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Abstract: Over the past decade, there have been many reports on solution-processed oxide thin-
film transistors (TFTs) with high mobility (even >100 cm2 V−1s−1). However, the capacitance
uncertainty of the solution-processed oxide gate dielectrics leads to serious overestimation of the
mobility. Here, solution-processed AlOx dielectrics are investigated systematically, and the effect
of mobile ions on the frequency-dependent capacitance of the solution-processed AlOx dielectrics
is also studied. It was found that the capacitance of the AlOx depends on the frequency seriously
when the annealing temperature is lower than 300 ◦C, and the water treatment causes more seriously
frequency-dependent capacitance. The strong frequency-dependent capacitance of the AlOx annealed
at 250 or 300 ◦C is attributed to relaxation polarization of the weakly bound ions in the incompletely
decomposed AlOx films. The water treatment introduces a large number of protons (H+) that would
migrate to the ITO/AlOx interface under a certain electric field and form an electric double layer
(EDL) that has ultrahigh capacitance at low frequency.

Keywords: Aluminum oxide; dielectric; thin-film transistor; solution-processed; oxide semiconductor

1. Introduction

In the past decade, oxide thin-film transistors (TFTs) have drawn much attention for
their potential applications in large-size, high-frequency, transparent, flexible, or energy-
saving displays due to the advantages of ultralow off-current, relatively high field-effect
mobility, good uniformity in large size, etc. [1,2]. In oxide TFTs, the gate dielectric layer
plays an important role; therefore, it is necessary to investigate the influence the of gate
dielectric materials and their fabrication process on the performance of the oxide TFTs. A
number of gate dielectrics such as HfO2 [3,4], Al2O3 [5–10], and ZrO2 [11–15], and giant
dielectric constant materials [16] have been investigated for oxide TFTs. However, the
effect of the water-induced mobile ions of the gate dielectrics on the TFT performance has
not been studied in detailed yet.

Compared to the traditional vacuum-processed method, the solution-processed method
is more attractive for the advantages of low-cost, high-throughput, and easy chemical com-
position control [17]. Recently, solution-processed AlOx gate dielectric has drawn attention
due to the high dielectric constant, low leakage current, and good compatibility with oxide
semiconductors [7,18,19]. However, the capacitance of solution-processed AlOx dielectrics
depends on the preparing processes strongly [20,21]. Therefore, it is necessary to investigate
the mobile ions and residue groups in the solution-processed AlOx dielectrics to improve
the insulating properties. In addition, there have been many reports on solution-processed
oxide TFTs with high field-effect mobility (even >100 cm2 V−1s−1). These values are highly
controversial, because the capacitance used to calculate the field-effect mobility is 1kHz or
above, which is much lower than the actual capacitance during TFT measuring (the gate
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sweeps at a certain VGS step, which means that the charging of the gate dielectric is step-
by-step, meaning quasistatic capacitance is more appropriate for the mobility calculation).
For this reason, it is indispensable to regulate the capacitance measurement for calculat-
ing the field-effect mobility of TFTs. In this paper, the properties of solution-processed
AlOx dielectrics are investigated systematically, and the effect of mobile protons on the
frequency-dependent capacitance and on the performance of the oxide TFTs is also studied.

2. Experiment

The AlOx precursor solution was prepared by dissolving 0.2 M Al(NO3)3·9H2O in
2-methoxyethanol, stirred at room temperature for 24 h, and aged for 6 h. The precursor
materials, including solutes and solvents, were purchased from Aladdin. The AlOx precur-
sor films were deposited by spin-coating at 3000 rpm for 30 s and then soft-baked on a hot
plate at 150 ◦C for 10 min to remove the solvents. After that, the AlOx precursor films were
annealed in the air at different temperature of 250, 300, and 350 ◦C for 1 h. Each sample was
baked at 150 ◦C for 10 min immediately after spin-coating. Then, each sample was annealed
separately at different temperature for 1 h. The thickness of AlOx is about 57 ± 3 nm.

