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Abstract: Construction safety accidents occur due to a combination of factors. Even a minor accident
that could have been treated as a simple injury can lead to a serious accident or death, depending on
when and where it occurred. Currently, methods for tracking worker behavior to manage such con-
struction safety accidents are being studied. However, applying the methods to the construction site,
various additional elements (e.g., sensors, transmitters, wearing equipment, and control systems) that
must be additionally installed and managed are required. The cost of installation and management
of these factors increases in proportion to the size of the site and the number of targets to be managed.
In addition, the application of new equipment and new rules lowers the work efficiency of workers.
In this paper, the following contents are described: (1) system overview, (2) image processing-QR
code-based safety management target recognition methodology, and (3) object location discrimination
technique applying the geometric transformation. Finally, the proposed methodology was tested to
confirm the operation in the field, and the experimental results and conclusions were described in
the paper.
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1. Introduction

In the construction industry, serious safety and fatal accidents are commonly mea-
sured high, regardless of the distinction between developing and advanced countries [1].
Researchers and practitioners related to the construction industry are making a lot of effort
to solve this problem. However, there is still a long way to go to zero accidents/injuries [2].
Even though the devices and technologies for construction safety management are con-
stantly developing, the construction field’s accident rate is still high. According to data
released by the U.S. Department of Labor, fatal occupational injuries by primary and
secondary source of injury for all fatal injuries in the manufacturing sector (i.e., natu-
ral resources and mining, construction, manufacturing) in 2018 was the highest in the
construction industry at 49.05% [3].

Stakeholders in construction projects have different levels of awareness of risks and dif-
ferent levels of understanding of safety according to their experiences and perceptions [4].
In addition, it is difficult to organize a systematic management process because the organi-
zational composition continuously changes and new participants are generated according
to the project schedule and stage [5,6]. This structural limitation of the construction project
is a factor that lowers the learning efficiency for the project participants’ safety. Continuous
safety training is essential to ensure that project participants who are newly organized
by project and schedule follow the project’s standards and rules for safety management.
Moreover, even if safety training has been completed, a system should be established
in which the safety manager can check in real-time whether the subject of management
complies with the safety-related regulations to manage unsafe safety consciousness and
safety behavior of workers. The ideal form of direct safety management for construction
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by managers is that enough managers can check all workers scattered throughout the con-
struction site. To satisfy this condition, the site’s scale increases the more safety managers
must be employed. However, the biggest problems with these actions are (1) large amounts
of economic expenditures irrespective of the project production cost and (2) whether it
is possible to establish that they have sufficient knowledge for safety management and
capabilities regardless of their safety career. Besides, recent studies pointed out that the ex-
isting management methods for construction safety do not sufficiently reflect potential risk
factors occurring in real-time at the site [7,8]. Researchers argue that the current method
should be changed to a bottom-up management method to solve these problems. This
method can quickly transfer information generated on-site to headquarters and the person
in charge of management and help start an appropriate response process and prepare
alternatives [9,10].

In this paper, the methodology that identifies workers as individuals and estimates
the location of workers, and updates their historical data, is presented. The proposed
method can be applied to all sites where surveillance cameras are installed and can be
applied to all cameras simultaneously. Accordingly, the method can be developed as a
prototype of an automatic safety information management system for construction. The
system can record workers’ safety-related history information without additional devices
(e.g., sensors, transmitters, wearing equipment, control systems, etc.) and can be developed
as a management system for personalized safety in the future. The case study analyzes the
practical application of the methodology.

2. Literature Review
2.1. Construction Safety Management

In recent years, as high-resolution cameras were popularized in construction sites at
low prices, the resolution of various images (i.e., photographs and videos) generated from
the site has been highly developed. Moreover, analysis research is being conducted to uti-
lize artificial intelligence technology for multiple purposes in the construction field [11,12].
Currently, computer vision technology has been developed to a level that allows it to
automatically analyze various construction activities [13–16]. Accordingly, in safety man-
agement for construction, research on automation of safety management using computer
vision technology shows a proportionate increase. In traditional safety management, safety
accidents were considered to have been caused by individual carelessness, so personal
responsibility was important. However, even the most experienced workers do not identify
all of the safety risk situations that safety managers can [17]. Therefore, safety issues should
be treated as separate from the worker’s experience, construction skill, and workability,
and cannot be defined as individual problems alone. As a result, corporate responsibility
for construction safety management has been gradually emphasized.

