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Abstract: The aim of this paper is to numerically predict the temperature effect on the tensile 
strength of granitic rock. To this end, a numerical approach based on the embedded discontinuity 
finite elements is developed. The underlying thermo-mechanical problem is solved with a staggered 
method marching explicitly in time while using extreme mass scaling, allowed by the quasi-static 
nature of the slow heating of a rock sample to a uniform target temperature, to increase the critical 
time step. Linear triangle elements are used to implement the embedded discontinuity kinematics 
with two intersecting cracks in a single element. It is assumed that the quartz mineral, with its strong 
and anomalous temperature dependence upon approaching the α-β transition at the Curie point 
(∼573 °C), in granitic rock is the major factor resulting in thermal cracking and the consequent deg-
radation of tensile strength. Accordingly, only the thermal expansion coefficient of quartz depends 
on temperature in the present approach. Moreover, numerically, the rock is taken as isotropic except 
for the tensile strength, which is unique for each mineral in a rock. In the numerical simulations 
mimicking the experimental setup on granitic numerical rock samples consisting of quartz, feldspar 
and biotite minerals, the sample is first heated slowly to a target temperature below the Curie point. 
Then, a uniaxial tension test is numerically performed on the cooled down sample. The simulations 
demonstrate the validity of the proposed approach as the experimental deterioration of the tensile 
strength of the rock is predicted with agreeable accuracy.  

Keywords: thermally induced cracking; embedded discontinuity FEM; rock fracture; rock tensile 
strength; thermo-mechanical problem  
 

1. Introduction 
Rocks often face high temperature conditions and thermal shocks in geotechnical en-

gineering applications, such as harvesting deep geothermal energy [1], nuclear waste dis-
posal [2], and thermal drilling [3]. Quartz-bearing rocks are particularly susceptible to 
temperature effects in their material properties and, consequently, in their response under 
thermal loading due to the α-β transition of quartz at its Curie point (∼573 °C) [4]. Natu-
rally, the temperature effects on rock mechanical properties have been extensively stud-
ied, experimentally [1,5–14] and numerically [11–17]. 

The temperature effects in rocks manifest as a degradation of mechanical properties 
(Young’s modulus and strength), while thermal properties show mixed behavior, i.e., 
some increase (thermal expansion coefficient, specific heat) while others decrease (ther-
mal conductance) [7,11]. The degradation of mechanical properties, especially that of the 
tensile strength, is the most important aspect from a geotechnical engineering point of 
view. The main mechanism behind the deterioration of mechanical properties, i.e., dam-
age, is thermal cracking due the pronounced heterogeneity of a rock material [13]. More 
precisely, a mismatch in the elastic properties leads to thermal stresses at mineral grain 
boundaries, which causes intra- and intergranular cracking, even under a uniform tem-
perature field. With quartz-bearing rocks, such as granite, this heterogeneity becomes 
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even more pronounced as the thermal expansion coefficient of quartz increases nonline-
arly upon approaching the α-β transition of Quartz at its Curie point while the other gran-
ite forming minerals, i.e., felspars and micas, behave linearly as a function of temperature 
[7]. 

Numerical modeling of temperature effects in rocks in an important task in geotech-
nical engineering. It enables to gain insights into the phenomena in a manner impossible 
to achieve using laboratory experiments or in situ testing due to physical or economic 
reasons. Predicting temperature effects in rock through numerical modeling is challeng-
ing due to thermal cracking. Modeling cracks involves numerical description of displace-
ment discontinuities. There are basically two approaches in computational mechanics to 
model cracks: the continuum approach (mostly the finite element method, or FEM) and 
the discontinuum approach, based on particle or discrete element methods (DEM). For 
general reviews on numerical methods in rock mechanics, the reader is referred to [18,19]. 
Here, it suffices to say generally that the discontinuum approach is naturally superior to 
the continuum approach in fracture modeling (see [20] for an example). However, the 
critical shortcoming of particle methods is the computational labor required to keep track 
and update the particle contact configurations and neighbors. As to the continuum ap-
proach, the classical FEM can only model fracture in the smeared sense, i.e., as localized 
deformation, by damage, and/or plasticity models. Notwithstanding, continuum models 
have the advantage of computational efficiency and relative simplicity in terms of calibra-
tion of material and model parameters. For this reason, FEM has been enhanced to better 
describe discontinuities. The enriched FEM methods include embedded discontinuity 
FEM [21] and extended FEM [22]. Embedded discontinuity FEM is adopted in the present 
study as it allows to recast the problem of solving the crack-opening vector into a format 
similar to plasticity models [23], which is a considerable implementational advantage over 
the extended FEM. 

