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Abstract: With the advancement of technologies it is becoming imperative to have a stable, secure
and uninterrupted supply of power to electronic systems as well as to ensure the identification of
faults occurring in these systems quickly and efficiently in case of any accident. Spiking neural P
system (SNPS) is a popular parallel distributed computing model. It is inspired by the structure and
functioning of spiking neurons. It belongs to the category of neural-like P systems and is well-known
as a branch of the third generation neural networks. SNPS and its variants can perform the task of
fault diagnosis in power systems efficiently. In this paper, we provide a comprehensive survey of these
models, which can perform the task of fault diagnosis in transformers, power transmission networks,
traction power supply systems, metro traction power supply systems, and electric locomotive systems.
Furthermore, we discuss the use of these models in fault section estimation of power systems, fault
location identification in distribution network, and fault line detection. We also discuss a software
tool which can perform the task of fault diagnosis automatically. Finally, we discuss future research
lines related to this topic.

Keywords: membrane computing; spiking neural P system; power systems; fault diagnosis

1. Introduction

In the 21st century, electrical power systems are associated with the daily necessities
of human beings. A network of electrical components is called an electrical power system
and such systems help in the supply, transfer, and use of electrical power. However, any
accident inside the power systems interrupts the supply of power. In order to perform the
task of secure and stable supply of power, it is necessary for the electric devices to have
efficient fault diagnosis methods which can identify the faults quickly as well as efficiently.
Furthermore, whenever there is a fault in power system, the consoles in the dispatchers
receive huge number of messages in a very short span of time from the SCADA (supervisor
control and data control) systems. Very often the messages received from SCADA systems
are incomplete and uncertain. Power systems are composed of a large number of generators,
transmission lines, bus bars, and transformers. These aspects of power systems make very
difficult the task of fault diagnosis in power systems. In recent years, the techniques from
artificial intelligence have been used to perform the task of fault diagnosis in electric power
systems. More specifically, many methods based on Bayesian networks [1,2], artificial
neural networks [3,4], genetic algorithms [5], Petri nets [6–9], expert systems [10,11], fuzzy
logic [7,8,12], multi-agent systems [13,14], optimization methods [5,15,16], information
theory [17,18], cause-effect networks [19,20] have been introduced. P systems or membrane
computing models are popular natural computing model. In recent years, many researchers
have used different variants of P systems for fault diagnosis in power systems.
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P system was introduced in 1998 by Gh. Păun [21]. P system is an abstract mathemati-
cal computing model which is inspired by the structure and functioning of the biological
cells. The area of study of P systems is well-known as Membrane Computing. In P systems,
the objects present inside the cells or membranes are represented by multiset of objects and
the evolution processes happening inside these cells are represented by the rules which are
applied in maximal parallel manner. P systems models are generally divided into three
categories based on their structure, i.e., cell-like, tissue-like and neural-like.

Since the introduction of the first model, there has been significant advancement in
the study of membrane computing [22]. Because of the inherent parallel and distributed
architecture and different mechanisms (such as active membranes [23,24], membrane
divisions [25], etc.) cell-like P systems can generate exponential amount of space and then
using the space-time trade-off can solve many NP-hard, NP-complete, PSPACE-complete
problems [24–28] in polynomial and linear time. These models also can characterize many
complexity classes [29,30]. The computational power [25,31–33] of different variants of
P systems along with their complexity aspects [30,33–35] and use of the parallel and
distributed architecture of these models in solving computational hard problems [26,33]
have been a popular direction of research. More specifically, uniform families of shallow
P systems with active membranes and charges can characterize the complexity classes
P#P and P#P

|| [36]. Moreover, shallow non-confluent P systems can characterize the family

PSPACE [34]. The complexity class P#P
|| can be characterized by monodirectional shallow

chargeless P systems [37] with active membranes and minimal cooperation working in
polynomial time. The complexity class P#P

|| consists of the class of problems which can be
solved in polynomial time by deterministic Turing machines with a polynomial number
of parallel queries to an oracle for a counting problem. These studies raise an important
question, i. e., what kind of problems can be solved by these models when certain bounds
are introduced on the space resources. In [35], Zandron addresses this question. Moreover,
since P systems communicate with each other using rules, it is important to investigate
communication complexity of the P systems [38].

Along with finding the analytic solutions for computationally hard problems using the
concept of space-time trade-off, in recent years the study of constructing evolutionary algo-
rithms by combining the structure and operations of membrane systems and capabilities of
optimization algorithms has gained prominence [39]. Furthermore, approximate solutions
of these problems are obtained by using the algorithms which are popularly known as
“membrane algorithms”. In [40], the solution of an well-known NP -complete problem, i.e.,
Graph coloring problem (GCP) is obtained by using OLMS (one level membrane structure
(OLMS) [41–43]) membrane algorithm with dynamic operators. Automatic design of P
systems is also an attractive work and promising research direction [44–47].

Membrane computing models have a wide range of real-life applications [39,48–52]
and the investigation more problems from different areas of real-life applications which
can be solved by these models has drawn huge interest amongst many researchers around
the global. One of the most interesting application of membrane computing models has
been in the area of “Robotics”. In particular, the use of membrane computing models for
designing of membrane controllers for single and multi-robot systems which further helps
in navigation of the robot in unknown environments [48,53–55]. In recent years, many
variants of P systems such as enzymatic numerical P systems, XP-colonies, etc. have been
used in single and multiple-robot applications. The membrane controllers based on the
membrane computing models are efficient and have comparable performance with respect
to traditional robot controllers [48]. Image processing is another area where membrane
computing models have been used extensively. Parallel distributed architecture along with
the multisets present in the membranes which is useful for encoding of the information,
make P systems a suitable model for dealing with digital images. Furthermore, these
models can be used in image segmentation, skeletonization, etc. [49]. Moreover, SNPS
models can perform binary operations and these models are also suitable to be used in
cryptographic applications [56]. Array rewriting P systems can be used as a tool for
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generation of Peano curve, the Hilbert curve, etc. In [57], a state-of-the-art based on the P
systems with parallel rewriting was introduced for generation of the space-filling curves,
and related curves.

Membrane computing models also have been used for modelling and simulation of
many phenomena existing in Biochemistry, Ecology, Robotics or Engineering [51]. These
models also can model communities of very simple reactive agents living and acting in a
joint shared environment. These types of membrane computing models are known as “P
colonies” [58]. P colonies can simulate the interactive processes in other mechanisms such
as reaction system which is inspired from the different chemical reactions happening in the
environment [59]. P systems are also useful in modeling many biological phenomena such
as swarming and aggregating behaviour in Myxobacteria bacterial populations [60,61].

