then the
image height should be scaled as y = widths ∗ Rb = widths ∗ (Rs − ξ); furthermore,
the image height is y = widths ∗ Rs − widths ∗ ξ = heights − widths ∗ ξ, which implies
that y < heights. In this case, empty space will be visible on the screen because the
scaled image height is smaller than the screen height.

(b) If the background image height is set to the screen height, i.e., y = heights, then the
image width should be scaled as x = heights ∗ 1

Rb
= heights ∗ 1

Rs−ξ ; furthermore,

the image width is x > heights
Rs

i.e., x > widths.

Hence, Theorem 1 is proved for case 3.
Since all cases have been checked, Theorem 1 is proved. �

In the first attempt, the background image width (widthb) is set to the screen width
(Equation (5)) and the background image height (heightb) is calculated according to the
new background image width (Equation (7)), keeping the original aspect ratio of the image
given in Equation (6). Afterwards, there is a check to see if the background image height
fits the screen height.

widthb = widths (5)

Rb =
heightb
widthb

(6)

heightb = widthb ∗ Rb (7)
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If heightb ≥ heights, then the background image is scaled properly and it can be drawn
on the screen.

If heightb < heights, then the background image height is not properly scaled in the
first attempt because there will be white space if such a scaled image is shown on the screen.
Thus, the background image scaling is carried out in the second attempt. The background
image height is set to the screen height (Equation (8)), and the background image width is
recalculated, as in Equation (9):

heightb = heights (8)

widthb =
heightb

Rb
. (9)

According to Theorem 1, there is at least one image dimension for which the back-
ground image will be properly scaled to any screen. So, if scaling to the screen width
is not proper, then scaling to the screen height is proper, and vice versa. In this way,
the application ensures that there is no white space displayed on the screen and that the
original aspect ratio of the background image is preserved, avoiding image stretching.

Unlike the case of background image scaling, where it is crucial not to obtain white
space on the screen, in the case of graphical game elements, it is significant to make all
elements visible on the screen without cutting off some elements in the game view. Thus,
all graphical elements of the game have to be visible on the screen. In the case of the
Wonderful Animals app, as can be noted from Figure 1, all elements of the main menu
include the logo of the game, button for music and the exit button, icons for all levels of the
games (puzzles, pairs and find differences), titles “Pairs” and “Differences” and spacing
between elements. When scaling graphical game elements, two conditions have to be
fulfilled. As the first condition (given in Equation (10)), it is necessary to provide that the
sum of all elements’ width, which will be displayed in one row on the screen, is less than
the screen width:

w1 + w2 + w3 + · · ·+ wn ≤ widths, (10)

where wi i = 1, .., n is icon width, and n is number of icons.
As the second condition (defined by Equation (11)), the task is to verify if the sum

of all elements height, which will be displayed in one column on the screen, is less than
screen height:

h1 + h2 + h3 + · · ·+ hn ≤ heights, (11)

where hi i = 1, .., n is icon height, and n is number of icons.

Theorem 2. For a given screen display wherein the aspect ratio is Rs and a given sum of all icons
in which the aspect ratio is Rsi, there is an adequate image scaling, regarding at least one image
dimension and retaining the original Rsi, which results in complete visibility of all icons.

Proof of Theorem 2. The proof can be carried out in a similar manner as the proof of
Theorem 1, considering three possible cases and using the definition of the screen aspect
ratio Rs and sum of all icons’ aspect ratio Rsi, according to Equation (12), respectively:

Rs =
heights

widths
and Rsi =

heightsi
widthsi

, where Rs > 1, Rsi > 1. (12)

�

According to Theorem 2, all graphical elements (icons) can be properly scaled accord-
ing to either the screen width or screen height, so that two conditions for complete visibility
of all elements, given in Equations (10) and (11), are satisfied.
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4. Self-Learning Mechanism for Game Level Difficulty Adaptation

The game has a reward on every level in the form of congratulation “Wonderful!” every
time the player successfully completes the level in a predefined time frame. The predefined
time frame is set to a specific value for every level based on initial tests conducted on
10 players belonging to different age categories. An averaged completion time at some level,
obtained in initial tests, is used as the initial time frame for that game level. Predefined
time frames for every game level in the app are given in Table 1.

Table 1. Time frames for the games.