In the present work, the detrimental effect of thermally induced cracking on the ten-
sile strength of granitic rock is numerically studied. A staggered explicit solution method 
is developed to solve the underlying thermo-mechanical problem. As mentioned above, 
rock fracture is modeled with embedded discontinuity finite elements. Unlike in previous 
studies, the granite rock material properties are taken as homogeneous at room tempera-
ture. However, the tensile strength is different for each rock-forming mineral, i.e., quartz, 
feldspar and biotite. Moreover, only the thermal expansion coefficient of the quartz min-
eral is assumed to depend on temperature. This simplifying choice reflects the above-
mentioned fact that the thermal heterogeneity of granite increases with increasing tem-
perature. The numerical simulations of a uniaxial tension test on the numerical granite 
demonstrate the validity of this simplified approach of reducing all heterogeneity of gran-
ite into the deviant behavior of quartz. 

2. Numerical Methods 
This section describes the numerical method for modeling the thermal cracking of 

rock. The method includes the constitutive model for fracturing rock based on embedded 
discontinuity finite elements and the global solution methods to solve the thermo-me-
chanical equations governing the thermal cracking of rock and the uniaxial tension test. 
The theory of the embedded discontinuity kinematics is presented only to the extent 
needed in the finite element implementation. For further details, the reader is referred to 
References [21,23–24].  

 

2.1. Rock Fracture Model 
Considering a 2D body discretized with constant strain triangular (CST) finite ele-

ments having (possibly) intersecting cracks, i.e., displacement discontinuities, the discon-
tinuities split some of the finite elements into two or more parts, as illustrated in Figure 
1a. Two intersecting discontinuities are needed in the present application of modeling the 
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effect of thermally induced cracks on the tensile strength of a rock specimen. More pre-
cisely, heat treatment of the numerical rock induces a substantial number of cracks with 
somewhat random orientations. As the fixed crack concept is adopted here (cracks do not 
rotate), an element with a crack unfavorably (close to parallel) oriented to the consequent 
uniaxial tension direction would generate spurious stresses without introducing the sec-
ond crack. 

 
Figure 1. (a) CST element with two intersecting discontinuities (𝐧ଵ,𝐦ଵ: normal and tangent for 
crack 1, Γୢ ଵ; 𝐧ଶ,𝐦ଶ: normal and tangent for crack 2, Γୢ ଶ; Ni: interpolation function at node i); (b) 
illustration of the displacement decomposition to regular and enhanced part and the correspond-
ing functions in a 1D case (𝑢௥௘௚: regular displacement; u: total displacement; αୢ; displacement 
jump; 𝑀௰ౚ : special function restricting the effect of αୢ inside the element). 

Under the small strain assumption, the displacement and strain fields for such an 
element can be written as: 𝐮ሺ𝐱ሻ ൌ 𝑁௜ሺ𝐱ሻ𝐮௜௘ ൅ ∑௜ୀଵ𝟐 𝑀୻ౚ೔ሺ𝐱ሻ𝛂ୢ௜    with 𝑀୻ౚ೔ሺ𝐱ሻ ൌ 𝐻୻ౚ೔ሺ𝐱ሻ − 𝜑୻ౚ೔ሺ𝐱ሻ, ሺ𝑖 ൌ 1,2ሻ   (1) 𝛆ሺ𝐱ሻ ൌ ሺ∇𝑁௜ ⊗ 𝐮௜௘ሻ௦௬௠ − ∑௜ୀଵ𝟐 ൫൫∇𝜑୻ౚ೔ሺ𝐱ሻ ⊗ 𝛂ୢ௜൯௦௬௠ ൅ 𝛿୻ౚ೔ሺ𝐧௜ ⊗ 𝛂ୢ௜ሻ௦௬௠൯,   (2) 