Neural-like P systems/Spiking neural P systems (SNPS) [62] have gained popularity
amongst the researchers because of its similarities with third-generation neural networks,
i.e., spiking neural networks (SNNs) [63]. In recent years, the research in SNPS also has
gained huge momentum and many variants of SNPS have been introduced inspired by the
properties present in the biological neurons. Many variants of it already have been intro-
duced along with investigations regarding their computational power [64,65], efficiency
in solving computationally hard problems [66] and real-life applications [67–69]. A new
variant of SNPS is introduced in [32] where the firing and forgetting rules are applied in
generalized manner. In these models, if a rule is applied at any step of the computation,
then it will be applicable any number of times. These models are also computational
complete. Matrix representation and simulation algorithm of different variants of SNPS are
investigated in [70]. Another novel variant of SNPS is recently introduced in [71] and it is
called as dynamic threshold neural P systems. These models are inspired from the spiking
and dynamic threshold mechanisms of neurons. Moreover, it has been proved that the
sequential variant of this model is capable of generating/accepting Turing universal num-
bers. Some of the well-known variants of SNPS are SNPS with asynchronous systems [72],
astrocytes [73], rule on synapses [74], communication on request [75], synapses with sched-
ules [76], structural plasticity [77,78], weighted synapses [79], inhibitory synapses [80],
anti-spikes [81], etc. Furthermore, SNPS have been used extensively in solving many
real-world problems in many areas such as fault diagnosis of power systems [82–91], pat-
tern recognition [92–94], computational biology [95], performing arithmetic and logical
operations and hardware implementation [96–103], biochip design [104], programming
for logic controllers [105,106], etc. In [107], SNPS models have been used for computing
finite-state functions.

In the last few decades, although significant progress has been made in obtaining
many theoretical results as well as real-life applications of membrane computing models,
very little progress has been made towards in vivo implementation of these models. In [50],
a mechanism was introduced where multivesicular liposomes can be experimentally pro-
duced through electroformation of dipalmitoylphosphatidylcholine films. It can be further
used in ‘real’ P-systems. This study initiates the idea of constructing computing devices
based on P systems and also investigates the limitation of these models.

Over the years one of the most interesting direction of research in membrane com-
puting has been constructing simulation tools for different variants of P systems and their
applications [108]. Many researchers have focused on developing softwares [109] based
on P-Lingua which can simulate different variants of membrane systems efficiently such
as (1) Cell-like P systems [110]; (2) P-Systems with String Replication [111]; (3) Tissue
P systems [112] (4) Cell-like SNPS [113]; (5) Spiking Neural P Systems [114]; (6) Asyn-
chronous Spiking Neural P Systems [115]. P-Lingua is an efficient tool. Recently, there has
been significant progress towards constructing P-Lingua language, pLinguaCore library
and MeCoSim environment. These tools also have been used for experimentally validate
solutions of computationally hard problems [116]. Furthermore, many simulators have
been proposed which are based on different programming languages other than P-Lingua
and following is the list of some simulators: (1) CuSNP [117]; (2) UPSimulator [118]; (3)
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Psim [119]; (4) SNUPS [120]; (5) GPUPeP [121]. The P systems simulators work as an
important tool for formally creating a framework for real-life applications. The simulators
based on the requirements of the users and specific application abstract the concepts of
different variants of P systems. The researchers in membrane computing community have
constructed many types of simulators [122] and used it for simulation of the simple kernel
P systems solution to the graph 3-colouring problem [123]. Moreover, testing methods for
membrane computing models such as kernel P systems have been introduced [124].

The process of fault diagnosis in power systems is based on processing of uncertain
and incomplete information. General SNPS models are not capable of handling these type
of information. So a new variant of SNPS was introduced in order to serve this purpose.
In [84], a new variant of SNPS, i.e., FRSNPS (fuzzy reasoning spiking neural P systems)
was introduced, aiming to handle fuzzy diagnosis knowledge and reasoning. Furthermore,
a methodology for fault diagnosis in transformers was presented. There has been only a
few investigations regarding incorporating the idea of machine learning in SNPS. It is also
difficult to introduce machine learning mechanisms in SNPS because of its formal language
theory framework. Recently, a new method based on learning Spiking Neural P System
with Belief AdaBoost [91] is introduced for fault diagnosis in transformers. Moreover,
SNPS models and their variants have been introduced for identification of faults in power
transmission networks [125], traction power supply systems of high-speed railways [88],
metro traction power systems [82], electric locomotive systems [87]. Moreover, these
models have been used for fault location estimation of power systems [126] and fault
line detection [85]. In this paper, we have summarized all the SNPS models and their
corresponding methodologies for fault diagnosis in different types of power systems. More
specifically, we discuss the structure and working of different variants of SNPS and studied
the important aspects of the reasoning algorithms based on these models. Moreover, we
discuss the advantages and disadvantages of different fault diagnosis methods. At the end,
we discussed an automatic implementation method for fault diagnosis [127].

The main motivations for preparing this paper are as follows:
(1) Until now there has been no comprehensive survey collecting all the methodologies

of fault diagnosis of power systems based on the membrane computing models;
(2) Fault diagnosis of power systems with spiking neural P systems is an impor-

tant application of membrane computing. This review aims to highlight and advance
this direction.

(3) One more motivation of this review is to advance a newly emerging research
direction, i.e., learning spiking neural P systems, by discussing a supervised learning
algorithm in the framework of SNPS and using this model for identification of faults
in transformers.

Furthermore, the contributions of this paper can be summarized in the following man-
ner:

(1) This paper provides a comprehensive survey of SNPS models and a software tool
which are used for fault diagnosis in power systems;

(2) The comparisons of different fault diagnosis methods and reasoning algorithms
are studied in this paper.

(3) This paper discusses future research lines with respect to SNPS for power system
fault diagnosis and learning SNPS.

This paper is organized in the following manner: Section 2 discusses fault diagnosis
methods in power systems in the framework of SNPS and its variants. Section 3 discusses
an automatic implementation method for fault diagnosis in complex power systems and
finally in Section 4, we conclude the paper and discuss some future research lines.

2. Power System Fault Diagnosis with Spiking Neural P Systems

Power systems have become an integral part of the modern civilization and it consist
of electronic components. It is important for stable and uninterrupted supply of power
to identify the faults in the power systems whenever there is an accident. Over the years
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many methods [1–5,7–20] have been introduced by many researchers for identification
of faults in the power systems efficiently and quickly. However, the use of membrane
computing models, i.e., spiking neural P systems for fault identification in power systems
is a recent phenomena. In this section, we discuss these models. More specifically, we
divide this section into the following subsections based on type of power systems and
faults, i.e., (1) fault diagnosis for transformers; (2) fault diagnosis for power transmission
networks; (3) fault diagnosis for traction power supply systems; (4) fault diagnosis in metro
traction power systems; (5) fault section estimation of power systems; (6) fault location
identification of distribution network; (7) fault lines detection; (8) fault diagnosis in electric
locomotive systems.

2.1. Transformers

In this section we discuss the use of two variants of spiking neural P systems (SNPS)
for identification of faults in power transformers. Along with parallel and distributed
architecture, SNPS models have some inherent properties such as high understandability,
non-linearity, non-determinism, dynamically adaptability etc. and these properties make
SNPS an useful tool for identification of faults in power systems. We divide this section
into two parts. In the first part, we discuss the use of the fuzzy reasoning spiking neural
P systems (FRSNPS) models for fault diagnosis in power transformers. Next we discuss
the use of the learning Spiking Neural P System (LSNPS) with Belief AdaBoost for the
same purpose.

