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Abstract: Dimensional reduction methods have significantly improved the simplification of Pulsed
Thermography (PT) data while improving the accuracy of the results. Such approaches reduce
the quantity of data to analyze and improve the contrast of the main defects in the samples contributed
to their popularity. Many works have been proposed in the literature mainly based on improving
the Principal Component Thermography (PCT). Recently the Independent Component Analysis
(ICA) has been a topic of attention. Many different approaches have been proposed in the literature
to solve the ICA. In this paper, we investigated several recent ICA methods and evaluated their
influence on PT data compared with the state-of-the-art methods. We conducted our evaluation on
reference CFRP samples with known defects. We found that ICA outperform PCT for small and deep
defects. For other defects ICA results are often not far from the results obtained by PCT. However,
the frequency of acquisition and the ICA methods have a great influence on the results.

Keywords: ICA; Independent Component Analysis; ICT; Independent Component Thermography;
PPT; Pulsed Phase Thermography; PCT; Principal Component Thermography; CFRP; Carbon Fiber
Reinforced Polymer; Carbon Fiber Reinforced Plastic

1. Introduction

Non-Destructive Testing (NDT) is a very popular application in many fields of in-
dustry. Among the many different NDT domains, InfraRed Thermography (IRT) has
become common for evaluating materials. IRT’s approaches consist in a set of tomographic
approaches that are helpful to assess a wide range of features, from material homogeneity
to the presence of void or foreign materials within another material. Within the field of
IR-NDT, Pulsed Thermography (PT) is a well-known method. Among its fame are its
simplicity and ability to provide valuable results on a wide range of materials [1,2]. During
the PT experiment, a thermal camera is used in order to record the temperature decay.
Thermal cameras are sensitive to a wide range of phenomenon and noises, including some
created by themselves, resulting in a wide range of distortions during the creation of
the data [3–7]. Therefore over time, many methods have been introduced in the literature.
Pulsed Phase Thermography (PPT) [8] and Principal Component Thermography (PCT) [9]
are among the most applicable. PPT consists in transforming the sequence into the Fourier
domain and analyze the phase and PCT based on applying a PCA to the sequence to extract
the most meaningful frames. Since then many methods of dimensional reduction have
been successfully used on PT data. The high efficiency and simplicity of such method
has made them very popular. Recently a new approach has been investigated, the Inde-
pendent Component Analysis (ICA). Initially, the mathematical foundations were laid in
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the 1980s [10] to solve Blind Signal Separation (BSS). For BSS application on PT data is
assumed that the data are the mixing of the uneven heating, the signal corresponding to
the defective regions, the signal corresponding to the non-defective regions, and other
noises and stochastic information that can be recorded. Solving the objective function
of the ICA can be done by using several methods, and therefore performing an ICA is
still the topic of intensive researches. ICA was also the topic of several recent works in
IRT [11–15]. For these reasons, we wish to investigate how different approaches regarding
the ICA computation can affect the defect detection in Carbon Fiber Reinforced Plastic
(CFRP). The CFRP is used in a larger number of studies due to its physical properties,
making sub-surface defects easier to detect. We limited our study to unsupervised ICA
methods. The reason for this choice regards the difficulty to have a large number of labelled
samples in order for a supervised algorithm to fit the data properly. Also, supervised
approaches often require more work regarding preparing the data and more complex
training and testing before for us to evaluate them.

The first contribution of this paper is to provide an extensive literature review of
the most recent works involving CFRP and PT data. We investigated a quantitatively
different method to compute the ICA. Finally, we investigated how the number of com-
ponent in dimensionality reduction algorithms can affect the results, both quantitatively
and qualitatively.

2. Literature Review

As previously mentioned, the sensibility of a thermal camera to noises makes the field
of PT eager for new processing methods. In this section, we briefly introduce some of
the most recent work. Inspired by the work of Maldague et al., known as PPT, Fleuret et al.,
investigated a feature base approach based on monogenic signal reconstruction for defect
detection. Although the approach happened to be highly sensitive to noise, promising
results were found. More recently, Netzelmann et al. [16] proposed two reformulations
of the PPT, which improve the Contrast-to-Noise Ratio (CNR). Vavilov et al. [17] pro-
posed a phase and time-domain tomography for defecting defects in composite materials.
Poelman et al. [18] introduced an adaptive spectral processing. The method is more robust
than the PPT, offers a better SNR even for barely visible defects. It also returns a single
index map of the defects for a given sequence which makes it easier to interpret.

Another popular trend regarding the methods used to process PT data is the appli-
cation of linear-algebra methods. Ahmed et al. [13] introduced an approach that consists
of associating a sparse matrix factorization with a Mixture of Gaussian (MoG). The en-
hancement of the data is based on the sparse matrix factorization, which is solved as a
minimization problem, in which the noise of the data is modeled by an MoG. The authors
chose to model the noise in the data as an MoG due to its better reliability to the real
case than traditional approaches that assume that the noise follows one model such as
Gaussian or Laplacian. Later, the same authors introduced a wavelet-based approach in
order to enhance the defect present in an image [19]. The same year they use this approach
with a minimization approach, allowing them to separate a low-rank matrix, a sparse
matrix, and a noise matrix from the data. They showed that this approach is state-of-the-art
approaches [20]. Recently Ahmed et al. introduced another sparse low-rank optimization
approach [21]. In this work, Ahmed et al. reuse the three matrix decomposition they already
used in [20], but this time they introduced an activation function based on the immediate
past in the cost function. Inspired by the work of Ahmed et al., Liu et al. [22] proposed an
alternating sparse matrix decomposition. Like in the work of Ahmed et al., Liu et al., as-
sumed that the data are the summation of three matrices, respectively a low-rank, a sparse,
and the noise. They extend previous works by assuming that the sparse matrix is the prod-
uct of a dictionary matrix with a matrix of weights. The goal of this assumption regarding
the sparse matrix is to better model the background noises. Yousefi et al. [23] introduced
the Candid-Covariance Free Principal Component Thermography (CCIPCT). CCIPCT is
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based on the work of Weng et al. [24] who has introduced the Candid-Covariance Free
Principal Component Analysis (CCIPCA).

Wu et al. [25] introduced the SPCT, an application of the Sparse-PCA to PT. They
showed that SPCT outperformed existing methods at a noticeably higher computational
cost. The Sparse-PCA is a formulation of the PCA as a penalized regression problem
under constraints. One year before Wu et al., Yousefi et al. [26] proposed a two-step
approach based on Sparse-PCA as the first step, refined by kernel-k-means during the second
step. In this study, Yousefi et al. focused on the robustness of their method to noise.
Wen et al. [27,28] used an improved version of the Sparse-PCA named the Edge-Group
Sparse PCA (ESPCT), which is able to preserve the spatial connectivity [29]. They showed
on experiments conducted on CFRP samples, that ESPCT results offer a higher contrast on
smaller defects. Recently Yousefi et al. studied several Non-negative Matrix Factorization
(NMF) methods [30–32]. These studies showed that NMF approaches offer noticeably
better performance than other component-based approaches regarding the defects detection
on CFRP.

Fleuret et al. [33] studied the application of the Latent Low-Rank Representation
(LatLRR) [34] to PT data and introduced the Latent Low-Rank Representation Thermog-
raphy (LatLRRT). LatLRR decomposes the signal into three matrices representing the ob-
served data, the unobserved data, and the sparse noise, respectively. Unlike approaches
such as those proposed by Ahmed et al. [20,21] where the data X is assumed to be the ad-
dition of three matrices, i.e., X = L + S + N, in LatLRR, the data are assumed to be a
linear association of the matrices, i.e., X = XZ + LX + N. Fleuret et al., reported that
due to the very high memory usage of this approach, nowadays, it is not suitable as a
defect detection approach. Nonetheless, it was able to significantly enhanced the output of
the state-of-the-art approaches.