where 𝛂ୢ௜ is the displacement jump (crack opening) for crack i, and 𝑁௜ and 𝐮௜௘ are the 
standard interpolation functions for the CST element and nodal displacements (i = 1,..,3 
with summation on repeated indices), respectively. Moreover, 𝐻௰ౚ೔ and 𝛿୻ౚ೔ denote, re-
spectively, the Heaviside function and its gradient, the Dirac delta function. Consistent 
with the constant strain of the linear triangle element, the displacement jump is likewise 
an assumed elementwise constant, which means that ∇𝛂ୢ௜ ≡ 𝟎, and thus (2) follows in a 
straightforward manner by taking the gradient of (1). Moreover, the terms containing the 
Dirac’s delta function, 𝛿୻ౚ೔ሺ𝐧௜ ⊗ 𝛂ୢ௜ሻ௦௬௠, in (2), are non-zero only when 𝐱 ∈ Γୢ ௜. Outside 
the discontinuity, this term is zero and can thus be neglected at the global level when 
solving the discretized equations of motion. 

Function 𝑀௰ౚ೔  in (1) restricts the effect of 𝛂ୢ௜  inside the corresponding finite ele-
ment. This substantially facilitates the finite element implementation of the kinematics as 
there is no need for special treatment of the essential boundary conditions. The ramp func-
tion 𝜑୻ౚ೔ appearing in 𝑀௰ౚ೔ is chosen, from among the combinations of the nodal inter-
polation functions so that its gradient is as parallel as possible to the crack normal 𝐧௜:  ∇𝜑୻ౚ೔ ൌ arg ൬max௞ୀଵ,ଶ ห∑೙సభೖ ∇ே೙∙𝐧೔หฮ∑೔సభೖ ∇ே೙ฮ ൰ , ሺ𝑖 ൌ 1,2ሻ                   (3) 
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The displacement decomposition (1) and the related functions in the 1D case are il-
lustrated in Figure 1b with a single two-node bar element under tension. On the left, the 
functions involved in the decomposition are plotted. The decomposition consists of the 
regular nodal displacement, 𝑢௥௘௚ =  𝑁ଵ𝑢ଵ + 𝑁ଶ𝑢ଶ, and the enhanced, discontinuous part, 𝛼ௗ, the effect of which is restricted inside the element by function 𝑀௰೏. In the 1D case, the 
selection of function ϕ is readily identifiable as the interpolation function of node 2, i.e., 
N2.  

The finite element formulation of the embedded discontinuity kinematics is based on 
the enhanced assumed strain concept (EAS). The details of the implementation are pre-
sented in [23,24]. Here, the resulting equations for the thermo-mechanical problem are 
presented as:  ׬ 𝜌ஐ౛ 𝑁௜𝑁௝𝐮ሷ ௝𝑑Ω + ׬ 𝛔ஐ౛ ⋅ ∇𝑁௜𝑑Ω = 𝟎,  𝑖, 𝑗 = 1. . .𝑁௡௢ௗ௘௦       (4) ׬ 𝑐𝜌ஐ౛ 𝑁௜𝑁௝𝛉ሶ௝𝑑Ω + ׬ ∇𝑁௜ஐ౛ 𝑘∇𝑁௝𝛉௝𝑑Ω − ׬ 𝑄௜௡௧ஐ౛ 𝑁௝𝑑Ω = 𝟎,  𝑖, 𝑗 = 1. . .𝑁௡௢ௗ௘௦  (5) 𝜙ୢ௜൫𝐭௰ౚ೔൯ = 0, 𝐭୻ౚ೔ = 𝛔 ∙ 𝐧௜ ,   𝑖 = 1,2  (for elements with crack(s))    (6) 𝝈 = 𝐄: ൫𝛆ො − ∑௜ୀଵ𝟐 ൫∇𝜑୻ౚ೔ ⊗ 𝛂ୢ௜൯௦௬௠ − 𝛆ఏ൯,        (7) 