In [84], Peng et al. introduced a new variant of SNPS, i.e., FRSNPS for fault diagnosis
in transformers based on dissolved and free gas analysis (DGA). FRSNPS model is an
extended variant of SNPS model and it has some distinctive properties. Furthermore, new
types of fuzzy production rules were introduced in the framework of FRSNPS according
to the fuzzy production rules. Moreover, a fuzzy reasoning algorithm was introduced to
identify the faults in the transformer. In fuzzy reasoning algorithm, IEC ratio of gases is
given as input to FRSNPS. Next the fault reasoning results are obtained in the form of CF
(confidence factor)/truth values and then the faults in the transformers are identified by
observing the CFs of different types of faults.

A power transformer is an important component of power systems which works
as transmission and transformation equipment. Whenever there is any fault in power
transformers, the stable and continuous supply of power is interrupted. So it is imperative
to identify the faults in the transformer efficiently and quickly. It is important to note that
due to the decomposition of the insulating oil, hydrocarbon and hydrogens are produced
in the transformer and it happens because of the factors such as thermal, electrical, ambient,
mechanical (TEAM) [84]. Furthermore, the level of insulation and symptom of faults occur-
ring in the transformer are indicated by the concentration of hydrocarbon and hydrogen.
DGA (dissolved gas analysis) has long been considered as an efficient and effective method
for identification of faults in power transformers. It is well-known that ethane (C2H6),
ethylene (C2H4), acetylene (C2H2), hydrogen (H2), methane (CH4) gases are present as
dissolved gas in transformer insulating oil. The state of the transformer can be obtained by
analyzing the concentrations of specific dissolved gases in insulation oil. It further helps in
taking preventive actions. Moreover, from the difference of the ratio of gas, the faults in the
power transformer such as partial discharge and spark discharge can be obtained.

In what follows we explain the fault diagnosis process. We begin with the discussion
about the structure and working of FRSNPS model.

Definition 1. A FRSN P system (FRSNPS) [84] of degree m ≥ 1, is a (m + 4)-tuple Π =
(O, σ1, . . . , σm, syn, IN, OUT) where

• O = {a} is the singleton alphabet (the object a is called spike);
• σ1, . . . , σm denotes m neurons of the form σi = (αi, τi, ri) ( i ∈ {1, 2, . . . , m}) where

(i) αi ∈ [0, 1] represents the potential value/pulse value of spike contained in neuron σi;
(ii) τi ∈ [0, 1] represents the truth value associated with neuron σi;
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(iii) ri represents the firing/spiking rule contained in neuron σi and it is of the form E/aα → aβ,
where α, β ∈ [0, 1].

• syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with i 6= j for all (i, j) ∈ syn (synaptic connections
between the neurons);

• IN and OUT represent input neuron set and output neuron set, respectively.

When FRSNP is used for fault diagnosis, fuzzy production rules and reasoning al-
gorithms are the most important components. Fuzzy production rules help us to express
the diagnosis knowledge which is extracted from real-world data while addressing the
problem of fault diagnosis. Fuzzy production rules are generally of two types, i.e., simple
and composite [84]. Simple fuzzy productions have the following form

Ri: IF pj THEN pk(CF = τj) (1)

where τi ∈ [0, 1] represents CF and Ri is the ith fuzzy production rule, pj and pk are
propositions with real truth values in [0, 1].

The composite fuzzy production rules are generally divided into three types, i.e.,
type-1, type-2 and type-3.

Type 1 Ri : IF p1 and p2 and . . . and pk−1 THEN pk(CF = τi). (2)

In this rule p1, p2, . . . , pk are propositions which are present in the antecedent part
where the truth value of the propositions are α1, α2, . . . , αk−1. The confidence factor of
the rule is represented by τi ∈ [0, 1]. So correspondingly αk = min(α1, α2, . . . , αk−1) ∗ τi
represents the truth value of the proposition pk.

Type 2 Ri : IF p1 THEN p2 and p3 and . . . and pk(CF = τi). (3)

In this rule p1 is only one proposition present in the antecedent part of the rule with
truth value α1 and τi ∈ [0, 1] is the confidence factor. So correspondingly α2 = α1 ∗ τi, α3 =
α1 ∗ τi, . . . , αk = α1 ∗ τi are the truth values of p2, p3, . . . , pk respectively.

Type 3 Ri : IF p1 or p2 or . . . or pk−1 THEN pk(CF = τi). (4)

In this rule p1, . . . , pk−1 are the propositions present in the antecedent part of the
rule and they have truth values α1, α2, ..., αk−1, respectively. τi ∈ [0, 1] represents the
confidence factor of the rule. So, αk = max(α1, α2, ..., αk−1) ∗ τi represents the truth value of
the proposition pk.

One of the most important aspect of the fault diagnosis models based on SNPS models
is to reconstruct the fuzzy production rules using the framework of SNPS. In this case,
the fuzzy production rules are reconstructed using the framework of FRSNPS. In order to
perform this task, different types of neurons are required and the neurons in the FRSNPS
model are divided into two types, i.e., proposition neuron and rule neuron. Moreover,
not all the neurons are associated with truth values and these values are generally real
numbers. Again, the truth values are associated with some of the proposition neurons
before the reasoning algorithm is performed. The corresponding proposition neurons
work as input neurons of the FRSNPS model where IEC ratios of gases are given as input.
Moreover, the truth values of the neurons which do not have any value associated with
them are derived using the known truth values and reasoning algorithm. The concepts
of the firing mechanisms of the neurons and matrix operations are used in the reasoning
algorithm introduced in [84]. Moreover, the proposed fault diagnosis model can efficiently
model fuzzy production rules in a fuzzy diagnosis knowledge base and their reasoning
process. It is also feasible and effective in identifying the faults in transformers. It can also
handle incomplete and uncertain information received from the SCADA and efficiently
process it in order to find faults. One of the major advantage of the proposed method is
the graphical representation of the reasoning process which makes the reasoning process
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easily comprehensible. Finally, the reasoning process is parallel. So it can obtain results in
much lesser time in comparison with tradition fault diagnosis models.

Another fault diagnosis method of power transformer based on DGA and FRSNPS
is introduced in [128]. The FRSNPS model and the reasoning algorithm used in [128]
are same as [84]. In this model, the faults in transformers are identified using linguistic
variables, membership functions with low, medium and high descriptions for each gas
signature and the inference rule base. In fact, the linguistic terms in [128] are very low
(VL), low (L), medium (M), high (H), very high (VH), very low (VL). Similarly, little high,
low, rather high, too high, high, little low, rather low and too high are the linguistic terms
in [84]. In [84], the faults are divided into mainly four types, i.e., General overheating fault
occurs, Serious overheating fault occurs, The partial discharge occurs, The spark discharge
occurs. Moreover, the faults are Low energy discharge, High energy discharge, Partial
discharge, Thermal faults T < 300 ◦C, Thermal faults 300 ◦C < T < 700 ◦C, Thermal faults
T > 700 ◦C. In order to identify these faults, at first the judgements are translated into
numerical expression by fuzzy numbers with the help of membership functions. The fault
types interpretation of DGA and linguistic terms (L.T) are different from the proposed
model in [84]. Next, four gas ratio (IEC 60599) signature is given as input to the FRSNPS and
performance of the method is analyzed based on this method. From the test case results, it
is inferred that the proposed method in [128], significantly improves the diagnosis accuracy
of the power transformer.