TFTs with AlOx gate dielectric layer and InScOx (In2O3:Sc2O3 = 98:2 wt%) semicon-
ductor layer were constructed with a bottom-gate top-contact structure. A 200 nm indium
tin oxide (ITO, In:Sn = 9:1) gate electrode was deposited onto the glass substrate by DC
magnetron sputtering (70 W) under argon pressure of 0.5 Pa at room temperature through
a shading mask. Then, a layer of AlOx dielectric film was deposited onto the ITO gate
electrode using the process described above. After that, the InScOx semiconductor layer
(20 nm) was deposited by RF magnetron sputtering (60 W) under argon pressure of 0.5 Pa at
room temperature through a shading mask. The ITO source and drain electrodes (200 nm)
were deposited onto the InScOx semiconductor layer by DC magnetron sputtering with the
same conditions as that of the gate deposition. The channel width (W) and length (L) were
defined by a shading mask to be 800 and 200 µm, respectively. Finally, the TFT devices
were post-annealed at 250 ◦C for 1 h. The ITO/AlOx/ITO metal-insulator-metal (MIM)
devices were prepared by depositing a circular ITO top electrode (200 nm) with a diameter
of 0.04 mm onto the AlOx film by DC magnetron sputtering.

To investigate the effect of hydrogen ions (H+) on the dielectric properties of the
AlOx layer, water treatment was performed on the surface of the ITO gate electrode before
spin-coating the AlOx film. Because the solution-processed AlOx film is very sensitive to
moisture, water treatment is a simple way to increase the density of the mobile H+. The
water treatment process was performed by spin-coating deionized water at a speed of
3000 rpm for 30 s onto the surface of the ITO gate electrode to introduce large amount of
adsorbed H+ and OH− groups at the ITO/AlOx interface. The ITO surface is treated by
O2 plasma before water treatment. The contact angles of the plasma treated and plasma +
water treated ITO surfaces are 5.03◦ and 3.93◦, respectively.

The thermal behavior of AlOx precursor was analyzed by thermogravimetric analyses
(TG). The chemical composition, water adsorption, and proton quantity behavior of the
AlOx films were characterized by X-ray photoelectron spectroscopy (XPS, Thermo Fisher
Scientific Inc, ESCALAB250Xi), infrared spectroscopy (FT-IR), and time-of-flight secondary-
ion mass spectrometry (TOF-SIMS), respectively. The electrical properties of MIM and TFTs
were characterized by semiconductor parameter analyzer (Keysight B1500A).

3. Results and Discussion

Figure 1a shows the TG curve of AlOx precursor. It reveals an initial mass loss
event of ~60%, occurring around 120–180 ◦C, which is assigned to the removal of solvent
and organic residues and the dehydroxylation of AlOx precursor. Then, a slow mass
loss is observed around 180–350 ◦C, with weight stabilizing at close to 20% by 350 ◦C,
indicating complete conversion of precursors to form the dense metal oxide. Figure 1b
shows the FT-IR spectra of AlOx films annealed at different temperatures. The peaks
around 1700 cm−1 (C=C stretching) and 1500 cm−1 (N-O asymmetric stretching) are
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attributed to the residual organic elements and the undecomposed precursor metal salts,
respectively [22,23]. As the annealing temperature increases from 250 to 350 ◦C, the
intensity of the peaks decreases continuously, which is consistent with the TG analysis.
The peaks in the range of 3500–3800 cm−1 is due to the peaks of O-H stretching plausibly
resulting from surface hydroxylation [22,23].
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Figure 1. (a) TG curve of the AlOx precursor from 35 to 600 ◦C. (b) FT-IR spectra of the AlOx films
annealed at different temperatures.