Another trend regarding the processing of PT data consists in using machine learning
methods. Lopez et al. [35,36] proposed Partial Least Square (PLS) regression to improve
the general quality of the image sequences. During the regression step, the PLS algorithm
can model both spatially and temporally the evolution of the signal. It was originally
proposed as a denoising technique allowing synthetic data reconstruction in a manner
similar to Thermographic Signal Reconstruction (TSR) [37,38]. In [36] Lopez et al. observed
that by removing the loadings that have the highest variance from the reconstruction
step, it is possible to reconstruct a sequence that highlights the defects. Inspired by these
works, Fleuret et al. [12] investigated the use of a pair of Support Vector Machine (SVM)
algorithms [39] to enhance defect contrast. The first algorithm computes a regression in
the time domain, while the second computes a regression in the space domain. Then the out-
put sequence is reconstructed from these regressions providing images with enhanced
defect contrast.

Liu et al. [40] introduced the Orthogonal Locality Preserving Projection Thermography
(OLPPT). This method uses manifold learning. The experiments showed that it outperforms
PCT. Liu et al. [41] also proposed manifold learning method. When Liu et al. [40] used a
PCA as preprocessing stage, Liu et al. [41] used an isometric feature mapping. Liu et al. [41]
approach also presented a noticeable improvement compared with state-of-the-art dimen-
sionality reduction approaches such as PCT. In this study, the authors also investigated
other state-of-the-art methods regarding local preservation. Liu et al. [41] pointed that
their method outperforms the PCT and other local preserving methods. The same year,
these authors investigated the usage of a spatial neighborhood manifold learning for defect
detection [42].

Yousefi et al. [43] investigated the possibility of using a pre-trained ImageNet archi-
tecture to accurately predict the rank matrix from a given thermal sequence. Xu et al. [44]
employed a stacked autoencoder to extract defects from thermal data. The goal of this
study was to model non-linear high-dimensional relationship between training data and
their label to find defects from raw thermal sequences. Xu et al. obtained good results
compared with state-of-the-art approaches.
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Saeed et al. [45] used deep learning algorithm to both detect the defects and predict
their depth. This approach used two state-of-the-art deep learning algorithms. They used
transfer learning in association with a small labeled dataset to adapt the state-of-the-art
algorithm to PT data. The results proved that algorithms performed well in both tasks.
Galagan et al. analyzed the application of Artificial Neural Networks (ANN) on PT us-
ing synthetic data and showed that ANN outperforms the dynamic thermal tomography
(DTT) [46]. Later the same authors [47] extended their previous work by studied the per-
formance of wavelet, PCA, and Artificial Neural Networks (ANN). In their last study, they
explained that ANN worked better than other methods. Momot et al. [48] also used ANN
to perform defect detection. The same authors [49–51] studied the influence of the number
of neurons in an ANN to efficiently detect defects in composite material using PT. In their
study Momot et al. used both synthetic data and acquired data. Momot et al. [49] con-
cluded that the size of the dataset and the number of neurons have a apparent influence
on the performance of the algorithms. Chulkov et al. [52] reviewed the performance of
PCA and TSR methods used preprocessing before training an ANN and The defect de-
tection ability and the depth prediction are investigated. They proved that ANN offers a
great performance on both tasks. Moskovchenko et al. [53] compared the performances of
PPT [8], TSR [37], Apparent Thermal Inertia (ATI) [54], Thermal Quadrupoles (TQ) [55],
Non-linear fitting (NLF) [56], and ANN [57] to accurately predict the depth of defects. They
used acquired and simulated PT data and found that ANN outperforms other methods.
They reach a similar conclusion as Mo Momot et al. [49], that size of the training set has
a great impact on the quality of the results. Duan et al. [58] investigated the ability of
ANN to successfully find defects in a CFRP and identifying the foreign material that fills
them. They proved that ANN performs very well for such applications. Luo et al. [59]
used a cross-learning strategy based in order to train an ANN to identify defects. This
strategy consists in training the feature stage of the algorithm on both each pixel of an
image and its representation in the sequence overlay matrix. This approach allows for
each pixel to extract spatial features from the images and also temporal features from
the overlay matrix. Once the features are extracted, a second ANN is trained using a
state-of-the-art method to provide a mask of the defect regions. Several deep learning
architectures for segmentation are investigated in this study which shows fair results.
Ruan et al. [60] employed a Generative Adversarial Networks (GAN) for defect detection
and segmentation and compared it with several state-of-the-art deep learning frameworks.
This study shows that GANs outperformed the other state-of-the-art approaches. Later
the same authors introduced DeftectNet [61], a GAN-based architecture, made for the de-
fect detection in CFRP sample evaluated by PT. This study shows that GANs outperformed
the other state-of-the-art approaches. Manzano et al. [62] used two state-of-the-art object
recognition algorithms [63,64] in an attempt to localize defects. Note that the algorithm [63]
is also able to provide a mask of the shape of the detected object. Manzano et al. did not
obtain good results in their experiments. Fang et al. [65] tried a similar experiment as
the one made by Yousefi et al. [43], using another algorithm. The work of Fang et al., was
based on a state-of-the-art object detection algorithm [66] in order to localize the defects.
Fang et al., used a training set based on images recorded from PT experiments of several
materials. They reported poor results. Bang et al. [67] had a similar idea, but used both
another architecture [68]. The training sets were composed of images collected from the In-
ternet, while the testing datasets were PT experiments of two CFRP samples. The results
of Bang et al. were similar to those of Fang et al.Later Fang et al. [69] evaluated the same
model proposed by He et al. [63] on both synthetic and experimental PT data. Fang et al.,
showed that using synthetic data can improve the performance in terms of detection. Wei et
al. [70] proposed a UNet [71] inspired network to segment defects in curved CFRP samples
using PT data acquired by both Long Wave InfraRed (LWIR) and Mid Wave InfraRed
(MWIR) cameras. One can note that the great majority of the works regarding defect detec-
tion in PT commonly use phase analysis, linear algebra or machine learning approaches.
However other approaches have been proposed. Feng et al. [72] used an automatic seeded
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region growing to segment defects in thermograms after the application of a dimensionality
reduction method on a sequence. Prior to the region growing algorithm, an image based on
the maximum kurtosis for each pixel among n-selected components selected by the user is
made. The region growing algorithm is applied on this image. Marani et al. [73] proposed
an approach based on the classification of local features for classification of both defects
region and the estimation of their depth. They reviewed several classification algorithms
in addition to ensemble strategy. Their approach was able to accurately detect most of
the defects. The same authors [74] evaluated the possibility of defect detection by reducing
the noise in the data using FIR filters. Recently Liu et al. [75] introduced an approach
that uses data augmentation generated by the deep-learning models. The assumption
was that deep-learning models would be able to learn statistical features from the data.
Their work provided good results on composite materials compared with state-of-the-art
methods such as PCT [9,76]. The same authors assessed their work using ICA and a Kernel
PCA (KPCA) as a detection method [15,77]. Like the previous one, this approach provides
good results on composite materials Wang et al. [78] proposed a method to enhanced and
segments the defects of a specimen based on level sets and soft clustering. The method
shows noticeable results. Poelman et al. [79] evaluated several state-of-the-art approaches
on CFRP on both PT and Lock-in data. Poelman et al. [80,81] introduced a multi scale
version of the Gapped Smoothing Algorithm (GSA) [82,83]. Not only Poelman et al. ex-
tended previous work to manage multiple scales, but they also proposed a two dimensional
version of it. The proposed method reduces the effect of heterogeneous heating and offers
fair abilities for defect detection. Galapagan et al. [84] modeled the thermal behavior
of several thermal samples and compared the expected behavior with dynamic thermal
tomography (DTT). Vavilov et al. [85] reviewed the usage of DTT using PT data of both
known and unknown datasets. This study shows the ability of DTT to provide accurate
topological information regarding under investigation defects. Ahmadi et al. [86] analyzed
several approaches to increase the resolution of PT data. In the same year, they proposed
another approach for the same purpose [87]. Recently Kostroun et al. [88] introduced
the Modified Difference of Absolute Contrast (MDAC). The improvement of the Differ-
ential Absolute Contrast (DAC) [89,90] is based on considering heat transfer by radiation.
Erazo-Aux et al. [91] introduced a method for detecting defects based on the Histogram
of Oriented Gradient (HOG). The method offers similar performances as state-of-the-art
approaches when applied on preprocessed data (e.g., TSR + PPT) while not requiring any
preprocessing. They also [92] modeled the non-uniform heating, which noticeably reduces
it and therefore improves the performance of state-of-the-art algorithms. The same year,
the same author [93] released a dataset of several academic samples acquired using PT.
Schager [94] reformulated the Thermographic Signal Reconstruction (TSR) [38]. The main
modification consists in compute a polynomial regression directly on the sequence without
computing the log-space. Muzika et al. [95] submitted an enhancement method based on a
two-step algorithm. First, the data are denoised regardless of the method. Once denoised,
a fifth-order natural logarithm regression is fitted on the data. This last step seems to be sim-
ilar to the TSR [37,38], while Shepard et al. used log 10 regression. Hedayatrasa et al. [96]
examined the efficiency of finite element models regarding CFRP under PT acquisition.
Wang et al. [97] proposed a method to retrieve the depth of the defects in CFRP using
nonlinear transformation. The proposed method shows good accuracy, and also they
introduce a new methodology about how to use a labeled sample with unsupervised
algorithms. Venegas et al. [98,99] investigated the creating of the thermal diffusion model
and its application for defect detection in CFRP subject to PT measurement. These studies
presented promising results. Similarly, Castellini et al. [100] used a propagation model
to find defects in PT data. Dattoma et al. [101] introduced a contrast-based algorithm
that avoids defining sound areas when computing SNR. Popow et al. [102] used factor
analysis to investigate different aspects involved in the diffusion of heat into anisotropic
CFRP samples. Zhang et al. [14] suggested a new deep learning architecture to extract
the independent components from PCT data. The authors showed that their method en-
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hances barely visible defects. Grenyer et al. [103] offered a study on estimating uncertainty
in PT data.