The safety management method for construction provides various advantages
(e.g., reducing work injuries, risk control, productivity improvement, cost reduction, etc.)
to construction projects [18]. However, it takes a lot of capital and time to observe these
factors directly [19,20]. Fortunately, the low-cost prevalence of high-resolution cameras and
advances in computer vision technology has shown the potential to solve these problems.
To apply the technology to the right target, the computer must recognize what the observer
sees and recognizes as the same. For this purpose, object recognition was conducted
according to changes in color-related information (e.g., RGB values, hue, saturation) for
accurate detection of objects [21]. Furthermore, as the resolution of surveillance cameras
deployed at the construction site gradually improves, multiple workers are recognized
in one video [22], and the path tracking of each worker also possible [23–25]. A study
on human–object interactions (HOIs) [26] and a skeleton-based study [27] have been able
to provide a basis for judging the current worker’s stability by recognizing the work
situation and pose of workers. As the classification of objects became clear, researchers
tried to analyze the movement and activity of objects from 2D images [28–31]. Moreover,
by applying a methodology to estimate the 3D coordinates of an object from multiple
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images, a method that can implement an object’s position on a three-dimensional plane
has been studied without any sensor (e.g., distance sensor, ultrasonic sensor, etc.) [32–35].
As such, the current computer vision studies have immediately discovered the manage-
ment targets in the field and are performing the targets’ location based on the distance
between the surveillance camera and the object. In addition, most studies classify objects
as simple class levels (e.g., workers, people) and do not try to realize their own information
(e.g., worker’s name). If the statistics enable workers to recognize the frequency of exposure
to an unsafe situation, a perception of safety can be improved by themselves [36]. This
immediate feedback system can also be applied at an economical cost to a system dynamics
approach [37,38] to determine whether the current governance structure is working properly.

2.2. You Only Look Once (YOLO) V3

In this study, image processing based on You Only Look Once (YOLO) was applied
to implement object recognition. YOLO regards the bounding box and class probability
in an image as a single regression problem and can guess an object’s type and location
by looking at the image once. It is also a method of calculating the class probability for
multiple bounding boxes through a single convolutional network [39]. In this study, the
updated version, YOLO v3, was used (Figure 1).
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2.3. Geometric Transformation

The video recorded by the on-site surveillance camera reflects the distance difference
due to the perspective. There is a difference between the moving distance in the video
and the actual one. Thus, estimating an object’s actual position in an image requires steps
to offset the perspective and mapping it to a plane. In this study, matching the image of
the surveillance camera with the drawing by applying a geometric transformation to the
image is proposed. Geometric transformations can be classified into five types as shown in
Figure 2 [40]. In this study, distortion correction is used.
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2.4. Quick Response (QR) Code

The larger the amount of information that QR codes contain, the greater the number
of pixels. It must also have minimal resolution performance to allow pixel dis-crimination
to recognize pixel patterns. QR codes allow users to enter a variety of information, but
depending on the amount of information, the number of pixels required will increase
proportionally (Figure 3). Therefore, if high-capacity information is entered into the QR
code, a high-resolution device is required to recognize the QR code. Conversely, the
minimal information required for object recognition reduces the number of pixels in QR
codes. It can also increase the recognition rate of QR codes even with low-resolution devices.
In this work, we use the object’s ID (five digits) as the least information to distinguish
objects.
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3. Image Processing-Based Worker Location Estimation System
3.1. Image Processing Learning Model

The system is based on Yolo V3 and developed the system code and user interface
using Python, Anaconda, Ubuntu, and C++. In this study, people (i.e., workers) and things
(QR code) are classified into three classes and recognized. As part of building a custom
class for workers and QR codes, the image data necessary to train the weight model were
collected from the web and case-study sites. Yolo basically provided the weight model
for the person-class. Among the obtained data, we excluded images that are difficult to
label (i.e., class classification and bounding box representation), and only available images
were selected and used for learning. Additional learning data were created by reproducing
the images by using the horizontal flip and vertical flip. Finally, 921 directly acquired
images and 2763 reprocessed images, a total of 3684 images, were used in the learning
process (Table 1). In this study, the images used for learning (i.e., worker and QR code)
were composed of sub-labels as shown in Table 1.
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Table 1. Class and sub-label composition for object classification.