A novel method of identifying faults for oil-immersed power transformers using the
framework of SNPS is recently introduced in [91]. In this method, a new variant of SNPS,
i.e., learning spiking neural P system (LSNPS) is introduced to perform this task. More
specifically, the fault diagnosis method in [91] is based on LSNPS with belief AdaBoost and
it is used for fault diagnosis in oil-immersed power transformer.

Now in order to explain the diagnosis process, at first the structure and working of the
LSNPS with AdaBoost model are explained. LSNPS models have a feedforward network
structure and can be mathematically formulated in the following manner. Since the sets
O, IN, OUT, syn represent the same as in [84]. So we will not explain them in detail.

Definition 2. A LSN P system (LSNPS) [91] is a construct Π = (O, {σ1
p1, . . . , σ1

pk, σ3
p1, σ5

p1},
{σ2

r1, . . . , σ2
rn, σ4

r1, . . . , σ4
rn}, syn, IN, OUT) where

(1) The proposition neurons have the form σh
pi = {0, wh

ij, λh
i , rh

i } , where h and i denote the
label of the layers in the network and the label of proposition neurons respectively.

(a) 0 denotes that the potential value is zero in all proposition neurons.
(b) The synapses connecting the proposition neurons and rule neurons are associated with

weights w1
ij = rand(0, 1), i = 1, . . . , k, j = 1, . . . , n and w3

ij = 1, j = 1, . . . , n. The learning
strategy associated with this model is to find a set of weights with the highest accuracy rate.

(c) rh
i represents the firing/spiking rule and it is of the form r1

i : E1/aαi → aαi , i = 1, . . . , k,
where E1 = {αi ≥ λ1

i }, and λ1
i = 0, i = 1, . . . , k. The last neuron is called as bias neuron and

αk = 1. The firing/spiking rule present in the third layer has the form r3
1 : E3/ap → ap, where

E3 = {p ≥ λ3
1}, λ3

1 = 0 and p = θ1 ∨ θ2 ∨ . . . ∨ θn. The firing rule present in the last layer is of
the form r5

1 : a→ a.
(2) The rule neurons are of the form σk

rj = {0, 1, 1, τk
j , rk

j }, where k and j denote the label of
the layers in the network and the label of rule neurons respectively.

(a) The potential value of all rule neurons is 0.
(b) The confidence factor/truth value of all rule neurons is 1.
(c) The weight 1 is associated with the synapses connecting the rule neurons and proposition

neurons, since these weights are not adjusted using the weight adjustment process.
(d) The rule neurons σ2

r1, . . . , σ2
rn have spiking rules of the form r2

j : E2/aθj → aθj , j =

1, 2, . . . , n, where E2 = {θj ≥ τ2
j }, τ2

j = 0, θj = (w1j ⊗ α1)⊕ (w2j ⊗ α2)⊕ · · · ⊕ (wkj ⊗ αk).
The multiplication operator and addition operator of fuzzy truth values are denoted by ⊗ and
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⊕ respectively. Furthermore, the rule neurons σ4
r1, . . . , σ4

rn have the spiking rules of the form
r4

1 : E4
j /aθj → a; dj, where E4

j = {θj ≥ τ4
j } and τ4

j = p.
(3) syn = {(σ1

p1, σ2
r2), (σ

1
p1, σ2

r2), . . . , (σ1
pk, σ2

rn), (σ2
r1, σ3

p1), (σ
2
r2, σ3

p1), . . . , (σ2
rn, σ3

p1), (σ
3
p1, σ4

r1),

(σ3
p1, σ4

r2), . . . , (σ3
p1, σ4

rn), (σ4
r1, σ5

p1), (σ
4
r2, σ5

p1), . . . , (σ4
rn, σ5

p1)}.
(4) IN = {σ1

p1, . . . , σ1
pk}, OUT = {σ5

p1}.

In large power transformers, the insulation and heat dissipation are done by trans-
former oil. Under different thermal and electricity condition, the oil present in the trans-
former decomposes. If any faults occurs in the oil-immersed power transformers, by analyz-
ing the transformer oil the faults can be identified efficiently. Furthermore, while perform-
ing this task the ratios between the gases are given as inputs to the network. In the LSNPS
model constructed in [91], the ratio of CH4/H2, C2H4/C2H6, C2H2/C2H4, C2H2/Total Hy-
drocarbon, C2H4/Total Hydrocarbon, CH4/Total Hydrocarbon, (C2H4 + CH4)/Total Hy-
drocarbon are considered as input of the system. In this model, the weights associated with
the synapses are trained using the Widrow-Hoff algorithm.

The LSNPS model can express the relationship between the DGA data in transformer
oil and different types of faults in transformers efficiently. Moreover, LSNPS model with
belief AdaBoost is very efficient while diagnosing faults in transformers for thermal and
electric fault situations with dissolved gas data (DGA data). Another purpose of using the
belief AdaBoost algorithm is to improve the generalization ability. While performing the
task of fault diagnosis, the belief AdaBoost is able to avoid the disadvantages of classical
AdaBoost algorithm. Moreover, the accuracy of the test set is improved. Altogether, belief
AdaBoost improves the generalization ability of learning systems. Finally, if the correctness
of diagnosis results are considered, the proposed method in [91] is superior to well-known
methods such as improved three-ratio method, back-propagation neural network, support
vector machine, deep belief network.

2.2. Power Transmission Networks

This section discusses the fault diagnosis methods for power transmission networks.
Moreover, the fault diagnosis methods discussed in this section are based on three different
variants of spiking neural P systems, i.e., FRSNPS with trapezoidal fuzzy numbers (FD-
SNPS), SNPS with self-updating rules (srSNPS) and interval-valued fuzzy spiking neural P
system (IVFSNPS).

The main components of power transmission networks are mainly divided into two
types, i.e., transmission equipment and converting equipment. These equipment also
contain many components. Power transmission networks are one of the major networks
in the power systems. So the investigation of the fault diagnosis in power transmission
network is an important topic. The study in [89] investigated this topic using the status of
the protective relays and circuit breakers received from the power SCADA systems. More
specifically, the faults occurring in the lines, buses and transformers are investigated.

In [89], the task of fault diagnosis of power transmission networks is performed by
using the FRSNPS with trapezoidal fuzzy numbers, i.e., FDSNPS. The use of trapezoidal
fuzzy numbers makes these models suitable for practical applications. Moreover, using
trapezoidal fuzzy numbers seems to be beneficial while handling the uncertainties associ-
ated with the approaches of practical applications. The FDSNPS model has been used to
perform the task of fault diagnosis of main sections, transmission lines, buses and trans-
formers, in power transmission networks. Note that the task of fault diagnosis consists of
five steps: estimating outage areas, identifying candidate faulty sections, building a fault
diagnosis model for each candidate section in each outage area, initializing inputs for each
diagnosis model, each model performing its reasoning algorithm and determining faulty
sections with fault confidence levels. At first incomplete and uncertain status information
which are known as operation messages are received from SCADA system. Next, the
outage areas are estimated using the network topology analysis method to obtain the
faulty sections. Then the fault diagnosis model is constructed for each candidate section in
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the outage area and they are constructed based on the static data, network topology and
protection configuration of a power system. This is followed by performing of the fuzzy
reasoning algorithm which obtains confidence levels of suspicious fault sections. At the
end, according to the fault confidence level, the fault sections are identified.