where 𝛆ො = ሺ∇𝑁௜ ⊗ 𝐮௜௘ሻ௦௬௠ and 𝛆ఏ = 𝛼∆𝜃𝐈 are the thermal strain, with α being the 
thermal expansion coefficient, ∆𝜃 the temperature change, and I the unit tensor. Moreo-
ver, 𝐮ሷ ௝ is the acceleration vector, 𝑁௡௢ௗ௘௦ is the number of nodes in the mesh, and 𝑁௜ is 
the interpolation function of node i. In addition, 𝛔 is the stress tensor, 𝛉ሶ௝ is the rate of 
change of the temperature vector, 𝛉௝, at node j, 𝜌 and c are the density and the specific 
heat capacity of the material, k is the conductivity, and 𝑄௜௡௧ is the internal heat produc-
tion. Equation (4) is the discretized form of the balance of the linear momentum in the 
absence of external forces, while Equation (5) is the discretized equation of heat balance. 
The first equation in Equation (6), with 𝜙ୢ௜ being the loading function to be defined in 
the next section, defines the elastic zone of stresses. Moreover, the second equation in (6) 
is the traction balance over the cracks with 𝐭୻ౚ೔  being the traction for crack i. Finally, 
Equation (7) defines the constitutive relation for the material, with 𝐄 being the elasticity 
tensor. It is noted that Equations (4)–(7) have contributions from only the external heat 
influx, 𝑄௜௡௧, which simulates heating in an oven. All other heat generation types, such as 
thermo-elastic (in the bulk material) and thermo-plastic heat generation (at the crack due 
to opening dissipation), are neglected as insignificant in comparison to the external heat 
influx [15]. It should be emphasized that this EAS-based formulation results in a simple 
implementation without the need to explicitly know the exact position of the discontinuity 
within the element or its length.  

The present model describes the rock behavior as linear elastic upon reaching the 
tensile strength. When the first principal stress exceeds the tensile strength, a crack (dis-
placement discontinuity) is introduced with a normal parallel to the first principal direc-
tion. As Equations (4), (6), and (7) are formally similar to the corresponding equations in 
plasticity theory, the problem of solving the irreversible crack opening increment and the 
evolution equations can be recast in the computational plasticity format [23]. The relevant 
model components, i.e., the loading function, softening rules, and evolution laws are de-
fined as 𝜙ୢ௜൫𝐭୻ౚ೔ , 𝜅ୢ௜ , 𝜅ሶୢ௜൯ = 𝐧௜ ∙ 𝐭୻ౚ೔ + βห𝐦௜ ∙ 𝐭୻ౚ೔ห − ൫𝜎୲௜ + 𝑞ୢ௜ሺ𝜅ୢ௜ ,𝜅ሶୢ௜ሻ൯,    (8) 𝑞ୢ௜ = ℎୢ௜𝜅ୢ௜ + 𝑠ୢ𝜅ሶୢ௜ ,  ℎୢ௜ = −𝑔ୢ𝜎୲ expሺ−𝑔ୢ𝜅ୢ௜ሻ ,   𝑔ୢ = ഑౪ಸ౅ౙ,     (9) 𝐭ሶ୻ౚ೔ = −𝐄: ൫∇𝜑୻ౚ೔ ⊗ 𝛂ሶ ୢ௜൯ ∙ 𝐧௜ ,              (10) 𝜶ሶ ௗ௜ = 𝜆ሶௗ௜ డథ೏೔డ𝒕೨೏೔ ,   𝜅ሶௗ௜ = −𝜆ሶௗ௜ డథ೏೔డ௤೏೔ ,             (11) 𝜆ሶୢ௜ ≥ 0,   𝜙ୢ௜ ≤ 0,   𝜆ሶୢ௜𝜙ୢ௜ = 0,  (i = 1,2)           (12) 
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where 𝜅ୢ௜ , 𝜅ሶୢ௜  are the internal variable and its rate related to softening law 𝑞ୢ௜ for discon-
tinuity i, and σti is the tensile strength while sd is the viscosity modulus. Parameter ℎୢ௜ is 
the softening modulus of the exponential softening law, and parameter 𝑔ୢ controls the 
initial slope of the softening curve and it is calibrated by the mode I fracture energy, GIc. 
Moreover, 𝜆ሶୢ௜ is the crack opening increment. The loading function (8) has a shear term 
multiplied with shear parameter β. Finally, Equation (12) gives the Kuhn–Tucker condi-
tions imposing the consistency. Therefore, these equations can be integrated using the 
standard algorithms of computational plasticity [15,23–24]. 

2.2. Solution of the Thermo-mechanical Problem Governing the Thermal Treatment of Rock 
Equations (4) and (5) are solved with a staggered algorithm [25], first solving the 

temperature field while keeping the mechanical fields fixed, and then solving the mechan-
ical fields while fixing the temperature field. Equations (6) and (7) are solved locally, in a 
manner similar to plasticity. The solution process with explicit time marching is illustrated 
in Figure 2.  

 
Figure 2. The flowchart of the global solution of the thermo-mechanical problem. 