Class Training
Sample Sub-Label Example of Training Sample

Worker 3172

Standing
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In the learning model development, 50% of the acquired images were used for learning,
30% for comparison, and 20% for verification data. The training settings applied to use the
system are shown in Table 2.

Table 2. Configuration of the training inputs.

Batch. Subdivisions Width,
Height Channels Decay Angle Saturation Exposure Hue Learning

Rate
Burn

in
Max

Batches Policy Steps Scales

64 4 448,448 3 0.9 0.005 3 1.5 1.5 0.0005 1000 40,000
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400;
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3.2. System Algorithm

The image processing-based worker location estimation system is executed as follows:
(1) image acquisition from a field surveillance camera, (2) object recognition using image
processing, and (3) information matching in the system DB. The system algorithm is shown
in Figure 4.
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3.2.1. Matching Coordinates between On-Site Video and Drawing

When a region for management has been selected, a surveillance camera is installed.
An ID is assigned to the surveillance camera, and the video from the camera is collected
in real-time. Update the design drawing to see where the camera is located on the plane.
Reference points are selected from the acquired image and the drawing, and the position
reference coordinates are matched. After all coordinate matching is completed, check
whether the recognized object is projected to the correct position on the plane (Figure 5).

As shown in Figure 5a, the mapping process of the site topography can be targeted at
4 coordinate points in the video from the surveillance camera. After setting the coordinates,
the observed object reads the person, worker, and QR code. In Figure 5b, the recognized
object coordinates and rectangular reference coordinates are recognized as X, Y coordinates
of the video. Record the offset X, Y length between the recognized object and 4 points
based on the current state.
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The rectangles and four points are shown in Figure 5b, and Figure 5c actually mean
the same space and coordinates. Accordingly, it is necessary to search for a transducer of
the four points and object’s position. When Figure 5b coordinate points are expressed as
input values (x, y), Figure 5c coordinate points can be expressed as result values (x’, y’).
(x’, y’) can be expressed as Equations (1)–(3). wx′

wy′

w

 = DRL

 x
y
1

 =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 x
y
1

 (1)

x′ = (p11x + p12y + p13)/(p31x + p32y + p33) (2)

y′ = (p21x + p22y + p23)/(p31x + p32y + p33) (3)
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Each Equation for x-coordinate and y-coordinate can be obtained from the movement
relationship of a point. Therefore, a distortion rate factor (DRL) is obtained by sequentially
analyzing eight equations from four input coordinates and output coordinates. More-
over, when the position coordinate point of the object recognized in Figure 5b is (m, n),
the position coordinate of the object in Figure 5d is calculated as Equations (4) and (5)
using DRL.  a

b
c

 = DRL

 m
n
1

 (4)

(
m′, n′

)
= (a/c, b/c) (5)

3.2.2. Target Object and QR Code Recognition

An on-site surveillance camera is filmed from one direction. Unless it has a complex
structure, a single device is installed in one space. In this study, the reference point of the
object was determined by the worker’s feet. Accordingly, the center point of the lower
part of the object bounding box is assumed to be the floor position on which the worker is
standing (Figure 6).
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Equation (6) represents the anchor box coordinates of the object, and Equation (7)
represents the anchor box coordinates of the QR code. Both indicators form a rectangular
shape made up of four points.