Game Level

Puzzle Level 1
(4 Pieces)

Level 2
(9 Pieces)

Level 3
(16 Pieces)

Level 4
(25 Pieces)

Time frame [s] 7 20 55 110

Pairs level Level 1
(10 pairs)

Level 2
(15 pairs)

Level 3
(20 pairs) -

Time frame [s] 65 110 180 -

Differences level Level 1
(3 differences)

Level 2
(4 differences)

Level 3
(5 differences) -

Time frame [s] 28 45 91 -

In order to validate predefined time frames set for every game level, a group of
40 players were asked to play different levels of puzzles, pairs and differences. In those
experiments, achieved completion times of different game levels were collected and the
average completion time for all players, as well as minimum and maximum completion
time for every game level, are presented in Table 2.

Table 2. Experimental results for level completion times of the games.

Game Average Time [s] Min Time [s] Max Time [s]

Puzzle 4 pieces 6.2 3 15
Puzzle 9 pieces 17.6 9 29
Puzzle 16 pieces 45 19 63
Puzzle 25 pieces 100.5 51 199

10 Pairs 46.7 28 71
15 Pairs 97.1 65 135
20 Pairs 135.7 73 235

3 Differences 45.8 12 84
4 Differences 50 20 121
5 Differences 103 72 134

As can been noted from Table 2, there is a wide range from minimum value to
maximum value regarding every game level. This signifies that the difficulty of the game
level (game task) is a result of the player’s subjective evaluation and interpretation of task
complexity. Depending on the skills and the individual attributes of the player, the same
task will be evaluated differently between players [28]. Additionally, every player was
asked to report their subjective evaluation of the difficulty level of the finished game
(easy, medium, hard). Results of subjective evaluation tests show that 52% of the players
considered that the finished game level was easy, 36% of the players considered the game
level as medium in difficulty, and 12% of the players reported that the level was hard.
These results indicate that there is a need to adapt the difficulty level to individual player,
regarding individual playing abilities, in order to achieve higher player satisfaction after
finishing a level.

In order to adapt the game to an individual player and their skills, a self-learning
mechanism for setting the time frame has been developed. As the player plays the game
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at the same level, the app collects and memorizes their completion time for that level.
Based on the player’s completion time of the games at the same level (e.g., the fourth
level puzzles) the application carries out level difficulty adaptation by calculating a new
completion time frame for that level, according to Equation (13):

f̂ =
3 ∗ f3 + 2 ∗ f2 + f1

6
, (13)

where fj is the time frame for the j-th game trial used for adaptation.
As the player has finished one game of some m-th level, the application stores their

completion time. If the player has finished at least two games at the same level, the app
has stored two completion times which are, together with a predefined time for that game
level, values of function fj at three points. This is the starting point for the self-learning
mechanism to adapt game level difficulty. As the player has played the app for the third
time, then for the fourth time, there are new values of function fj used for adaptation.
The app uses the last three level completion times. There is an additional condition for the
completion time used for time adaptation: any completion time that is more than triple
the initial time frame for a specified game level is discarded because it is assumed that the
player was obstructed and stopped playing the application for some reason.

So, only a completion time that satisfies the condition defined by Equation (14) is
considered valid:

tj < 3 ∗ tinit, (14)

where tj is the completion time of the m-th level in the j-th trial, and tinit is the initial time
for the m-th level of the game.

A pseudo-algorithm for the proposed self-learning mechanism for level difficulty
adaptation is shown in Figure 2.
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In order to test the proposed algorithm, simulation experiments were conducted.
In the experiments, three types of players were modeled while playing the puzzle game
with 16 pieces. The level completion time of player type 1 was generated as a pseudo-
random number in the range from 53 s to 73 s. The intention was to model a player who
finds the level hard and who needs more time to complete the level. Such a player usually
will not receive the congratulation “Wonderful” because they will not finish the level in the
predefined time frame (it amounts to 55 s for the puzzle with 16 pieces). Applying a self-
learning mechanism during simulation, the system adapts the time frame to player type
1 and their playing ability. The results of the simulation experiments shown in Figure 3
present how the level completion time affects the congratulation message “Wonderful”.
In Figure 3, blue dots represent the level completion time for 30 playing trials and red
crosses represent time frames set at each trial. Player type 1, shown in Figure 3, would
receive a congratulation message only three times in a total of thirty trials, and after the
adaptation of the time frame, the player would receive a congratulation message 11 times,
which is encouragement for the player to continue playing the game.
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Player type 2 models the situations of playing a new level for the first time when the
player needs more time to complete that level. After several trials, their completion time
starts to decrease as the player has more experience on that level. The level completion
time for player type 2 was generated as a pseudo-random number in the range from
53 s to 105 s with an increasing tendency in consequently generated numbers. Figure 4
shows the completion time of player type 2, who has an increasing tendency (blue dots).
The self-learning algorithm adapts the time frame based on the previous completion time
and it can be seen that the time frames shown with red crosses fit to the changes of level
completion time. The algorithm provides the player in this case with the congratulation
message “Wonderful” eleven times, because their completion time is less than the time
frame set for that game level. Without the proposed self-learning algorithm, player type 2,
shown in Figure 4, would receive no congratulation message at all.
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Player type 3 models the player who is very progressive and who improves their
skills, which is reflected through a decrease in level completion time. Level completion
time for this type of player was generated as a pseudo-random number in the range from
60 s to 25 s with a decreasing tendency in consequently generated numbers. From Figure 5,
it can be seen that the algorithm is adapting the time frame to the decreasing tendency of
level completion time for player type 3. In the case shown in Figure 5, the player would
receive the congratulation message 27 times because their completion time in most of the
trials is less than the predefined time frame (55 s). After the adaptation of the time frames,
the player would receive a congratulation message 15 times, because the new time frame is
estimated on previous completion times of that player. The limit is set in such a way to
represent a challenge for the player to be better in every subsequent trial.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 16 
 