The equation in Figure 2 for solving the temperature and the mechanical response 
are Equations (4) and (5) written in a matrix form. Moreover, the asterisk means that the 
trial prediction does not violate the loading function or that it does not exceed the tensile 
strength. As the critical time step of the explicit time marching of the mechanical problem 
is extremely small, many orders of magnitude smaller than that of the thermal problem, 
mass scaling is used here when solving the mechanical problem.  

2.3. Solution of the Mechanical Problem Governing the Uniaxial Tension Test on Heated Rock 
The mechanical uniaxial tension test on heated numerical rock is carried out by ex-

plicit time marching simulation using the same scheme as in Figure 2 for solving the me-
chanical problem. Moreover, a criterion for introducing a new crack in an element with 
an unfavorably oriented thermally induced crack is needed here. The criterion in [26] is 
used here with a modified tensile strength for the new crack. Accordingly, a new crack is 
introduced in an element already having a crack when the following criterion is fulfilled: 

If 𝜎ଵ > 𝜎୲∗ & | 𝐧ଵ ∙ 𝐧∗| < 𝐶ఈ with         (13) 𝜎୲∗ = (1 − |𝐧ଵ ∙ 𝐧∗|)𝜎୲୧ୡ + |𝐧ଵ ∙ 𝐧∗|𝜎୲଴        (14) 
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where 𝐧ଵ is the normal of the initial crack, 𝐧∗ is the principal direction corresponding to 
the present major principal stress, 𝜎ଵ. The modified tensile strength, 𝜎୲∗, is a convex com-
bination of the strength of the initial crack, 𝜎୲୧ୡ, and the intact tensile strength, 𝜎୲଴. The 
meaning of the second inequality in (13) is that the new crack is introduced (only once) 
when the angle between the old crack normal and the new principal direction is greater 
than 𝛼 = acos (𝐶ఈ) , with 𝐶ఈ  being an adjustable parameter. A value of 1/√2  corre-
sponding to 𝛼 = 45° is used in this study. 

3. Numerical Simulations 
The numerical simulations related to the thermal treatment of rock and its effect on 

the uniaxial tensile strength of rock are carried out here. First, however, the material prop-
erties and the model parameters are given. Moreover, the temperature dependency of the 
material properties is specified. All the simulations are carried out with a self-written 
MATLAB code. 

3.1. Material Properties and Model Parameters 
The homogenized mechanical and thermal properties for granite taken from [11] are: 

Young’s modulus E = 37.35 GPa; Poisson’s ratio ν = 0.127; density ρ = 2650 kg/m3; thermal 
expansion coeff. α0 = 8E-6 K−1; specific heat c = 820 J/kgK; and thermal conductivity k = 2.6 
W/mK.  

To properly predict the failure mode in tension, the tensile strength is assumed to be 
heterogeneous, i.e., mineral specific. In this respect, the numerical rock consists of quartz 
(33%), feldspar (59%) and biotite (8%) minerals, with their respective tensile strengths [27] 
of 14 MPa, 11 MPa and 7 MPa. Moreover, the mode I specific fracture energies, GIc, are 
[28] 40 J/m2 for quartz and felspar, and 28 J/m2 for biotite. The rock strength heterogeneity 
is described by random clusters of finite elements assigned with these strength properties. 
The numerical rock mesostructures (consisting of 4276 elements) thus generated to be 
used in the simulations are shown in Figure 3. Finally, the shear effect parameter is β = 1, 
and the viscosity is set to sd = 0.001 MPa⋅s/m. 

 
Figure 3. Tensile strength distribution in numerical rock samples (quartz = white, feldspar = gray, 
biotite = black). 

As mentioned in the Introduction, the temperature dependence of the material pa-
rameters is reduced to that of the thermal expansion. The tensile strength of granite at 
elevated temperatures is measured for a specimen and is first heated slowly to the target 
temperature and then cooled down to room temperature. This heat treatment induces 
cracks in the sample, leading to degradation of its tensile strength. For heterogeneous brit-
tle materials with inherent flaws (e.g., microcracks), the tensile strength is an emerging 
property, representing the sample integrity under extensional loading, not a material 
property per se at the material point level. Therefore, it would beg the question to feed the 
experimental tensile strength at certain temperature into the material point level constitu-
tive law and then predict that same strength.  
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Thereby, the mechanical and thermal properties, except for the thermal expansion 
coefficient, are assumed temperature independent during heat treatment simulations. The 
thermal expansion coefficient of quartz depends on temperature, as follows:   𝛼୯(𝜃) = 𝛼୯଴(1 + ଴.଻ହ଼ଶଷିଶଽଷ)(𝜃 − 293), [1/K]   (15) 

where 𝛼୯଴ is the thermal coefficient at room temperature. According to (15), the thermal 
expansion of quartz depends linearly on a temperature in the range of 20–550 °C. This is 
of course not fully realistic (see [7]) but a consequence of the present simplified modeling 
approach of using homogenous material properties (except the tensile strength) and re-
ducing all the temperature dependent heterogeneity to that of quartz, as mentioned 
above. However, it will be shown that this approach predicts the thermal weakening effect 
with a reasonable accuracy. 