A =

[
x1, y1 x1, y2
x1, y2 x2, y2

]
= [A, B, C, D] (6)

QA =

[
n1, m1 n1, m2
n1, m2 n2, m2

]
= [E, F, G, H] (7)

In this study, Equation (8) is applied to determine whether the QR code is included in
the object. ( →

AB×
→

AE
)
·
→
k = (Bx−Ax)(Ex−Ay)− (By−Ay)(Ex−Ax) ≥ 0 (8)

Equation (8) shows the method of calculating the outer product between the AB vector
and the AE vector (Figure 7). If the result of the equation has a positive value, it means that
the E point is located to the left of the AB line. As a result, if the coordinates (E, F, G, H) of
the anchor box QA satisfies all these formulas for the anchor box A, it is proved that the
QR code is inside the object.
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3.2.3. Construction Management DB

The system recognizes three classes of people, workers and QR codes. At the con-
struction site, the object containing the QR code is the person included in the system DB,
which means the project’s people. If the QR code does not recognize, it can be divided
into two cases. The one is wearing work clothes, and another is not wearing work clothes.
If the target is wearing work clothes, the QR code does not recognize or that the target
did not include the DB. In the case of another, it is regarded as neither the worker nor the
project’s people.

4. Case Study

A site was recruited for the analysis of actual cases of the proposed methodology.
The site is an apartment complex construction with an area of 65,245 m2, and structure
construction has been completed. The site drawing provided by the manager was in CAD
file format (.dwg), and a drawing in which it was easy to understand the site boundary
was selected and used. For the calibration of the drawing, the actual positions of the
four reference sets of X and Y were entered. As a result, it was possible to calculate the
coordinate positions of all points (Figure 8). The area used for the case study is the area
marked in red in Figure 8.

In the drawing, the parts entered as reference coordinates are the four red dots shown
in Figure 9a, and the location and angle of view of the surveillance camera that took the
image are visually displayed. The image captured by the actual surveillance camera was
taken as shown in Figure 9b, and the four reference coordinates set in the video were set
as T1~T4 as shown in (Figure 9c). As for the QR code marking method, the paint was
directly marked on the clothes using a stencil technique to prevent peeling during work
(Figure 9d). As a result of object recognition, among a total of 4 workers in the photo, all
workers were recognized except a worker located at the front apartment entrance. A total
of 3 workers were recognized as workers. Even though the QR code was distorted due
to wrinkled clothes, the system recognizes the code correctly. The worker’s identification
number “00121” was printed (Figure 9e). Finally, the worker “00121” was estimated to
be located in (197.4, 31.8) in Figure 7 (the space set as the X-axis (0~384.6 m) and Y-axis
(0~178.6 m)) (Figure 9f).
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result of QR code information; (f) estimating the location of the operator “00121” and marking the location on the map.

5. Conclusions

This study deals with a study on developing a methodology for construction safety
management automation using surveillance cameras installed on site. In this paper, three
methodologies were presented: (1) classification and recognition of object; (2) allocating
unique identification information using QR code; (3) extracting an object’s coordinates
projecting onto a 2D plane. During the recruitment process at the experiment site, the
research team was able to conduct the test on the condition that it does not infringe on the
work environment of the on-site staff. Accordingly, there is a limitation in that workers and
managers did not conduct the surveys. The authors discussed the case study results with
safety managers. Managers have commented that this methodology is easy to apply on-site
because it does not require additional equipment installation and does not require special
instructions to workers. Moreover, there was an opinion that immediate application could
positively affect major management targets (e.g., less than 1 year of experience, workers in
hazardous areas).

The images that are using for training were taken under sufficient brightness. Be-
cause these images easily distinguish between objects and backgrounds, neural networks
trained with data can record high object identification rates for images with vivid colors.
However, most of the construction task is done outside, and the amount of sunlight fluc-
tuates depending on the location of the clouds and the sun. Besides, images shot in the
shade become very difficult to distinguish between the object and the background. This
situation increases the uncertainty and inaccuracy of object recognition. In the study of
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Edirisinghe et al. [41], an approach through QR code was proposed so that workers could
easily access and understand information on the precautions during work and obtained
meaningful results that enable workers to prepare themselves for injuries. In addition to
these results, to feedback personalized statistical data to each worker, it will be possible
to improve the accident prevention effect by considering the physical fatigue and injuries
caused by the worker’s improper posture.

Accordingly, in future research, it is necessary to improve object recognition accuracy
by applying fuzzy theory [42,43] and to obtain personal safety information by applying
improper working posture recognition [44,45].

This study provides the basis for a methodology that can automatically collect each
worker’s individual safety history. If the problems described above are solved, and the
system’s reliability is sufficiently secured, it is expected that even the simple process of
data updating [46] by a manager using a smart device can be omitted.
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