Figure 2 shows the XPS O 1s peaks of the AlOx films with different annealing temper-
ature. Each O 1s spectrum was fitted by two Gaussian distributions with binding energies
at 531 and 532.3 eV, corresponding to the contribution of lattice oxygen (M–O–M), and
hydroxyl group (M–OH), respectively [7,10,18,21,22]. The relative concentrations of M–OH
related oxygen for the untreated samples annealed at 250, 300, and 350 ◦C are 41.88%,
36.81%, and 25.40%, respectively, while the water-treated samples annealed at 250, 300, and
350 ◦C exhibit higher M–OH concentrations of 43.06%, 37.60 %, and 25.97%, respectively.
The result is in accordance with the change of O-H stretching peaks in the FT-IR spectra
(Figure 1b). It indicates that there are plenty of hydroxyl groups on the surface of AlOx film
annealed at 250 ◦C, and the number of them can be reduced effectively when the annealing
temperature reaches 350 ◦C. The concentration difference between the water-treated and
untreated samples narrows as the annealing temperature increases, because the water
molecules are easier to be dislodged at higher annealing temperature.
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The insulating properties of AlOx films were evaluated with a MIM structure of
ITO/AlOx/ITO. Figure 3a shows the frequency dependence of capacitance of the MIM
devices. Interestingly, the capacitance decreases as the annealing temperature increases
at lower frequency regime (<10 kHz), while it increases as the annealing temperature
increases at higher frequency regime (>1 MHz). In addition, the capacitance of the MIM
devices annealed at 250 or 300 ◦C depends on the frequency greatly, while the AlOx film
annealed at 350 ◦C is almost independent of the measuring frequency (when the measuring
frequency is lower than 100 kHz). The areal capacitances at 1 kHz for the MIM devices
annealed at 250, 300, and 350 ◦C are 179.1, 166.3, and 148.1 nF/cm2, respectively; and
the areal quasistatic (QS) capacitances (see Figure 3b) for the devices annealed at 250,
300, and 350 ◦C are 288.9, 263.4, and 152.8 nF/cm2, respectively. It shows that the areal
quasistatic capacitance of the MIM devices annealed at 250 or 300 ◦C is much higher than
those measured at 1 kHz, while there is no much difference between the areal quasistatic
capacitance and the areal capacitance at 1 kHz for the one annealed at 350 ◦C. The strong
frequency-dependent capacitance of the MIM devices annealed at 250 or 300 ◦C is attributed
to relaxation polarization of the weakly bound ions in the incompletely decomposed AlOx
films. Especially, the protons (H+), which can move in the whole AlOx film, move to the
ITO/AlOx interface and form an electric double layer (EDL) that has ultrahigh capacitance
at very low frequency [24,25].
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To further investigate the effect of mobile hydrogen-related ions on the low-frequency
capacitance of the AlOx films, the surface of the bottom electrode (ITO) was treated by
water before spin-coating the AlOx precursor on it. The water treatment can introduce
large amounts of the adsorbed water molecules at the ITO/AlOx interface that would
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further form hydrogen and OH groups. Figure 3c shows the frequency dependence of
capacitance of the MIM devices with water treatment. It can be seen that the capacitance
of all devices (even annealed at 350 ◦C) depends on the frequency seriously. The areal
capacitances at 1 kHz of the MIM devices annealed at 250, 300, and 350 ◦C are 387.9, 295.3,
and 268.9 nF/cm2, respectively. However, the areal quasi-static capacitances of the MIM
devices annealed at 250, 300, and 350 ◦C are as high as 1520, 846, and 647 nF/cm2 (see
Figure 3d). The extremely high quasistatic capacitance is most probably attributed to H+

ions which are small and easy to be driven by the electric field. The H+ ions in oxide films
are generally associated with oxygen atoms to form a three-coordinate oxygen center (M–
OH+–M), and the motion of H+ ions is relied on “a sequence of hops” from one bridging
oxygen atom to another [13,24,26]. When a voltage is applied to the MIM device, the H+

ions migrate to the AlOx/ITO interface by a sequence of hops and form a very thin EDL
with an extremely large capacitance. Under an electric field of 0.3 MV/cm (2 V), the leakage
current density (J) of the MIM devices without water treatment annealed at 250, 300, and
350 °C are 3.2 × 10−8, 2.4 × 10−8, and 1.4 × 10−8 A/cm2, respectively, corresponding to
much higher J of 5.5 × 10−7, 4.5 × 10−7, and 2.6 × 10−7 A/cm2 for the water-treated ones
(not shown). The breakdown field of the MIM devices without water treatment annealed at
250, 300, and 350 °C are 1.9, 2.9, and 3.2 MV/cm, respectively (not shown). Interestingly, the
leakage current for the water-treated MIM devices increases greatly at ~0.3 MV, but there
are not apparent breakdown points. The difference may be attributed to the large amount
of movable H+ ions in the water-treated AlOx samples, which form leakage current paths.
To verify the existence of H+ ions in the AlOx films, TOF-SIMS experiments were carried
out. Figure 4 shows the depth-profile element distribution of the water-treated AlOx/ITO
sample annealed at 350 ◦C. The intensities for the carbon signal are very weak, revealing
little carbon-related residuals. By contrast, there are a number of hydrogens in the whole
AlOx dielectric. It is worth noting that the hydrogen distribution is not uniform with the
density gradually decreasing from AlOx surface to the AlOx/ITO interface. The results
confirm that a large amount of hydrogen elements is introduced during treatment. The
obvious overlap of Al and In signals is mainly due to the diffusion of Al and In elements at
the ITO/AlOx interface.
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Figure 4. Distribution of H, C, Al, and In elements for the sample of AlOx film deposited on ITO
surface with water treatment and 350 ◦C annealing analyzed by TOF-SIMS.