The following section introduces the Independent Component Analysis (ICA) and
our motivations regarding this study.

3. ICA and ICT

Before detailing our motivation let’s remind what ICA is.

3.1. Independent Component Analysis

The Independent Component Analysis (ICA) has been introduced by [104] to solve
blind signal separation problems. The ICA’s goal is to project the data into a new space
with lower dimensions while maximizing the In the literature, independence is evaluated
as the measure of the non-Gaussianity of the signals. The reason is given by the central
limit theorem, which states that if the signals composing the data are all independent and
non-Gaussian, then their mean tends to be Gaussian. Once that transformation is applied,
the data does not have anymore any physical sense [105]. From a more theoretical point
of view, let suppose that we have a set of m observations x1, . . . , xm. We assume that each
observation is a mixture of n independent components.

xi =
n

∑
j=1

ai,jsj (1)

where ai,j is a real coefficient known as mixing coefficient, while sj is an independent
component. The ICA is known as a generative model, which means that it describes
the observations as a process of mixing the components. Equation (1) can be rewriten as:

x = As (2)

where x and s are random vectors representing the observations, and the independent
components,respectively, and A is the mixing matrix. From an optimization point of view,
the ICA’s goal consists to estimating ŝ by computing W = A−1.

ŝ = Wx (3)

From a computational perspective, this approach needs to compute n2 degrees of
freedom at each iteration during the optimization process. To reduce the number of degrees
of freedom to compute while preserving the accuracy of the metric, it is possible to whiten
the data before the computation of the ICA. The whitening operation consists in projecting
the observation vector x into space where its components are uncorrelated. The result of
this projection is noted x̃. This operation can be formulated as:

x̃ = ED−
1
2 ETx (4)

where E is the orthogonal matrix of the eigenvectors of the covariance matrix: E{xxT}, and D
is the diagonal matrix of the eigenvalues of the same covariance matrix. One can note that
during this operation, it is also possible to reduce the dimensionality of both E and D. Reducing
the dimensions in this stage allows to reduce the noise in the data and avoid overfitting, which
can occasionally be observed [106]. Then we can fusion Equations (2) and (4).

x̃ = ED−
1
2 ETAs (5)

= Ãs (6)

where Ã is orthogonal, i.e., ÃÃT = I. An orthogonal mixing matrix has fewer degrees of
freedom than its non-orthogonal variant which makes the ICA faster to compute. Figure 1
offers a visual representation of the optimization operation represented in Equation 5.
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Figure 1. Illustation of the ICA Equation.

Many approaches over time have been proposed in the literature. In the next section,
we will briefly introduce the different algorithms we used.

3.2. Related Work

An essential aspect of the ICA computation regards the cost function used to find
the independent components. Most of the works are based on three types of estimation.
Estimation is based on the measures of non-gaussianity, minimization of the mutual
information, or maximum likelihood.

3.2.1. Infomax-ICA

Among the very first popular work regarding ICA is Bell et al. [107] who introduces
the concept of Infomax. Infomax is a maximum-likelihood cost function [108], which is
used in conjunction with ANNs. From a more formal point of view:

H(y) = H(φ1(wT
1 x), . . . , φn(wT

n x)) (7)

where H(.) is an entropy function, φ(.) is the activation function of the neurons, which
for this application correspond to a non-linear scalar function, w is the weight vector of
the neurons, x is the input of the ANN.

3.2.2. FastICA

Hyvärinen et al. [106] introduced a fixed point algorithm, known as FastICA, which
outperforms the literature in terms of computational time. They also studied several cost
functions and proposed an approximation of the negentropy, which was more robust than
approaches based on kurtosis [109].

H(y) = (E(G(wTx))− E(G(ν))2 (8)

where H(.) is an entropy function, w is a weight vector constrainted, so E((wTx)2) = 1, G
is a non-quadratic activation function. Hyvärinen et al. [106] investigated several activation
function among them:

G1(x) =
1
a

log(cosh(a x)) ∀a ∈ [1, 2] (9)

G2(x) = −e−
x2
2 (10)

In this study we used the activation function provided by Equation (9) with a = 1.

3.2.3. Quasi-Newton ICA

Zibulevsky et al. [110] introduced a relative Newton optimization method for quasi-
maximum likelihood signal separation. Their work is base on the computation of a Hessian
due to its ability to provide a fast approximate inversion. Zibulevsky et al., does not
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use constraints regarding the orthogonality of the data, which makes their method more
suitable to work with sparse signals. In their work Zibulevsky et al., use the normalized
minus-log-likelihood as cost function:

L(W, X) = − log|det W|+ 1
T ∑

i∈[1,N],t∈[1,T]
h(Wi xi(t)) (11)

where W is the unmixing matrix, X is the matrix of observed data, T is the number of
samples, N is the number of dimensions of each sample, xi is the ith row of the matrix X,
h(.) is an activation function. Zibulevsky et al., investigated two activation functions:

h1(x) = |x| − log(1 + |x|) (12)

hλ(x) = λh1(
x
λ
) ∀λ ∈ R+ (13)

In our experiments we used the activation function hλ.