3.2. Simulations of Rock Heat Treatment 
The numerical rock samples are heated uniformly to target temperatures of 300 °C 

and 500 °C. As the slow heating of rock does not induce inertia forces, extreme mass scal-
ing can be used for the mechanical problem. Specifically, a million-fold density is used to 
increase the critical time step of the explicit time marching 1000-fold. In order to secure a 
uniform target temperature in the numerical sample, volume heating is applied here by 
specifying 𝑄௜௡௧ = 1E9 W/m3 at each node of the finite element mesh. This value is chosen 
such that the target temperature of 500 °C is reached at every node of the mesh in 14,000 
time steps. The duration of the simulation is, thus, 1 s. Simulation results for the numerical 
rock, NumRock1 in Figure 3, with the target temperature of 300 °C are shown in Figure 4. 

 
Figure 4. Simulation results for heat treatment (300 °C, NumRock1): (a) crack opening magnitude; 
(b) stress-like softening variable; (c) temperature field; (d) thermally induced cracks; (e) tempera-
ture evolution in time; (f) polar histogram showing crack orientation angles (2186 cracks). 

The results in Figure 4c show that the final temperature distribution (≈301.5 °C) is 
uniform. The resulting number of cracks is 2186, i.e., about 50% of the elements have a 
crack at the end of heating. The orientation of the cracks (Figure 4c) is quite uniformly 
distributed between −40° and 140°. At this temperature, a crack opening (Figure 4a) is 
quite modest so the minimum value of the stress-like softening variable 𝑞ୢ is ∼ −3.5 MPa, 
which means that the corresponding crack still has most of its load bearing capacity re-
tained (see Equation (8)). The results were similar with those of numerical rocks 2 and 3 
(Figure 3) so there is no need the plot the results. The simulation was then carried out 
further in time so that the target temperature 500 °C was reached. Some relevant results 
are shown in Figure 5 for numerical rock 1.  
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Figure 5. Simulation results for heat treatment (500 °C, NumRock1): (a) crack opening magnitude; 
(b) stress-like softening variable; (c) temperature field; (d) thermally induced cracks (3098 cracks). 

When heating is continued to 502.5 °C, the number of cracks increased from 2186 (in 
Figure 4) to 3098. As the difference between the thermal expansion coefficients of quartz 
and the other minerals increase with temperature, the crack opening magnitudes are 
much higher here (note the 10-fold range in Figure 5a compared to Figure 4a). This, in 
turn, leads to substantial softening, as can be observed in Figure 5b, where the minimum 
value of the stress-like softening variable reaches almost −14 MPa in some elements rep-
resenting quartz. 

3.3. Simulations of Uniaaxial Tension Test of Intact and Heat Treated Rock 
First, a uniaxial tension test is carried out on intact rock. The loading is applied as a 

constant velocity boundary condition at the upper edge of the specimen. The velocity is 
set to 5 mm/s, which means a strain rate of 0.1 s−1 with the present sample size. The results 
for the numerical rocks in Figure 3 are shown in Figure 6. 

  
Figure 6. Simulation results for uniaxial tension test (intact rock): (a) crack opening magnitude 
with NumRock1; (b) cracks with NumRock1; (c) crack opening magnitude with NumRock2; (d) 
crack opening magnitude with NumRock3; (e) average stress–strain curves; (f) polar histogram 
showing crack orientation angles (565 cracks) with NumRock1. 

All the numerical rock samples show the experimental transversal splitting failure 
mode with differing details. Cracks, 565 in total, appear all over the sample (Figure 6b). 
Only some of them open to form the final failure plane. Moreover, the crack orientation is 
mostly horizontal (Figure 6f). The predicted tensile strengths vary from 9.1 to 9.8 MPa. A 
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slight pre-peak bent can be observed in the average stress–strain curves when the stress 
is 7 MPa. This corresponds to the failures (microcrack events) of biotite grains. After the 
peak stress, very brittle failure of the sample is attested in each case. 