Now we discuss the fault diagnosis process in detail and in order to do so at first the
structure and working of FDSNPS model are discussed in detail [89].

The FRSNPS with trapezoidal fuzzy numbers (FDSNPS) have a similar structure
like FRSNPS models. An FRSN P system with trapezoidal fuzzy numbers (with degree
m ≥ 1 ) is a (m + 4)-tuple Π = (O, σ1, . . . , σm, syn, IN, OUT). However, unlike in the case
of FRSNPS, the neurons σ1, . . . , σm are of the form σi = (θi, ci, ri), 1 ≤ i ≤ m where (a)
θi ∈ [0, 1] is a trapezoidal fuzzy number and it represents the potential value of spikes
(i.e., the value of electrical impulses) contained in neuron σi; (b) ci ∈ [0, 1] is a trapezoidal
fuzzy number and it represents the fuzzy truth value of the neuron σi; (c) ri represents the
firing(spiking) rule present in the neuron σi. These rules are of the form E/aθ → aβ where
E is a regular expression. Moreover, θ and β are trapezoidal fuzzy numbers in [0, 1].

The fuzzy production rules of Type-1, Type-2, Type-3 and Type-4 are modeled using
FRSNPS with trapezoidal fuzzy numbers. These types of rules are as follows:

Type 1: Ri(ci) : pj(θj)→ pk(θk)(1 ≤ j, k ≤ Np).

Type 2: Ri(ci) : p1(θ1) ∧ . . . ∧ pk1(θk1)→ pk(θk).

Type 3: Ri(ci) : p1(θ1)→ p2(θ2) ∧ . . . ∧ pk(θk).

Type 4: Ri(ci) : p1(θ1) ∨ . . . ∨ pk1(θk1)→ pk(θk).
Moreover, modeling of the above rules requires two types of neurons, i.e., proposition

neurons and rule neurons. The rule neurons of the FDSNPS model consist of three types:
general, and and or. Details can be found in [89].

The reasoning algorithm introduced in [89] is based on FDSNPS. The main components
of the reasoning algorithm are neuron’s firing mechanism and matrix operations. In [89],
the truth values associated with proposition neurons are trapezoidal fuzzy numbers. Next,
by using the reasoning algorithms, fuzzy truth values of the proposition neurons with
unknown truth values are obtained. Moreover, the truth values of these neurons can be
derived after the inputs are received in some proposition neurons.

The proposed fault diagnosis method in [89] has good fault tolerant capacity. It also
can efficiently handle incomplete and uncertain messages received from SCADA systems.
Since the relationship between the faults, CBs and PRs can be represented graphically
and using simple mathematical expressions, the proposed fault diagnosis model is easily
understandable. Moreover, trapezoidal fuzzy numbers can express these relationships
more precisely. Altogether, this method has good accuracy and in some situations is
superior than the traditional methods such as fuzzy logic (FL), fuzzy Petri nets (FPN) and
genetic algorithm (GA).

In [125], another method of fault diagnosis for power transmission networks is recently
introduced. This fault diagnosis method is based on a new class of SNPS, i.e., SNPS with
self-updating rules (srSNPS). This model is inspired by the apoptosis mechanism in biology
and reduction ability of the rough sets. Moreover, these features are incorporated into
the framework of SNPS. These features are useful and simplifies the complexities of the
srSNPS model and also can process the uncertain and incomplete messages received from
SCADA efficiently. The structure of spiking neural P systems with self-updating rules is
as follows:

A spiking neural P system with self-updating rules (srSNPS) [125] is a tuple: Π =
(O, Me, σ1, . . . , σm, syn, IN, OUT) where Me = (Di, Cj) represents microenvironment.

Again, Di = (θdi/T , T, fi), 1 ≤ i ≤ s, represents the i-th decision- making neuron (DN)
in Me. It also represents suspicious faulty equipment in the targeted power network.

(i) The value of θdi/T is either equals to 0 or 1 and it denotes the pulse value of the i-th
DN at time T. When the suspicious faulty equipment corresponding to Di faults, the value
of θdi/T is 1 and vice versa.
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(ii) T represents the sequence time of spikes, and at each unit time the decision- making
neuron DN produces a spike. In this manner, a pulse value sequence is formed and it is
then recorded in the DN after T unit time.

(iii) fi represents a forgetting rule of the i-th DN and it is of the form E/{aθdi/T →
λ; g = 0}. The g in the forgetting rule represents the reasoning step of the reasoning algo-
rithm of the srSNPS, i.e., the self- updating matrix reasoning algorithm. After application of
the rule fi, the spikes in the Di are emptied and the calculation process will be reinitialized
(i.e., g = 0). The firing condition E = {θ′di/T 6= θdi/T} represents that the pulse value in Di
has changed.

(b) Cj = (θcj/T , T, f j, Arj), 1 ≤ j ≤ t, represents the j-th condition neuron (CN) in
Me. It also represents a protective relay or circuit breaker in the targeted power transmis-
sion network.

(i) The value of θcj/T in Cj is either equals to 0 or 1. It also represents the pulse value
of the j-th CN at time T. When the protection device corresponding to Cj acts, the value of
θcj/T is 1 and vice versa.

(ii) T represents the sequence time of spikes, and a spike is produced by CN at each
unit time. Next, a pulse value sequence is formed and after T unit time it is recorded in
the CN.

(iii) f j represents the forgetting rule of the j-th CN and it is of the form E/{aθcj/T →
λ; g = 0}.

After application of the rule f j, the spikes in Cj are emptied and the calculation process
will be reinitialized (i.e., g = 0). The firing condition E = {θ′cj/T 6= θcj/T} represents that
pulse value in Cj has changed.

(c) Arj represents an apoptosis rule in Me and it is of the form E/{Cj} → {Algorithm1{L}}.
When Arj is applied, then apoptosis rule in Cj is executed in order to determine whether
it lives or dies. It means that CNs execute “Apoptosis algorithm for condition neurons”
and as output the survival condition neuron (containing important information) set L is
obtained. During this period, CNs and redundant information die and they do not partici-
pate in fault reasoning any further. Note that the firing condition E = {g = 0∩ sigj = 0}
indicates that the rule Arj can be applied if and only if in the initial configuration (i.e.,
g = 0) sigj = 0.

(3) σi = (θi, ri, ei), 1 ≤ i ≤ p, represents the i-th proposition neuron (PN) correspond-
ing to a protection device or the equipment. Similarly, σj = (δj, rj), 1 ≤ j ≤ q, represents
the j-th rule neuron (RN) corresponding to a fault production rule where p + q = m.