3.2.4. Trust Region ICA

Inspired by the work of Zibulevsky et al., Choi et al. [111–113] proposed the rela-
tive trust region method. This method computes the ICA by solving jointly two cost
functions, one absolute and one relative. For a given iteration k, this cost function can
be formulated as:

argmin
||p||≤∆(k)

m(k) = f (k) +
[
∇f(k)

]T
p +

1
2

pTB(k)p (14)

argmin
||p||≤∆(k)

m(k)
r = f (k)r +

[
∇f(k)r

]T
p +

1
2

pTf(k)r p (15)

where ∆(k) is the trust region, ||.|| is the Euclidean norm B is a symmetric matrix, p
is the search direction vector, f (k) is the objective function for the current iteration for
the absolute sub-problem, f (k)r is the objective function for the current iteration for the rel-
ative sub-problem. The objective function for each case as well as their derivative ∇f(k)

and ∇f(k)r .

f (W, X) = − log|det W|+ 1
T ∑

i∈N,t∈T
ψ(Wi xi(t)) (16)

f (W, X) = f (W) = f (w)

f (k) = f (w(k))

∇f(k) =
∂ f

∂w(k)
(17)

fr(w) =
1
T ∑

i∈N,t∈T
ψ(Wi xi(t)) (18)

∇f(k) = f latten

−I +
1
T ∑

t∈[1,T]
y(t)(ψ′(y(t)))T

 (19)

where T is the number of samples, I is an identity matrix, ψ is a activation function, ψ′

is the derivation of the of the activation function, f latten is a matrix flattening operator.
As activation function Choi et al. [111] have investigated the same as Hyvärinen et al.,
(Equation (9)) and φ(x) = − 1

4 x4. During our experiments the activation function we used
is φ(x) = tanh( x

2 ).
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3.2.5. PICARD and PICARD-O

Albin et al. [114] observed that most of the existing ICA’s methods based on the maxi-
mum likelihood optimization rely on a sparse approximation of a Hessian matrix. The main
drawback of such an approximation observed by Albin et al., is that it does not accurately
represent the data. It also comes with a computational cost. Albin et al., proposed the Pre-
conditioned ICA for Real Data (PICARD). Their work uses the same cost function as
Zibulevsky et al. [110]. The computation of the mixing matrix is realized using a modi-
fied L-BFGS algorithm to reduce the method’s memory cost. The modification concerns
initialization of the Hessian matrix, where a precondition Hessian matrix computed be-
fore the optimization is preferred to the identity matrix used by default. This strategy
regarding the initialization of the Hessian also allows the algorithm to converge faster.
Albin et al. [115] improved their previous method and proposed PICARD-O, which use
the same approach as PICARD but enforce a whiteness constraint on the data.

3.2.6. Miscellaneous

We investigated other methods such as the uwedgeICA and the CoroICA introduced
by Pfister et al. [116] or the BionICA intoduced by Lipshutz et al. [117]. However, we were
not able to obtained valuable results using these methods. Other approaches such as
the work Halva et al. [118] offers supervised implementation of the ICA, which then get
out of the topic of this study.

3.3. ICA in IRNDT

The ICA has been used in several works in IRNDT. Ahmed et al. [13] showed that
Fast-ICA [106] outperformed PPT, TSR, and PCT. Rengifo et al. [119] observed that Fast-
ICA achieved better scores with the lower-resolution sequences. Liu et al. [120] and
Fleuret et al. [121] have attempted to introduced ICT. Liu et al., highlighted that the ICA
could not separate some signal sources and concluded that it was likely due to thermal
conduction, which might not always satisfy the condition of non-gaussianity. Nonetheless,
signals related, for instance, to uneven heating can be successfully removed. The same
authors also concluded that the ICT outperformed state-of-the-art approaches. Fleuret et al.,
reach the same conclusion as Liu et al., regarding the performance of the ICT compaired
with state-of-the-art approaches. However, both authors agreed on the higher robustness
of the ICT. Zhang et al. [14] have trained an ANN for blind source separation and used
it for defect detection from PT data. Zhang et al., used PCA in order to whiten the data,
and then performed either the training or the detection. However they did not compared
their approach with other existing methods. More recently, Liu et al. [15] has proposed
a pre-processing method based on data augmentation and has evaluated it using ICT.
The new method named GICT outperforms ICT.

To summarize the main difference between ICA and PCA have been reported in
Table 1. In the next section we introduce the different aspects of our experiments.

Table 1. Comparison of PCA and ICA.

Features/Method ICA PCA

Linear transform X X

Goal of the transformation
maximizing the unmixing matrix as well as

the independence of the components [10]
project the data into an orthogonal space

while maximizing the variance
of the projected data [122]

Matrix factorization
full rank to ensure the independence

of the components.
low rank to ensure the non-correlation

of the components.

Othrogonalize
not by default, however commonly a whitening step is
computed beforethe ICA, which othogonalize the data.

X

Ignore local data structure X X [28,41]

Denoise X X

Remove uneven heating X
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4. Materials and Methods

Our study aims to evaluate the accuracy of the ICA’s different formulations on PT
data and compare their results with state-of-the-art approaches. From a physics point
of view, it seems logical that both the depth from the surface and the defect areas will
influence the results of the figures of merit. Nevertheless, when it comes to data, this may
not as simple as it seems. Liu et al. [22] observed although weak signals are corrupted
by signals from the different noise sources and influence the acquisition, they remain
quantifiable. In this section, we introduce the different aspects of the experiments we
conducted. The same observation was made by Wen et al. [28]. ICA is already known as a
method that is able to provide good contrast in defects and at the same time is robust to
various noises and other distortions [11,15,121]. However, most of the existing methods
proposed in the literature are based on the Fast-ICA [106] implementation. In this study,
we want to investigate whether other ICA formulations among the recently proposed
methods can further improve ICA results using PT data. Then, in the continuation of this
section, we will introduce the different aspects of the experiments that we have performed.

4.1. Data

In order to evaluate the potential interest of ICA in IRNDT, we analyzed a ref-
erence Carbon Fiber Reinforced Plastic (CFRP) sample. We used the same sample as
Erazo et al. [93]. This sample contains twenty-five Teflon inserts which are divided into
five sets of five defects. Each set has five inserts having the same depth but different sizes
(from 3 × 3 mm2 to 15 × 15 mm2). As illustrated in Figure 2, each set has been positioned
at a specific depth (from 0.2 to 1 mm).

Figure 2. CFRP sample used for the experiments.

The materials are evaluated under a classic pulsed thermography procedure.
Pulsed thermography (PT), shown in Figure 3a, consists of an external heating source

and an Infrared camera. A short pulse of energy from the heating source is emitted to
the surface of the specimen. The temperature decay is then captured from an excited
surface using the IR camera. Because we are using two flashes, a control unit was required
to control and synchronize the data acquisition with flash triggering. The acquired thermal
sequences were stored on a computer. From a more theoretical point of view according to
the general heat Equation [123]:

∂2T
∂y2 =

1
µ

dT
dt

(20)

where T is the surface temperature, µ = k/ρcp is the thermal diffusivity of the material, k,
ρ, and cp its thermal conductivity, density, and specific heat at constant pressure, respec-
tively; t is the time, and y is the depth of the specimen. The 1D solution of the Fourier
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Equation with ideal waveform and for homogeneous and semi-infinite material is given
by Equation (21):

T(y, t) =
E

e
√

πt
e−

y2
4µt (21)

where E is the absorbed energy by the surface and e is the heat effusivity (e = (kρcp)1/2).
The emitted energy from the surface where y = 0 (Equation (22)) represents temperature
change after applying heat to the surface of the specimen.