is estimated on previous completion times of that player. The limit is set in such a way to 
represent a challenge for the player to be better in every subsequent trial. 

 
Figure 5. Adaptation of time frame according to level completion time for player type 3. Blue dots 
represent the level completion time; red crosses represent time frames adapted to the player. 

During playing experiments, it has been noticed that some icons (images repre-
senting game level) were more often chosen than others. A good example is the butterfly 
image, which was more often chosen than the lizard or snake. This can be used for pos-
sible future improvement of the game that will encompass player preferences so the 
player can play more levels with images (category) that are similar to their previous 
choices. 

5. Player Classification Using Neural Networks 
In order to classify players in different groups related to their playing ability, three 

player categories were proposed: kid, progressive, and senior player. It should be noted 
that these three categories do not refer to the player’s age, but rather to the player’s abil-
ities. 

A player in the kid category is characterized as being slower in completing a game 
level and chooses games with lower levels of difficulty. Such a player often makes mis-
takes, exits the level before it is completed and starts the game several times a day. 

A player in the progressive category is fast in completing each game level; they 
choose games with a higher level of difficulty and improve their completion time on the 
same level. Such a player makes a few mistakes. 

A player in the senior category is not as fast as the progressive player and chooses 
games with a higher level of difficulty. They rarely quit the level before it is finished and 
start the app less than the other two player categories. 

Seven features are chosen to model the player: 
• level completion time (i.e., time in which the player finishes one game at some dif-

ficulty level); 
• difficulty level of chosen game; 
• number of times when the player receives the message “Wonderful!!!” after 10 

completed games of the same level; 
• number of times when the player quits the game before it is finished; 
• number of completed games before the player exits the application; 
• number of mistakes made during the completion of one game; 
• number of times that the player starts the application per day. 

5.1. Description of Neural Network Model 
Artificial neural networks are used for describing complex relationships between 

aforementioned features and player categories. Neural networks (NN) have been pre-
senting outstanding results in the state-of-the-art for mapping large sequences of data, 

Figure 5. Adaptation of time frame according to level completion time for player type 3. Blue dots
represent the level completion time; red crosses represent time frames adapted to the player.

During playing experiments, it has been noticed that some icons (images representing
game level) were more often chosen than others. A good example is the butterfly image,
which was more often chosen than the lizard or snake. This can be used for possible future
improvement of the game that will encompass player preferences so the player can play
more levels with images (category) that are similar to their previous choices.

5. Player Classification Using Neural Networks

In order to classify players in different groups related to their playing ability, three player
categories were proposed: kid, progressive, and senior player. It should be noted that these
three categories do not refer to the player’s age, but rather to the player’s abilities.

A player in the kid category is characterized as being slower in completing a game
level and chooses games with lower levels of difficulty. Such a player often makes mistakes,
exits the level before it is completed and starts the game several times a day.

A player in the progressive category is fast in completing each game level; they choose
games with a higher level of difficulty and improve their completion time on the same
level. Such a player makes a few mistakes.

A player in the senior category is not as fast as the progressive player and chooses
games with a higher level of difficulty. They rarely quit the level before it is finished and
start the app less than the other two player categories.