Next, a uniaxial tension test is carried out on the heat-treated samples. In order to 
mimic the experiments, these simulations are performed on the cooled down specimens. 
Thus, no thermal stresses exist in the sample. Moreover, it is assumed that the cracks are 
closed, meaning that their opening vectors are nullified but their orientations and residual 
strengths are included in the initial state here. Thereby, the residual tensile strength for an 
element with a crack is calculated by 𝜎୲଴ + 𝑞ୢ where 𝜎୲଴ is the intact tensile strength of 
the mineral and 𝑞ୢ is the stress-like softening variable at the end of the heat treatment 
simulations. The simulation results for the target temperature of 300 °C is shown in Figure 
7. 

 
Figure 7. Simulation results for uniaxial tension test (heat treated rock, 300 °C): (a) cracks with 
NumRock1; (b) close up detail (blue = thermal cracks, red = tensile cracks, green = new cracks in 
elements with a thermal crack); (c) average stress–strain curves; (d) failure models represented by 
crack opening magnitudes. 

The weakening effect of the thermal cracks induced by heating to 300 °C is not very 
strong. Indeed, the tensile strength of the heated samples is about 90% that of the intact 
one (Figure 7c). Moreover, the failure modes differ only in details from the intact ones 
(compare Figure 7d to Figure6. As to the cracks plotted for the numerical rock 1 in Figure 
7a,b, many new cracks (green color) have initiated in elements already having an unfa-
vorably oriented thermally induced crack (blue color). Between the thermal cracks, a con-
siderable number of new horizontal cracks, due to the tensile loading, have initiated. Next, 
the simulations were re-performed continuing the heating up to 500 °C. The results are 
plotted in Figure 8. 
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Figure 8. Simulation results for uniaxial tension test (heat treated rock, 500 °C): (a) cracks with 
NumRock1; (b) failure modes represented by crack opening magnitude; (c) average stress–strain 
curves. 

When the heating is continued to 500 °C, the weakening effect is substantial, as seen 
in the average stress–strain curves in Figure 8c. Moreover, the pre-peak nonlinear part of 
the curves is much more pronounced than those at 300 °C. This is due to the opening of 
the thermally induced cracks, which have reduced tensile strengths, during uniaxial ten-
sion loading. Furthermore, the post-peak softening part of the average responses is much 
more ductile due to dissipation occurring through the opening of a considerable number 
of cracks. The corresponding failure modes attest to the overlapping double-crack mode, 
where the major cracks initiate at the vertical edges of the sample and propagate inwards 
at different height levels, thus never coalescing, except for NumRock2 in the present case. 

4. Discussion 
The aspects of the modeling approach and the results are discussed here. The simu-

lation results are first compared to experimental observations. To this end, the predicted 
normalized tensile strengths are plotted as a function of temperature in Figure 9, along 
with the experimental data collected in [11]. 

 
Figure 9. Normalized tensile strength vs. temperature predictions (experimental averaged curve 
and the variation at 300°C and 500 °C for different granites are reproduced after the data in [11]). 
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The weakening effect predicted with the present approach is within the experimental 
deviation for several granites, except the a slight overprediction at 500 °C, which could be 
easily mended by fine tuning the thermal expansion coefficient (15). It should be noted 
that the curve, 𝑓഑೟/഑೟బ = 0.9912(1 − 4.10𝜃/2483.30)ଵ/ସ.ଵ଴, in Figure 9 representing the av-
erage of the experimental results for several granites [11] is averaged over a wide range 
of test temperatures—hence it does not cross the deviation bars at the middle. Moreover, 
only relevant deviation bars, i.e., those at 300 °C and 500 °C, are shown in Figure 9. 

Then some aspects of the numerical approach are discussed. The present approach 
falls within the class of continuum models, thus having all the advantages, over the dis-
continuum approach, of this class, such as the maturity of the method (FEM), the ease of 
calibration and the physical meaning of the model parameters, and, most importantly, the 
computational effectiveness. Moreover, the poor crack description of the continuum ap-
proach (FEM) is improved by the embedded discontinuity technology which is capable of 
representing cracking in rocks.  