∆T(t) =
E

e
√

πt
(22)

Figure 3. (a) CFRP plate; Z is the defect depth and labels are used to identify the location of each
defect; (b) Pulsed thermography setup. a—PC, b—IR camera, c1 and c2—left and right flashes,
and d—CFRP specimen.

Each material has been stimulated from the front side by a pulse generated by two
photographic flashes (5 ms thermal pulse, 6.4 kJ/flash (Balcar, France)). A mid-wave in-
frared (MWIR) camera FLIR x6900sc (1.5 µm to 5.0 µm, 14 bit per pixel, 640× 512) was used
for data acquisition. We conducted two acquisitions at different frequencies of acquisition.
We acquired some data at a frequency of 145 Hz (145 images per second) and 120 Hz for 30 s.
That duration ensured that the sensor had acquired both the warm-up and the cool-down.
Then, we sub-sampled them to a sequence of 2000 frames and 2200 frames, respectively.
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4.2. Analysis

In this study, we investigated different aspects regarding the usage of the Indepen-
dent Component Analysis. We chose to compare the results of our experiments with two
state-of-the-art methods, the PPT [8], and the PCT [9]. We conducted three investigations
regarding the importance of selecting the component on the accuracy of the results, evaluat-
ing the different methods we selected, and finally, the influence of the acquisition frequency
on our data’s accuracy. The first aspect of our study concerns the selection of the number
of components. Several papers have been published offering methods regarding selecting
the number of components regarding different applications optimally. Although the work
of Rengifo et al. [119] fits our goals, they used a nonquadratic activation function given in
Equation (10) and developed a method to identify the most suitable independent compo-
nent for detecting defects. However, this method can not be generalized for other activation
functions; thus, we chose not to use it in our study. Therefore we conducted a limited
study regarding the importance of selecting the proper number of components for ICA.
For each method under investigation and each dataset, we reduced the dimensionality to
one hundred and seven components. The numbers seven and one hundred were randomly
selected. We compute the CNR for both cases and every defect. Then the results for seven
and one hundred components are compared.

Then for a given defect we identify the frame with the highest CNR score, which
we report in our results. For each defect, the CNR is computed for a region of interest
representing the defective region and a region of interest used as a sound area, as one
can note in Figure 4. One can note that the sound area overlaps the defective region, it is
obvious that for the computation of the CNR all overlapping pixels were not considered
part of the sound area. For evaluation of all selected methods, we use CNR values of
seven components. For the PPT the CNR values were computed the same manner as
those of the ICA’s methods. Figure 5 shows the different step of our experiment. Another
aspect of the evaluation of the different methods concerns their ability, when coming to
the segmentation task, is to provide an accurate mask of the defects present in the sample.
Inspired by Feng et al. [72], to construct a single image from the several components
or phase images, we compute the InterQuartile Range (IQR) for each pixel of selected
outputs. Then, from this image, we used the triangle automatic threshold method [124]
to compute an optimal threshold, which is applied to the previous image to generate a
mask of the defects. We thus estimated the accuracy based on these images and compare it
with other methods. Figure 6 shows the different steps of this experiment. To conclude
our study we compare the results we computed from each method between the different
acquisition frequencies.

Figure 4. The blue contour represents the defect region, while the region between the green an red
contours is our sound area.
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Figure 6. Segmentation and accuracy computation flow diagram.

Before any analysis, we first need to pre-process the sequence we acquired. We acquired
a sequence of T images of M× N pixels that are structured as a third-order tensor for each
frequency. The first step consists in creating an overlay matrix of dimension T × P where
P = M.N. T is the number of frames acquired in each sequence, P is the total number
of pixels. Figure 7 shows that operation.

Figure 7. Transformation of acquisition from a third-order tensor to a matrix.
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As preprocessing we standardized the overlay matrix. To do so we compute the mean
and standard deviation of each column of the matrix, thus for each row of the matrix we
subtract the mean vector previously computed and divide it by the standard deviation
vector. In the next section, we introduce the metrics we use for assessing the quality of
the different methods we investigated.

4.3. Figure of Merit

To evaluate the different aspects of out study we choice two figures of merit, the CNR
and the Accuracy. The first metric we introduce is quite well-known in Infrared Non-
Destructive Testing (IRNDT), it is the Contrast to Noise Ratio (CNR).

4.3.1. CNR

This metric allows evaluating the general contrast of the defective region regarding
the surrounding. CNR is prevalent in IRNDT due to its ability to provide information
about the image’s contrast. Often, thermal or component images are noisy, which can
significantly influence this metric. Many formulations of the CNR have been proposed;
in this study, we used the formulation proposed by Usamentiaga [125].

CNR(rois, roin) =
|µs − µn|√

(σ2
s +σ2

n)
2

(23)

where µs and µn represent the mean of the sound area and the defect area’s mean, respec-
tively. σs and σn represent the standard deviation of each region. In the next section, we
briefly introduce another figure of merit, Accuracy.

4.3.2. Accuracy

Accuracy is a common metric. It is a very helpful metric to evaluate the quality of
detection and segmentation. Its definition for a binary classifier is define by Equation (24).

Accuracy =
TP + TN

TP + TN + FP + FN
(24)

where TP (i.e., True Positive) represents the number of pixels detected that were truly part
of the ROI. TN (i.e., True Negative) represents the number of pixels that were accurately
detected as part of the background. FP (i.e., False Positive) represents the number of
wrongly detected pixels as part of the ROI. FN (i.e., False Negative) is the number of
wrongly detected pixels as part of the background. Figure 8 provides a visual example.
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Figure 8. (a) represents an object ground truth. i.e., the white pixels represents an object. (b)
represents the result of a segmentation algorithm. (c) represents the False Positive (FP) pixels of
(b), i.e., the pixels that are labeled as part of an object but are not part of it. (d) represents the False
Negative (FN) pixels of (b), i.e., the pixels that are labeled as not part of an object but are part of it. (e)
represents the True Positive (TP) pixels of (b), i.e., the pixels that are properly labeled as part of an
object. (f) represents the True Negative (TN) pixels of (b), i.e., the pixels that are properly labeled as
not part of an object. Note that in figure (f) the black contour is a contour which is also present in all
the figures.

Illustration of the different concepts used in Receiver Operating Characteristic approaches.
The following section introduces the different results we computed for this study.