(a) θi and δj represent the pulse values (equal to 0 or 1) in proposition neuron σi and
rule neuron σj, respectively.

(b) ri represents a firing rule of σi with the form E/aθ → aθ , where E = {a} represents
the firing condition. ri is applicable when σi contains a spike. At this time, σi consumes a
spike with pulse value θ, produce a new spike with the same pulse value, and transmits
it to its postsynaptic neurons. rj represents a firing rule of σj with the form E/aδ → aβ,
where E = {a} is the firing condition. The firing condition represents that once σj contains
a spike, rj can be applied and σj consumes a spike with pulse value δ and subsequently
produces a spike with pulse value β (equals to 0 or 1). Next, the spike is transmitted to its
postsynaptic neurons.

(c) ei represents a self-updating rule of the form E/aθ → aθ . The firing condition is
E = {εi > 0}, represents that the self-updating rule ei can be applied if and only if the
self-updating operator εi > 0. The neuron σi consumes a spike with pulse value θ and
produces a new spike with pulse value θ̄ (equals to 0 or 1, called the antispike of θ), and
next εi = εi − 1 is performed. It is important to note that only input proposition neurons
contain self-updating rules.

Next the reasoning algorithm based on srSNPS is introduced. This reasoning algorithm
is called as self-updating reasoning algorithm [125]. Similarly, as in the previous methods,
this fault diagnosis method also reasons out the fuzzy truth values of other unknown fuzzy
propositions from known fuzzy propositions (input neurons). However, in this case, the
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entries of the the truth value vectors are real numbers. Two main components of this fault
diagnosis method are (i) Apoptosis algorithm for condition neurons and (ii) Self-updating
matrix reasoning algorithm. These algorithms play an important role in the fault diagnosis
process which is divided into five components, i.e., (1) transmission network partition, (2)
the SNPS model establishment, (3) the pulse value correction and (4) computing, and (5)
the protection device behavior evaluation. In order to save the diagnosis time, the first two
components can be finished before any fault occurs in the system. The apoptosis algorithm
proposed in [125] is based on the framework of srSNPS where the reduction function of
rough sets is also incorporated into the model. These features help in processing incomplete
and uncertain information received from SCADA efficiently. Moreover, during this process
the models comprehensively use fault information including action information, start
information, and overlimit signals of protection devices.

In the fault diagnosis method proposed in [125] along with apoptosis algorithm for
condition neurons and Self-updating matrix reasoning algorithm, the depth-first search
algorithm (DSA), the weight network segmentation method (WNSM) and the protection
device event tree (PDET) are also used. Some of the advantages of the proposed method
is that it can deal with uncertain and incomplete fault alarm messages without historical
statistic and expert experience. Furthermore, the apoptosis algorithm for CNs removes
the redundant fault information before modeling. These features simplifies the problem
complexity and the transmission network partition improves the topological adaptive
ability. From the case studies, it is also inferred that the proposed method based on srSNPS
has high diagnostic accuracy and fault tolerance with good diagnosis result interpretability
and fast speed. Furthermore, in comparison with cause-effect network (CEN), fuzzy Petri
net (FPN) and fuzzy reasoning spiking neural P system (FRSNPS), the fault diagnosis
model based on srSNPS, uses less number of neurons.

Another method of fault diagnosis of power transmission networks was introduced
in [129]. The variant of SNPS used in this method is different from the variants mentioned
above. It is known as interval-valued fuzzy spiking neural P system (IVFSNPS). The IVFS-
NPS model can efficiently describe the incomplete and uncertain messages received from
SCADA systems. Moreover, the causality between the faulty sections and corresponding
protective relays and circuit breakers can be modeled by this model graphically. It also can
identify the faulty sections in power transmission networks accurately and effectively.

Now in order to understand the fault diagnosis process we must discuss the structure
and working of IVFSNPS.

Definition 3. An IVFSNP system (IVFSNPS) [129] of degree m is a construct of the form
Π = (O, σ1, σ2, . . . , σm, syn, IN, OUT) where:
(2) σ1, σ2, . . . , σm represents the neurons and σi = (θi, ci, ri) i ∈ {1, 2, . . . , m}, where:
(a) θi is an interval-valued fuzzy number and it represents the value of spikes initially contained

in neuron σi;
(b) ci is an interval-valued fuzzy number and it represents the confidence factor for a fuzzy

production rule. Sometimes it is omitted while representing a fuzzy proposition;
(c) ri is a firing rule of neuron σi, with the form aθ → aθ or aθ → aβ, where θ and β are two

interval-valued fuzzy numbers.

The fault diagnosis method of power transmission networks identify the faulty com-
ponents using the information of tripping PRs and CBs received from the SCADA systems.
The method in [129] considered fault diagnosis for both lines and buses. In [129], the fault
diagnosis method is realized by IVFSNPS. Like in the earlier fault diagnosis method of
power transmission [84,89,91], in this method IVSNPS contains three types of neurons
(proposition neuron and two types of rule neurons). However, the rule neurons are of

different types, i.e., ∧ -type rule neurons and ∨ -type rule neurons. IVSNPS model helps
us to understand the relationship between the faulty sections, PRs and CBs. Next, the
fuzzy reasoning algorithm is performed in order to obtain the degree of confidence of
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the faulty sections. It is done by reasoning out truth values of proposition neurons. In
this algorithm, synaptic connections between the proposition neurons and rule neurons
are represented using a matrix and it is further used to reason out the truth values of the
proposition neurons without any truth value associated with them. It is important to note
that in the fault diagnosis method based on IVFSNPS, the truth values associated with the
proposition neurons are integer valued fuzzy numbers.

Any large scale power transmission network has many sections. In case of identifi-
cation of faults in complex and large system, for each system a corresponding IVFSNPS
subsystem is constructed. Furthermore, the fault diagnosis model for large scale power
transmission network consists of many IVFSNPS subsystems. These systems work in
parallel and it makes the fault diagnosis process much faster. This fault diagnosis method
also can determine incorrect signals. So this method is suitable for identification of faults
in complex power transmission networks. It also has good fault tolerance capacity.

2.3. Traction Power Supply Systems

This section discusses the use of another variant of FRSNPS, i.e., weighted fuzzy
reasoning spiking neural P systems (WFRSNPS) for performing the task of fault diagnosis
in traction power supply systems of high-speed railways.

A new method to perform the task of fault diagnosis in traction power supply system
of high-speed railways (TPSSs) was introduced in 2015 [88]. Moreover, a new variant of
FRSNPS, i.e., WFRSNPS (weighted fuzzy reasoning spiking neural P system) was used
to perform this task. These models can efficiently express the status information of the
protective relays and circuit breakers received from the SCADA system and then perform
weighted matrix-based fuzzy reasoning algorithm to obtain fault confidence levels of the
faulty sections.