A staggered explicit approach was employed in simulating the slow heating of rock 
samples up to a uniform target temperature. As this process, which takes several hours in 
a lab, is quasi-static in nature, extreme mass scaling using a million-fold density for the 
mechanical part of the problem, resulting in a 1000-fold critical time step, could be used. 
This aspect combined with volume heating of the sample resulted in a simulation method 
capable of performing this kind of simulation in practical CPU times, even with fully ex-
plicit time marching. Moreover, the fully explicit method evades the convergence prob-
lems related to the Newton–Raphson iteration involved in the implicit methods, which, 
however, are unconditionally stable in time.  

The thermal weakening effect of elevated uniform temperatures in rock samples is 
caused by heterogeneity, which becomes more pronounced in granites due to the deviant 
behavior of quartz. In the present approach, only the tensile strength heterogeneity of 
rock-forming minerals was included, while homogenized values for the elastic and ther-
mal properties were used. All heterogeneity effects were reduced to accounting only for 
the temperature dependence of the quartz thermal expansion using a linear fit represent-
ing the net effect between quartz and the rest of the granite-forming minerals (feldspars 
and micas). This simplified approach has the advantage that it uses the easily measurable 
mechanical and thermal properties of a rock sample, instead of the far more effort needing 
properties of constituent minerals. Anyways, this approach appeared to work very well, 
as the weakening effect of thermal cracking on the tensile strength of granite was pre-
dicted with a surprisingly good accuracy. It should be emphasized that the weakening 
effect was predicted in a non-circular way, i.e., without using the experimental data on 
the temperature dependence of the tensile strength of granite as a model input.  

However, the present approach ignores most of the textural aspects of rock as a pol-
ycrystalline material. In particular, the grain boundaries were not accounted for. Where 
their inclusion is deemed crucial, more detailed models, such as the DEM mentioned in 
the Introduction, should be applied. Another possibility within the continuum approach 
is to use the cohesive elements between the groups of finite elements representing the 
grains. However, this would require substantially more detailed data on the rock mineral 
texture and the mechanical properties thereof. 

5. Conclusions 
A numerical method to predict thermal cracking induced weakening effects in the 

tensile strength of granitic rock was developed and validated in this paper. The following 
conclusions can be drawn: 
• The nonlinear coupled problem of thermal cracking in rock due to a uniform elevated 

temperature field can be effectively solved with an explicitly staggered approach. 
The present method, based on embedded discontinuity finite elements, is computa-
tionally fast and has physically meaningful model parameters. 
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• Extreme mass scaling for the mechanical problem can be used in this approach due 
to the quasi-static nature of the slow heating of a rock sample to a uniform tempera-
ture. Particularly, a million-fold density, to increase the critical time step 1000-fold, 
can be used with virtually no effect on accuracy. 

• In modeling, thermal cracking induced reduction of tensile strength of granitic rocks 
due to a uniform temperature field can be reduced to the deviant behavior of the 
quartz mineral. This means that it is enough to account for only the temperature de-
pendence of the quartz thermal expansion. Moreover, homogenous and temperature-
independent mechanical properties, measured for a rock sample, can thus be used. 
However, the initial (room temperature) tensile strength parameters should be het-
erogenous to correctly predict the failure mode in uniaxial tension. 

• With this method, the thermal weakening effect can be replicated in a non-circular 
way, i.e., without using the experimental data on the temperature dependence of the 
tensile strength of granite as a model input. 

• The purpose of the present modelling approach is a fast prediction of the tensile 
strength degradation of a granite rock under elevated uniform temperature with a 
small set of easily measurable parameters of the target rock. 
In closing, some further research topics concerning the present approach are sug-

gested. First, this study addressed only the thermal weakening of tensile strength. How-
ever, natural rocks are most often under compression. Therefore, the thermal weakening 
of compressive strength should also be addressed in further studies. However, this re-
quires a compressive failure criterion and is thus not a trivial task. Second, the heteroge-
neity of rock mineral elasticity, which was neglected, has effects that cannot be ignored at 
the mesoscale of interest. For this reason, this aspect should be included into the model in 
further considerations. Third, an explicit staggered method was employed in solving the 
governing thermo-mechanical equations. Notwithstanding, an implicit method would 
have the advantages of being unconditionally stable in time and would provide more re-
liable results. Therefore, an implicit version should be developed in future. Finally, the 
present study was carried out under simplified 2D assumptions. A 3D version of the pre-
sent study should thus be performed to confirm the results. 
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