5. Results

Regarding the experiments we conducted to evaluate and the different ICAs methods
we selected with the PPT and PCT. For each method we reported the CNR scores of each de-
fect in Table 2 In that tab for each method the first column represents the depth of the defect,
the second and third columns shows for a given lateral size defects the max CNR obtained
at each depth for the two datasets we used. The next column introduce percentage of
difference between the two results. A negative sign is given to the difference when the max
CNR obtained for the dataset acquired at the frequency of 145 Hz are lower than the results
obtained for the dataset acquired at 120 Hz. This columns pattern is used for all the defect
size. In Figure 9 each plot shows the maximum CNR scores obtained by each method for
the different defect size, for a given depth and a given frequency. Similarly in Figure 10
each plot show the maximum CNR scores obtained by each method for the different depth,
for a given lateral size and a given frequency. For the experiments about the importance of
the number of the components on the defect identification. We computed the CNR for 7
and 100 components for different ICA methods. Figure 11 presents the maximum CNR
value for all defects in different depth and size. We also computed for the two frequen-
cies of acquisition investigated, the mean sequences for the ICA methods; i.e., the mean
of the sequences computed for each method, for one hundred components and seven
components respectively. We show the result of the computation of the inter quantile
range on each mean sequences in Figure 12. Table 3 and Figure 13 show the computation
time of the different methods we used for each experiment we conducted. The results for
the Accuracy scores using the segmentation approach describe in Section 4.2 and illustrated
in Figure 6 are reported in Table 4. Regarding the experiments about segmentation we plot
the results of both the application of the IQR per pixel on the result of the different methods
in Figure 14. We also plot the result mask computed using the proposed segmentation
approach in Figure 15.
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Table 2. Maximum CNR values for the different defects, for each method at the frequency of 120 and 145 Hz.

Method Depth (mm)
Lateral Size (mm)

145 Hz vs. 120 Hz
Lateral Size (mm)

145 Hz vs. 120 Hz
Lateral Size (mm)

145 Hz vs. 120 Hz
Lateral Size (mm)

145 Hz vs. 120 Hz
Lateral Size (mm)

145 Hz vs. 120 Hz3 5 7 10 15

120 Hz 145 Hz 120 Hz 145 Hz 120 Hz 145 Hz 120 Hz 145 Hz 120 Hz 145 Hz

PCT

0.2 3.718 2.917 −22% 10.711 6.456 −40% 12.402 11.938 −4% 17.323 16.317 -6% 8.699 11.544 33 %
0.4 1.582 3.525 123% 9.771 6.429 −34% 3.862 8.991 133% 8.512 10.483 23% 10.448 16.443 57%
0.6 2.762 2.481 −10% 6.898 7.639 11% 7.617 7.885 3% 8.030 7.273 −9% 8.697 12.417 43%
0.8 2.244 1.608 −28% 4.135 4.649 12% 6.116 3.253 −47% 8.240 9.118 11% 6.236 10.448 67%
1 0.673 1.972 193% 3.008 3.253 8% 4.147 3.892 −6% 6.234 7.443 19% 6.163 6.234 1%

PPT

0.2 2.075 2.942 42% 5.697 5.450 −4% 7.093 8.517 20% 8.117 9.975 23% 4.995 7.378 48 %
0.4 1.360 3.190 134% 7.220 7.310 1% 3.974 10.177 156% 7.404 9.879 33% 7.875 13.238 68%
0.6 2.308 2.288 −0.89% 6.764 7.533 11% 6.530 7.757 19% 7.267 7.806 7% 7.067 11.015 56%
0.8 1.880 1.276 −32% 3.912 4.964 27% 5.536 3.081 −44% 7.737 7.528 −3% 5.884 8.649 47%
1 0.217 0.791 264% 2.239 3.081 38% 3.188 3.718 17% 5.414 6.394 18% 5.671 6.953 23%

Fast-ICA

0.2 3.474 2.802 −19% 12.840 7.261 −43% 10.259 12.078 18% 22.184 16.903 −24% 12.983 11.848 −9%
0.4 1.576 2.899 84% 6.721 5.813 −13% 2.940 10.698 264% 9.077 10.296 13% 8.632 12.486 45%
0.6 1.766 2.115 20% 4.320 7.652 77% 4.857 8.050 66% 4.359 7.800 79% 3.507 10.965 213%
0.8 1.112 1.443 30% 3.165 4.736 50% 5.145 3.333 −35% 6.219 9.421 51% 4.871 10.856 123%
1 0.574 1.461 154% 2.794 3.333 19% 4.086 3.853 −6% 5.601 6.522 16% 5.723 6.076 6%

Infomax-ICA

0.2 3.166 2.823 −11% 9.557 6.113 −36% 9.548 11.276 18% 15.101 14.707 −3% 10.249 11.535 12 %
0.4 1.633 3.323 103% 9.127 6.140 −33% 3.520 10.247 191% 7.424 8.068 9% 7.960 15.113 90%
0.6 3.047 2.721 −11% 7.183 8.285 15% 7.039 8.142 16% 7.733 7.553 −2% 8.686 12.878 48%
0.8 1.837 1.775 −3% 3.988 4.617 16% 5.348 3.619 −32% 7.524 9.230 23% 6.424 11.475 79%
1 0.896 1.767 97% 2.242 3.619 61% 3.488 4.242 21% 5.164 7.917 53 % 5.338 7.472 40%

Trust-region-ICA

0.2 3.152 2.840 −10% 9.733 6.431 −34% 8.690 12.602 45% 14.689 15.779 7% 10.310 11.465 11%
0.4 1.357 3.438 153% 8.478 6.323 −25% 3.750 8.390 124% 7.581 7.842 3% 8.080 15.119 87%
0.6 2.547 2.859 12% 6.499 8.408 29% 6.564 8.191 25% 7.498 7.414 −1% 8.072 13.161 63%
0.8 1.888 1.782 −6% 3.746 4.423 18% 5.124 3.628 −29% 7.464 9.462 27% 5.959 10.919 83%
1 0.926 2.000 116% 2.239 3.628 62% 3.336 4.491 35% 5.046 9.019 79% 5.164 7.938 54%

Quasi-newton-ICA

0.2 3.226 2.897 −10% 9.919 6.441 −35% 9.002 13.208 47% 16.478 15.678 −5% 10.505 11.540 10%
0.4 1.325 3.217 143% 7.725 6.056 −22% 3.409 9.971 192% 6.707 7.771 16% 7.466 14.063 88%
0.6 2.446 2.671 9% 6.330 8.295 31% 6.513 8.248 27% 6.846 7.605 11% 7.743 12.621 63%
0.8 1.887 1.788 −5% 3.513 4.693 33% 5.464 3.645 −33% 6.956 9.413 35% 5.722 11.522 101%
1 0.939 1.853 97% 2.307 3.645 58% 3.353 4.295 28% 4.477 7.747 73% 4.651 7.335 58 %

PICARD

0.2 3.166 2.820 −11% 9.534 6.141 −35% 9.612 11.361 18% 15.120 14.846 −2% 10.249 11.514 12 %
0.4 1.636 3.296 101% 9.134 6.117 −33% 3.525 9.539 171% 7.428 8.019 8% 7.948 14.907 87%
0.6 3.057 2.711 −11% 7.195 8.288 15% 7.056 8.159 16% 7.757 7.577 −2% 8.679 12.820 48%
0.8 1.847 1.778 −4% 4.003 4.641 16% 5.360 3.622 −32% 7.522 9.277 23% 6.429 11.526 79%
1 0.888 1.817 104% 2.267 3.622 60% 3.483 4.367 25% 5.150 7.841 52% 5.349 7.454 39%

PICARD-O

0.2 3.163 2.818 −11% 9.629 6.150 −36% 9.612 11.397 18% 15.551 14.899 −4% 10.305 11.495 11 %
0.4 1.640 3.293 101% 9.163 6.114 −33% 3.518 9.378 166% 7.452 7.971 7% 7.983 14.761 85%
0.6 3.048 2.701 −11% 7.169 8.285 15% 7.022 8.165 16% 7.736 7.568 −2% 8.692 12.776 47%
0.8 1.923 1.764 −8% 3.981 4.628 16% 5.508 3.625 −34% 7.489 9.276 24% 6.418 11.477 79%
1 0.885 1.822 106% 2.323 3.625 56% 3.618 4.358 20% 5.140 7.873 53% 5.309 7.425 40%
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Figure 9. Maximum CNR score computed by defect depth as a function of the lateral size for all methods at frequency of
120 Hz and 145 Hz.
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Figure 10. Maximum CNR score computed by defect lateral size as a function of the depth for all methods at frequency of
120 Hz and 145 Hz.
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Figure 11. Comparative results between processing 7 and 100 components.
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Figure 12. Result of the computation of the IQR for each pixel of the mean sequence of 100 compo-
nents and 7 components.