Problem description: Whenever any fault occurs in the power systems, at first the
fault section is identified by the protective relays (PRs) and then the corresponding circuit
breakers (CBs) are tripped in order to isolate the fault. It ensures that the other parts
of the power system work normally. The main purpose of any fault diagnosis model is
to identify the faults by analyzing the protective relay and circuit breaker information
received from the SCADA system. In the proposed method in [88], a fault diagnosis unit is
represented by a feeding section fed by a same traction substation. It is possible because the
feeding sections work independently. Furthermore, after receiving the status information
of PRs and CBs from SCADA, the faults on feeder lines, buses, traction transformers and
auto-transformers in TSSs (traction substations), ATPs and section posts (SPs) are identified.

Now we explain how the fault diagnosis for traction power supply system of high-
speed railways (TPSSs) is performed using the framework of WFRSNPS. So, at first the
structure and functioning of weighted fuzzy spiking neural P systems need to be discussed.

Definition 4. A WFRSN P system (WFRSNPS) [88] of degree m ≥ 1 is a (m + 4)-tuple Π =
(O, σ1, . . . , σm, syn, IN, OUT), where:

(1) neurons σ1, . . . , σm are of the form σi = (θi, ci,
−→ωi , λi, ri), 1 ≤ i ≤ m where:

(a) θi ∈ [0, 1] is a real number which represents the potential value/electric impulses of spikes
in neuron σi;

(b) ci ∈ [0, 1] is a real number which represents the truth value associated with neuron σi;
(c) −→ωi = (ωi1, . . . , ωiNi ) is a vector where each element of the tuple is a real number in (0, 1]

and ωij(1 ≤ j ≤ Ni) represents the weight which is present on the jth output synapse of neuron
σi. Moreover, Ni ∈ N and it represents the number of synapses from neuron σi. The vector −→ωi
represents the output weight vector of neuron σi.

(d) The firing threshold of neuron σi is denoted by the real number λi ∈ [0, 1);
(e) ri represents a firing /spiking rule present in σi. These rules are of the form E/aθ → aβ,

where θ, β ∈ [0, 1] are real numbers. The threshold/ firing condition is different from the FRSNPS
models [84] and it is a combination of two conditions, i.e., E = {an, θ ≥ λi}. So the rule is
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applicable if and only if neuron σi receives at least n spikes from the antecedent neurons and the
potential value satisfies the condition θ ≥ λi;

Similarly, as in [84,89], the neurons in WFRSNPS are also composed of two types, i.e.,
proposition and rule neurons. The rule neurons consist of three types, i.e., general, and, and
or. The proposition neurons work as input neurons. The working of the general, and, and
or rule neurons is similar to working of the rules neurons in FDSNPS [89]. However, it has
the following distinct features:

(1) The general rule neuron is denoted by R(c,general) and after application of the firing
rule, the newly obtained spike has the potential value β = θ ∗ω ∗ c.

(2) The and rule neuron is represented by R(c,and) and the newly obtained spike has
the potential value β = [(θ1 ∗ω1 + . . . + θk ∗ωk)/(ω1 + . . . + ωk)] ∗ c, where the neuron is
connected with k antecedent neurons.

(3) Similarly, R(c,or) represents the or rule neuron and the potential value of the newly
obtained spike is β = max{θ1 ∗ω1, . . . , θk ∗ωk} ∗ c.

Next the fuzzy production rules are modeled in the framework of WFRSNPS models.
The fuzzy production rules/ fault diagnosis production rules in [88] are divided into four
types. These rules have the following forms:

Type 1 (Simple Rules) Ri : IF pj(θj) THEN pk(θk)(CF = ci),
Type 2 (Compound and Rules) Ri : IF p1(θ1) and . . . and pk−1(θk−1) THEN pk(θk)(CF =

ci),
Type 3 (Compound or Rules) Ri : IF p1(θ1) or . . . pk−1(θk−1) THEN pk(θk)(CF = ci),
Type 4 (Conditional and Rules) Ri : WHEN p0(θ0) is true, IF p1(θ1) and . . . and

pk−1(θk) THEN pk(θk)(CF = ci).
The corresponding fuzzy production rules in the framework of WFRSNPS models can

be referred to [88].
WFRSNPS model is similar to FRSNPS with one exception. In case of FRSNPS, no

weight was associated with the synapses connecting the neurons. However, in WFRSNPS,
weights are associated with the synapses connecting the neurons. Moreover, the proposed
model can express status information of protective relays and circuit breakers efficiently.
Next, the reasoning algorithm based on WFRSNPS is performed in order to identify the
faults. The reasoning algorithm is called as weighted matrix-based reasoning algorithm
(WMBRA). The synaptic connections are also represented by weighted matrix. Unlike
in [89], the entries of the truth value vectors are real numbers and using the values received
by the input proposition neurons and the truth values of these neurons, the truth values of
other proposition neurons without any truth values associated with them are obtained.

2.4. Metro Traction Power Systems

The framework for solving fault diagnosis of metro traction power systems was
introduced in [82]. This task of fault diagnosis was performed by a modified variant
of FRSNPS, i.e., MFRSNPS. In [82], the proposition and rule neurons are introduced to
represent the information about the protective relays and circuit breakers from SCADA.
Then the fuzzy reasoning algorithm based on the MFRSNPS is performed to identify the
fault section in the metro traction power supply systems.

Problem description: Metros are one of the most important mode of urban transport
in 21st century. Metro traction power supply systems (MTPSSs) are considered as a special
variant of distribution networks with direct current (DC) power supply. Traction power
supply systems are also known as the energy systems of rail transportation systems. It
also ensures the safe and reliable operations in trains. The operations of MTPSSs can be
impacted by failure of equipments, interruption of power services etc. So in order to keep
the working of MTPSSs smooth, it is necessary to design fault diagnosis methods where
the fault sections can be identified by the dispatchers efficiently and the power supply to
the system is restored as soon as possible. The fault diagnosis of MTPSS is considered
very challenging because of mainly two reasons, i.e., (1) two-way feeding power supply
approach; (2) complex protection system caused by the DC power supply mode. In [82], a
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fault diagnosis approach for MTPSS was introduced based on modified FRSNPS. However,
the framework of the fault diagnosis method is similar to the framework as mentioned
in [89].

MFRSNPS is another variant of FRSNPS and the structure of this model is similar
to FRSNPS with some exceptions. The structure and working of the MFRSNPS model is
as follows.

Definition 5. A MFRSN P system (MFRSNPS) [82] of degree m ≥ 1 is a (m + 4)-tuple Π =
(O, σ1, . . . , σm, syn, IN, OUT), where:

(1) The neurons σ1, . . . , σm are of the form σi = (θi, ci, ri, λi), 1 ≤ i ≤ m, and
(a) θi ∈ [0, 1] is a real number which represents the potential value of spikes in neuron σi;
(b) ci ∈ [0, 1] is a real number which represents the truth value of neuron σi;
(c) ri represents a firing/ spiking rule in neuron σi and it is of the form E/aθ → aβ, where

θ, β ∈ [0, 1] are real numbers. The firing condition is E = {aθ , θ > λi} and it means that the
rule is applicable if and only if neuron σi receives at least n spikes as input or from the anteceden
neurons and θ > λi (λi ∈ [0, 1] is a real number which represents the firing threshold of neuron
σi). Otherwise, it is not applicable. Furthermore, after application of this rule in neuron σi, a spike
with potential value θ is consumed and a spike with potential value β is produced.