Seven features are chosen to model the player:

• level completion time (i.e., time in which the player finishes one game at some diffi-
culty level);

• difficulty level of chosen game;
• number of times when the player receives the message “Wonderful!!!” after 10 com-

pleted games of the same level;
• number of times when the player quits the game before it is finished;
• number of completed games before the player exits the application;
• number of mistakes made during the completion of one game;
• number of times that the player starts the application per day.
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5.1. Description of Neural Network Model

Artificial neural networks are used for describing complex relationships between
aforementioned features and player categories. Neural networks (NN) have been pre-
senting outstanding results in the state-of-the-art for mapping large sequences of data,
outperforming all previous classification and prediction models [7]. For the purpose of
network training and testing OpenNN (open neural networks) Library was used. The used
network configuration has seven input nodes, one hidden layer with three nodes, and an
output layer with three nodes representing the distinctive player category. The number
of training epochs was 10,000. The hyperbolic tangent activation function was used for
the hidden layer and the softmax function as an activation function of the output layer.
During the NN training phase, an adaptive learning rate optimization algorithm and
normalized squared error loss were employed. The input feature vectors were scaled using
min–max normalization. Each vector contains seven features and represents specific player.
The eature vector was collected over one day and summarizes the player’s characteristics
while playing the app. As mentioned in Section 4, a group of 40 players participated in the
game testing, during which the data related to the chosen seven features were collected.
The test group consisted of both male and female players belonging to different age groups
which were in focus of the experiments. Based on a statistical analysis of the collected data,
three player models were implemented. During experiments, those three player models
were used to obtain additional feature vectors representing specific players. The set of
experiments with neural networks were conducted with varying numbers of training and
test feature vectors. The experimental results were obtained using neural networks trained
with 150, 300 and 450 feature vectors. In the training phase, equal portion of feature vectors
from three player categories were used in training sets. Each trained NN was tested with
three sets: 50, 100 and 150 feature vectors.

5.2. Results and Discussion

The proposed approach has been tested using NN in three experimental settings:
NN trained with 150 feature vectors (NN1), NN trained with 300 feature vectors (NN2) and
NN trained with 450 feature vectors (NN3). An evaluation of the player recognition results
was performed with three test sets containing 50, 100, 150 feature vectors, respectively.
The average recognition accuracies for all experimental settings are shown in Table 3.
All the player categories achieved a high average recognition rate (above 94%) in all
experimental settings. It can be noted that the recognition rates of all three player classes
are the highest in the case of NN3, ranging from 95.9% (senior) to 96.9% (progressive).
Regarding the player categories, the senior category has slightly lower recognition rates
compared to the progressive and kid category in all settings. The progressive class is the
class with the highest recognition rate due to its better class separability, while the kid and
senior classes are closer in the feature space, which results in slightly lower recognition
rates for these two categories. From Table 3, it can be noted that the average recognition
accuracy for the kid category is 96.2%, for the progressive category is 96.6%, and for the
senior category is 95.4%. Regarding all player categories, the average recognition accuracy
is 96.1%.

Table 3. Average recognition accuracy [%] in all experimental settings.

Trained Classifier
Player Category

Kid Progressive Senior

NN1 96.2 96.1 94.5

NN2 95.9 96.8 95.9

NN3 96.6 96.9 95.9

To achieve better insight into the classification performance, classification results from
all experimental settings are given in terms of precision, recall and F1 score. The experi-
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mental results of the first experimental setting with NN1 tested with three sets (50, 100,
150 feature vectors), are presented in Table 4. Due to a balance of the three classes in the
test sets, it can be noted that all three player categories have high precision, recall and F1
score correlated with the recognition accuracies. Small variations of the results in three test
settings are the result of not perfectly equal class distributions in the test sets.

Table 4. Player classification results for the NN1 (trained with 150 samples).

Classification Measure Number of Test Samples Player Category
Kid Progressive Senior

Precision
50 0.959 0.933 0.967

100 0.961 0.968 0.937
150 0.958 0.958 0.938

Recall
50 0.958 0.975 0.949

100 0.963 0.957 0.947
150 0.964 0.953 0.938

F1 score
50 0.959 0.954 0.958

100 0.962 0.963 0.942
150 0.961 0.955 0.938

The results from the second experimental setting obtained using NN trained with
300 feature vectors (NN2) and tested with three sets (50, 100, 150 feature vectors) are
shown in Table 5. Comparison of the results from Tables 4 and 5 indicates that recall for
the progressive and senior categories slightly increased in the case of NN2. Regarding
precision, there is an increase for kid and progressive, but a small decrease for senior in the
case of NN2. As for the F1 score, an increase can be noted in all three categories in the case
of NN2, which is a result of the network training with more samples.

Table 5. Player classification results for the NN2 (trained with 300 samples).