Table 3 summarizes the processing time for all ICA methods.

Table 3. Execution time of all methods.

Method

Execution Time (s)

100 Comp. vs. 7 Comp.

Execution Time (s)

100 Comp. vs. 7 Comp.Frequency Frequency

120 145

7 Comp. 100 Comp. 7 Comp. 100 Comp.

Trust region ICA 2.8451 39.0860 13.74 3.3872 39.5966 11.69
PICARD-O ICA 59.9245 134.3624 2.24 63.8037 134.7053 2.11
PICARD 72.7453 175.5388 2.41 76.3144 179.1237 2.35
Fast ICA 38.1550 44.5424 1.17 42.6507 46.5227 1.09
Infomax ICA 5.0410 66.0711 13.11 5.4596 71.8660 13.16
Quasi newton ICA 2.8980 7.3608 2.54 3.7271 7.5612 2.03
PCT 8.7565 17.5889 2.0 9.2509 18.7692 2.02
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Figure 13. Time of execution of the different methods.
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Figure 14. Results of the IQR for the differents ICA and state of the art algorithms.
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Figure 15. Results of the segmentation for the differents ICA and state of the art algorithms.
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Table 4. Accuracy score of different ICA methods segmentation.

Method
Accuracy Score

Frequency (Hz)

120 145

PCT 0.7310 0.8333
Trust region ICA 0.9340 0.767

PICARD-O 0.1270 0.6619
PICARD 0.4397 0.7959
Fast ICA 0.7319 0.8915

Infomax ICA 0.2279 0.4832
Quasi newton ICA 0.3758 0.7589

In the next section, we discuss the results we obtained.

6. Discussion

The goal of this study was to investigated the performances of different ICA algo-
rithms for processing PT data. We chose two state-of-the-art methods in order to provide
a fair comparison. This study focus on three features, the contrast of each defects with
its closest neighbourhood, the accuracy of detection for a given segmentation algorithm,
and the time of execution. We investigated these feature using two dataset of the same
samples acquired with different frequencies, which allow us to extend also observe the in-
fluence of the frequency of acquisition on the three features we investigated. For each case
we provide quantitative results.

From Table 2 we can observe that for most of the methods investigated, the CNR
for the defect from the sequence acquired at 145 Hz offers a higher CNR than at 120 Hz.
The highest difference are observed for the PPT where for 80% of the defects have a higher
CNR at 145 Hz than 120 Hz. Quasi-newton and Trust-region-ICA shows a higher CNR
at 145 Hz for 76% of the defects. 72% of the defects have a higher CNR at 145 Hz with
the Fast-ICA method. Infomax-ICA, PICARD and PICARD-O have better CNR at 145 Hz
for 68% of the defects. PCT shows 60% of the defects have a higher CNR at 145 Hz.

For the data acquired at the frequency of 120 Hz we made the following observations.
The defects with a lateral size of 3 mm, have a higher CNR for 60% of the ICA method
compared with PCT. Five over six investigated ICA methods offer higher CNR than PPT.
The same number of methods outperform the PCT regarding the CNR for the defect with
the smallest lateral size, located at the deepest depth (L = 3 mm, d = 1 mm). For this
particular defect all the ICA methods outperformed the PPT. The best CNR is obtained
by the Quasi-Newton approach. We can observe that for smaller and shallowest PCT
exceeds both ICA and PPT. The differences between ICAs methods and PCT regarding
the scores vary from 7% to 17% lower. PPT reaches the highest difference ratio with
PCT with a score of 79% lower. PCT, PPT, and ICA methods have higher CNR values
for 60%, 4%, and 36% of the defects. Among the ICAs method the best results were
obtained by Fast-ICA and PICARD methods. As one can note ICAs methods except for
smaller and deeper defects does not better than the PCT method. However, ICAs CNR
results are often close to those of the PCT. For the experiment conducted with the data
acquired at the frequency of 145 Hz, we observed that the ICAs method exceed PPT and
PCT for 72% of the defects. PCT and PPT beat the ICAs methods for 12% and 16% of
the defects, respectively. For deeper and smaller defects, Trust-region ICA beats both PPT
and PCT. Nonetheless, the increase in CNR, even if slightly higher, is similar to PCT. One
can note that ICA methods are better than state-of-the-art approaches for deeper defects.
For the shallowest defects (depth = 0.2 mm), the CNR scores for the ICAs methods are
quite close regardless of the method. Similar observations can be made for the defects
with a lateral size of 3 mm located at a depth of 0.2 mm and a depth of 0.4 mm, for all
the methods. Between ICA methods, Trust ICA, Fast ICA, Quasi-newton ICA, and PICARD
in 64%, 16%, 16%, and 4% of defects has the maximum CNR, respectively. Among all
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the methods, Trust ICA, Quasi-Newton ICA, Fast ICA, PPT, and PCT obtained 32%, 24%,
16%, 16%, and 12% of the maximum CNR scores, respectively.

As mentioned in Section 4.2 we conducted a limited investigation about the selec-
tion of the components. In this investigation we computed for each component method
100 components as well as 7 components. Then for each case we compute the maximum
CNR for each defects and compare the results. As one can note in Figure 11 for most of
the methods regardless the number of component we found that there is no significant
variation between the maximum CNR computed for 7 components and the one computed
for 100 components. We can see in plots Figure 11b,j a noticeable difference between
the two max CNR in terms of amplitude. In both cases the CNR computed for 7 com-
ponents offers higher amplitude than the one computed for one hundred components.
For both cases the shape of the plot are quite similar, nevertheless we can surprisingly
observe a slight offset of the maximum CNR. Other less significant difference between
the maximum SNR computed for 7 and 100 component are visible for some of the other
plot. For most of the other methods despite a slight difference regarding the amplitude
the shape of the plot are very similar and does not shows any offset. One can note that
the difference between CNR are higher for the data acquired at 145 Hz than at 120 Hz.
Looking at Table 3 and Figure 13 one can note that computing a higher number of compo-
nent increases the execution time, especially regarding for Trust-region ICA and infomax
ICA, where the computation time for 100 components 13 times slower than the one for
7 components at frequency 120 Hz. Fast ICA for 7 and 100 components are quite close,
1.17 and 1.09 time slower at frequency of 120 Hz and 145 Hz, respectively. For other ICA
methods the difference between computing 7 components and 100 varies from 2.24 to
13.74 times slower at a frequency of 120 Hz, and from 2.03 to 13.16 times slower at 145 Hz.
Although Trust-region ICA and quasi-newton ICA offers among the quicker computation
time between the ICAs methods, the number of component to compute does not affect their
computational time equally. Even method such as PCT which is on PCA that is nowadays
a highly optimized algorithm needed two times more time to compute 100 components
that 7. Surprisingly we observed that all the methods had a quicker computational time
on the data acquired at 120 Hz than 145 Hz. To conclude our investigation regarding
the influence of the number of components on the results we computed for each dataset,
for both 100 components and 7 components, the mean of the components of all the methods.
For a given number of components we computed obtain 6 results, 1 for each method. For
simplification we suppose that the result of each method is a third rank tensor, where
the first dimension correspond to the number of components, the two other dimensions
represents the number of rows and columns respectively of each components. In order
to compute the mean component we compute for a given components index the mean
of the results for this index. Once the all the mean of the component have computed
for all the component index we compute IQR for every matrix coordinates. The result
obtained is a matrix of the same number of rows and columns as the component. Figure 12
shows the results we obtained, which leads us to the conclusion that fewer component
offer a higher contrast regarding the defective region and therefore makes it easier to
identify them.