Finally, TFTs with AlOx gate insulator and InScOx channel layer were fabricated to
verify the formation of EDL. InScOx semiconductor can effectively decrease the influence
of water and oxygen in the environment on the stability of TFTs [27]. Figure 5a,b shows the
transfer curves of the TFTs without and with water treatment, respectively. Interestingly,
the TFT without water treatment exhibits clockwise hysteresis in the transfer curve between
forward and reverse gate sweeps, while the one with water treatment exhibits anticlockwise
hysteresis. The anticlockwise hysteresis of the water-treated TFT is ascribed to the low
migration speed of the H+ ions [28]. When the gate voltage increases, the H+ ions migrate
to the AlOx/InScOx interface slowly; after the gate voltage reaches the highest value
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and begin to decrease, some of the H+ ions still move toward the AlOx/InScOx interface,
causing further increase in the EDL capacitance. As a result, the current for the reverse
sweep is higher than that for the forward sweep (due to the higher capacitance). The
saturation mobility (µsat) was extracted by fitting a straight line to the plot of the square
root of the ID versus VG and using the following equation:

ID =
WµsatC

2L
(VG − Vth)

2 . . . (1)

where C is the areal capacitance of the gate dielectric, and W and L are the channel width
and length, respectively. The calculated mobilities for forward- and reversed-sweep curves
of the TFTs without water treatment is 6.75 and 9.71 cm2 V−1s−1, respectively, while those
for forward- and reversed-sweep curves of water-treated ones are 6.72 and 5.02 cm2 V−1s−1,
respectively. Although the TFT with water treatment is high on-current, the mobility is
lower than that of the TFT without water treatment. The results confirm that the mobility of
the water-treated TFTs is overestimated if using the same capacitance (Ci) of the untreated
TFTs for calculating mobility. The key properties of the TFTs with/without water treatment
are summarized in Table 1.
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capacitance (Ci) of the untreated TFTs for calculating mobility. 
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Figure 5. Transfer curves for InScOx TFTs with AlOx gate dielectrics (a) without and (b) with water treatment; the AlOx

gate dielectrics were annealed at 350 ◦C for 1 h.

Table 1. Electrical properties of the InScOx/AlOx TFTs with or without water treatment.

Water
Treatment

C/1kHz C/QS Vth µ SS

(nF/cm2) (nF/cm2) (V) (cm2 V−1s−1) (V dec−1)

With 387.9 647.0 0.61 6.72 (forward)
5.02 (reverse) 0.113

Without 148.1 152.8 0.92 6.75 (forward)
9.71 (reverse) 0.187

4. Conclusions

In summary, MIM and TFT devices based on solution-processed AlOx dielectrics
were fabricated, and the effect of mobile ions on the frequency-dependent capacitance
of the solution-processed AlOx dielectrics is studied. It is found that the capacitance of
the AlOx dielectrics annealed at 250 or 300 ◦C depends on the frequency greatly, while
the AlOx film annealed at 350 ◦C is almost independent of the frequency (<100 kHz); and
the water treatment causes more seriously frequency-dependent capacitance. The strong
frequency-dependent capacitance of the AlOx annealed at 250 or 300 ◦C is attributed to
relaxation polarization of the weakly bound ions in the incompletely decomposed AlOx
films. The water treatment introduces a large number of protons (H+) that would migrate
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to the ITO/AlOx interface under a certain electric field and form an electric double layer
(EDL) that has ultrahigh capacitance at low frequency. The oxide TFTs based on water
treated AlOx dielectrics exhibit anticlockwise hysteresis in the transfer curves that confirm
existence of mobile ions in the AlOx films. The calculated mobilities for forward- and
reversed-sweep curves of the TFTs without water treatment is 6.75 and 9.71 cm2 V−1s−1,
respectively, while those for forward- and reversed-sweep curves of water-treated ones
are 6.72 and 5.02 cm2 V−1s−1, respectively. Although the TFT with water treatment is
high on-current, the mobility is lower than that of the TFT without water treatment. The
results confirm that the mobility of the water-treated TFTs is overestimated if using the
same capacitance (Ci) of the untreated TFTs for calculating mobility.
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