Classification Measure Number of Test Samples Player Category
Kid Progressive Senior

Precision
50 0.973 0.979 0.936

100 0.974 0.988 0.917
150 0.973 0.983 0.924

Recall
50 0.964 0.965 0.959

100 0.961 0.967 0.958
150 0.954 0.972 0.959

F1 score
50 0.969 0.972 0.947

100 0.967 0.977 0.937
150 0.964 0.978 0.941

Finally, the results from the third experimental setting obtained using NN3 (trained
with 450 feature vectors) and tested with three sets (50, 100, 150 feature vectors) are
presented in Table 6. Analysis of the classification results given in Tables 5 and 6 shows
that recall increased for all categories in the case of NN3. On the other hand, there was
a slight decrease in precision for the progressive and kid categories, but for the senior
category, increased precision was achieved. The presented recognition results indicate
that the model is well-trained and the average recognition accuracies show very high
recognition rates, which are verified through calculated precision, recall and F1 score in all
experimental settings.
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Table 6. Player classification results for the NN3 (trained with 450 samples).

Classification Measure Number of Test Samples Player Category
Kid Progressive Senior

Precision
50 0.939 0.955 0.983

100 0.967 0.967 0.953
150 0.971 0.975 0.947

Recall
50 0.973 0.98 0.95

100 0.964 0.958 0.962
150 0.96 0.969 0.964

F1 score
50 0.956 0.967 0.966

100 0.966 0.962 0.957
150 0.966 0.972 0.956

The final goal of classifying a player in three defined categories is to adapt game content
in line with recognized player category. Personalization of content is conducted in two ways:
(1) through adequate difficulty level for each player category, and (2) through adapting the
time frame set for rewarding the player, i.e., receiving the message “Wonderful!!!”.

Two principal game adaptations are presented in Figure 6. The first is the level adap-
tation according to the recognized player category, offering more games suitable to player
ability; the second is adaptation of the time frame for level reward (“Wonderful!!!” message)
based on the proposed self-learning mechanism. Additionally, the game could be adapted
based on player preferences, which includes the type of images that are more often chosen
and the choice to play a specific type of music or to mute it.
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Personalization of the game content for the three given player categories is de-
scribed below.

If a player is recognized as belonging to the kid category, they will receive more
puzzles with difficulty level 1 and 2 (puzzles with four and nine pieces). The self-learning
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mechanism will correct the time frame for every game level by increasing the time limit so
the player has an opportunity to receive the rewarding message.

If a player is recognized as being in the progressive category, they will receive more
puzzles with difficulty level 3 and 4 (puzzles with 16 and 25 pieces). The self-learning
mechanism will correct the time frame for every game level, lowering the time limit in
order to achieve a more challenging game level for the progressive player.

For a player recognized as being in the senior category, the game will offer more
puzzles with difficulty level 3 and 4 (puzzles with 16 and 25 pieces). The self-learning
mechanism will correct the time frame for every game level by raising the time limit, so the
player has an opportunity to receive the rewarding message even if their completion time
is lower compared to the case of a progressive player.

6. Conclusions

In this paper, the presented experimental results show that there is a wide range of
user experiences based on individual player abilities. Therefore, the application should
be aware of user preferences in order to achieve user satisfaction while interacting with
the app. In the presented study, the recognition of the player category while interacting
with the app is obtained by employing a neural network with 96.1% recognition accuracy.
Based on the recognized player category, the app suggests more games suitable for the
player and adapts its internal time limit for finishing the level to provide individual player
limits for level reward. In the proposed self-learning algorithm, the time limit for finishing
a level is lowered/raised by a certain amount, which is calculated based on previous game
level completion times. The experimental results show an increase in received reward
messages after the application of the proposed algorithm. The increase is supposed to be
stimulating for the players, especially younger ones, and finally leads to a raised overall
satisfaction while playing. The paper also presented an approach to the adequate graphical
user interface adjustment according to a specific user screen. In future work, the app will be
improved with more levels and expanded with more games on the levels. Then, it would
be beneficial to consider additional player categories and the proposed player classification
could be tested on a fine-grained level. Additional player categories may include, e.g., small
kid, junior, or expert category. The upgraded app should be tested by a larger group of test
players in order to examine their playing abilities and adapt the app toward their gaming
experience. Additional channels of player information may be considered in future app
adaptation, e.g., detection of player’s satisfaction through face recognition. In future, it is
expected that adaptation towards the player will be more necessary in many apps and thus
adequate implementation of machine learning algorithms should support it. Adaptation of
the application towards users based on detection of user abilities and preferences presents
a future perspective for the games as well as other mobile applications.
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