Another investigation we conducted in our study regards the ability of each method
to provide a distinctive output for automatic segmentation. To do our experiments we used
the algorithm introduces in Figure 6. Table 4 shows the accuracy score computed from
the segmented images showed in Figure 15. We also show in Figure 14 the result of the
computation of the IQR per pixel from the output of the different methods. The accuracy
was compute for each defects separately and then averaged. We can observed that the re-
sults regarding the segmentation varies a lot from a method to another. The accuracies
scores shows that both Trust-region-ICA as well as Fast-ICA outperform PCT for the data
acquired at 120 Hz. We can see that PCT segmentation does not perform well for defects
located at 1 mm, for the smallest defects as well as for defects with a lateral size of 5 mm
located at a 0.2 and 0.4 mm from the surface. Fast-ICA method performs better than
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PCT for smaller defects, but miss the smallest defect located a depth deepth than 0.2 mm.
Interestingly the defects with a lateral size lower than 10 mm located at a depth 0.8 mm are
not detected while defects located at the depth of 1 mm with a lateral size of 10 mm as well
as 5 mm are partially detected. Trust-Region-ICA shows more consistant results than PCT
and Fast-ICA. This method was able to detect even partially all the defects located a depth
of 0.2 mm. All but the smallest defect for the depths of 0.4 mm, 0.6 mm, and 0.8 mm from
the surface. It was able to made two partial detection for the defect with a lateral size of
10 mm and 7 mm located at the depth of 1 mm from the surface. Quasi-Newton-ICA offers
similar results compared with PCT. Nonetheless most of the detection most of the detection
made with this methods are partial, unlike PCT. ICA-Infomax, PICARD, PICARD-O, does
shows many detection mostly partial. The number of detection as well as the quality of
detection does make these method uninteresting for defect detection. In short for the data
acquired at 120 Hz, the segmentation approach shows that Fast-ICA algorithm outperform
all the other method regarding the segmentation of defects locate a the depth of 1 mm from
the surface while Trust-region-ICA is the method that has detected the highest number of
defects. For the data acquired at 145 Hz the results of the segmentation shows that the PCT
offers similar results as previously observed. Fast-ICA method underperform for defect
located at depth lower than 0.4 mm from the surface, compared with the results obtained
with the data acquired at 120 Hz. Trust-region-ICA offers better performances for the defect
located at a depth of 1 mm from the surface but fails for this depth to detect the small-
est defect. It also fails to detect the largest defect located at the depth of 0.4 mm from
the surface, while being able to detect all the other defects. For the rest of the defect the per-
formance of Trust-region-ICA are mostly similar to what has been present for the data
acquired at 120 Hz. Quasi-Newton-ICA result improved noticeably. It is able to detect all
the defects of the shallowest depth, and for the other depth all the defects with a lateral
size from 7 mm and higher. It is also able to detect the defect with a lateral size of 5 mm
located at a depth of 0.8 mm. It shows also some partial detection in non defective region.
ICA-Infomax, PICARD, PICARD-O, shows better results on the data acquired at 145 Hz
than they did on the previous data. In spite of these improvement these methods shows
very poor results compaired with the other methods. To sum up, on the data acquired
at a frequence of 120 Hz both Fast-ICA and Trust-region-ICA performed well compared
with PCT. On the data acquired at a frequence of 145 Hz, Fast-ICA’s underperformed
while Quasi-Newton-ICA performances were improved. Trust-region-ICA results were
quite similar.

To conclude the different aspect of our study, we have observed that for most of
the method we investigated computing a smaller number of components does not sig-
nificantly affect the CNR results. Have fewer component can makes the identification of
the defects in the sample easier. The number of component to compute can significantly
affect the computation depending the method. Using a simple segmentation approach
in association with the accuracy score we also showed that the frequence of acquisition
can significantly affect the results of some algorithms. Among those we investigated Fast-
ICA, Trust-region-ICA and Quasi-Newton ica provided consistent output, while have a
reasonable computational time.

7. Conclusions

This paper has three contributions. First of all, we reviewed the most recent works
regarding the processing of CFRP samples tested by PT. Secondly, because dimensional
reduction methods are very popular in IRNDT, we investigated the influence of the number
of components on the results from a quantitative and qualitative perspective. We limited
our study to PCT and several ICA methods selected among the recent works. We compared
the CNR in each defect for when we used seven and hundred components. Our results
show that for each method when one hundred components are computed the CNR per
defect is not noticeably higher than for seven components. Similarly, the trends regarding
the evaluation of the CNR per surface and depth are the same. From a detection point of
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view, having many components makes it harder to find accurate and reliable segmentation
methods without supervised learning. Some strategies based on simple statistics, such as
the interquartile range, or the kurtosis, may provide a quasi-accurate segmentation method
with fewer components. In our third contribution, we quantitatively compare the selected
ICAs algorithm with PCT and PPT. Our results show that in most of the cases ICAs method
outperformed PPT, but not PCT. However, for smaller defects and deeper defects ICAs
method often outperforms PCT. The results also show that if ICAs results are generally not
far from the one of the PCT.

Further research would involve supervised ICA algorithms, feature enhancement
methods [15], and the unsupervised ICA method in this research on a wider range
of materials.
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Abbreviations
The following abbreviations are used in this manuscript:

NDT Non Destructive Testing
IRT InfraRed Thermography
PT Pulsed Thermography
PPT Pulsed Phase Thermography
PCA Principal Component Analysis
PCT Principal Component Thermography
ICA Independent Component Analysis
ICT Independent Component Thermography
BSS Blind Signal Seperation
CFRP Carbon Fiber Reinforced Plastic
CNR Contrast over Noise Ration
MoG Mixture of Gaussian
CCIPCA Candid Covariance-free Incremental Principal Component Analysis
CCIPCT Candid Covariance-free Incremental Principal Component Thermography
ESPCA Edge-group Sparse Principal Component Analysis
ESPCT Edge-group Sparse Principal Component Thermography
Sparse-PCA Sparse Principal Component Analysis
SPCT Sparse Principal Component Thermography
NMF Non-negative Matrix Factorization
LatLRR Latent Low Rank Representation
LatLRRT Latent Low Rank Representation in Thermography
PLS Partial Least Square
PLST Partial Least Square Thermography
TSR Thermographic Signal Reconstruction
SVM Support Vector Machine
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OLPPT Orthogonal Locally Preserving Projection Thermography
ANN Artificial Neural Network
DTT Dynamic Thermal Tomography
GSA Gapped Smoothing Algorithm
DAC Difference of Absolute Contrast
MDAC Modified Difference of Absolute Contrast
ATI Apparent Thermal Inertia
TQ Thermal Quadrupole
NLF Non Linear Fitting
GAN Generative Adversarial Network
LWIR Long Wavelength InfraRed
MWIR Mid Wavelength InfraRed
KPCA Kernel-PCA
HOG Histogram of Oriented Gradient.
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