(d) λi is a real number in [0,1) representing the firing threshold of neuron σi;

The fault diagnosis rules considered for MTPSSs are different from the rules
in [84,88,89,129] and they are of three types:

(1) General Rule Ri: IF pj(θj) THEN pk(θk)(CF = ci), where pj and pk are propositions,
ci ∈ [0, 1] is a real number (certainty factor of such rule Ri); θj, θk ∈ [0, 1] are real numbers
(truth values of pj and pk); θk = θj ∗ ci (truth value of pk).

(2) And Rule Ri: IF p1(θ1) and . . . and pk−1(θk−1) THEN pk(θk)(CF = ci), where
p1, . . . , pk ( propositions); ci ∈ [0, 1] is a real number (certainty factor of Ri); θ1, . . . , θk ∈ [0, 1]
are real numbers (truth values of p1, . . . , pk); θk =

[(θ1+...+θk−1)]
(k−1) ∗ ci ( truth value of pk).

(3) Or Rule Ri: IF p1(θ1) or . . . or pk−1(θk−1) THEN pk(θk)(CF = ci) p1, . . . , pk (proposi-
tions); ci ∈ [0, 1] is a real number (certainty factor of Ri); θ1, . . . , θk ∈ [0, 1] are real numbers
(the truth values of p1, . . . , pk); θk = max{θ1 ∗ ci, . . . , θk−1 ∗ ci} (Truth value of pk).

These rules are reconstructed in the framework of MFRSNPS. Again similarly as
in [84,88,89,129], there exist some neurons without any truth value associated with them.
The truth values of these neurons are obtained by reasoning algorithm. The reasoning
algorithm introduced in [82] is based on MFRSNPS. Moreover, the entries of the truth value
vectors are real numbers. Furthermore, the synaptic connections between the neurons are
represented by matrices and there exist some proposition neurons which work as input
neurons. Next, using these values, the truth values of the above mentioned proposition
neurons are obtained.

The fault diagnosis method based on MFRSNPS has some advantages. It can represent
the operation information of PRs and CBs efficiently. Moreover, it can accurately identify
faults with certain/uncertain and complete/incomplete operate information.

2.5. Fault Section Estimation of Power Systems

This section discusses the use of a novel model in SNPS, i.e., optimization spiking
neural P systems (OSNPS) [130], for fault section estimation of power systems. OSNPS was
introduced in 2014 with the purpose of solving optimization problems using the framework
of spiking neural P system. In [52,126], a framework based on OSNPS was introduced to
solve the power system fault section estimation (FSE) problem. FSE can be formulated as
an optimization problem. OSNPS models are very efficient and after receiving the PRs and
CBs information from SCADA system, these models are capable of searching and output
fault sections automatically. Furthermore, these models are very efficient while identifying
single as well as multiple faults even with incomplete and uncertain messages received
from the SCADA system.
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Problem Description: The fundamental purpose of FSE problem in power system is to
obtain a fault hypothesis which is capable of explaining warning signals with maximum
degree of confidence and it is based on optimization methods. It is also possible to
formulate the FSE problem as 0− 1 programming problem with an objective function as
in the Equation (5). This equation is derived from the causality between a fault and the
statuses of PRs and CBs received from the SCADA system. The fault hypothesis is obtained
by using the optimization method. More specifically, by finding the minimum value of

E(S) =
nc

∑
j=1
|cj − c∗j (S, R)|+

nr

∑
k=1
|rk − r∗k (S)| (5)

where:
(1) nc represents the numbers of circuit breakers (CBs) and nr represents the number

of protective relays;
(2) E(S) is status function of all the sections in a power system;
(3) The status of sections in a power system is represented by an n-vector S. The

number n represents the number of sections: when section i is faulty, then si = 1; otherwise,
si = 0, i = 1, ..., n;

(4) In a protection system, the real status of the jth circuit breaker is denoted by
cj(1 ≤ j ≤ nc) and it also can be expressed as the jth element of an nc-vector. When CBj
trips, then cj = 1; otherwise, cj = 0;

(5) In a protection system, expected status of the jth circuit breaker is represented by
c∗j (S, R)(1 ≤ j ≤ nc) and it is also expressed as the jth element of an nc-vector. When CBj
trips, then c∗j = 1; otherwise, c∗j = 0;

(6) In a protection system, the real status of the kth protective relay is denoted by
rk(1 ≤ k ≤ nr) and it is also expressed as the kth element of an nr-vector. When the kth
protective relay is operated, then rk = 1; otherwise, rk = 0;

(7) In a protection system, the expected status of the kth protective relay is denoted by
r∗k (S)(1 ≤ k ≤ nr) and it also can be expressed as kth element of an nr-vector. When the
kth protective relay operates, r∗k = 1; otherwise, r∗k = 0.

In [126], the OSNPS model has been used to minimize E(S) in Equation (5) and it
also helps in fulfilling the task of fault section estimation in power systems. From SCADA
system the real status of protective relays and CBs can be obtained. However, from the
operational principles and protection structures of power systems, the expected status of
PRs and CBs can be achieved. Then the OSNPS is used to obtain the minimum value of
E(S) and it is done only when all the expected status and real status of PRs and CBs are
obtained. Furthermore, the vector elements of S are obtained according to the minimum
value of E(S) in Equation (5).

Now we explain the fault diagnosis method and in order to do so at first the structure
and working of the OSNPS model are described.

Definition 6. An extended spiking neural P system (ESNPS) [130] of degree m ≥ 1, is a (m + 5)-
tuple Π = (O, σ1, . . . , σm+2, syn, I0), where:

(1) The neurons σi, 1 ≤ i ≤ m, are of the form σi = (1, Ri, Pi), where Ri = {r1
i , r2

i }, r1
i =

{a → a}, r2
i = {a → λ}. Pi = {p1

i , p2
i } is a finite set of probabilities and the probability pj

i is

associated with rule rj
i for 1 ≤ j ≤ 2 such that p1

i + p2
i = 1;

(2) σm+1 = σm+2 = (1, {a→ a});
(3) syn = {(i, j)|(i = m + 2∧ 1 ≤ j ≤ m + 1) ∨ (i = m + 1∧ j = m + 2)};
(4) I0 = {σ1, ..., σm} is a finite set of output neurons, and the output of the system is denoted

by a spike train which is formed by concatenating the outputs of the neurons σ1, ..., σm.

The neurons σm+1 and σm+2 work as a supplier of spikes to the neurons σ1, σ2, . . . , σm.
Moreover, after firing at each step, the neurons get reloaded by receiving one spike from
each other and the process continues. The neurons σ1, σ2, . . . , σm contain one firing rule
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with probability p1
i and one forgetting rule with probability p2

i . When the first rule is
applied, the output of the ith neuron is 1 with a probability p1

i associated with it. When the
second rule is applied, the output of the neuron is 0 with a probability p2

i . So a spike train
of 0’s and 1’s is obtained at any given time. Furthermore, the output of the system can be
controlled by adjusting the probabilities p1

1, . . . , p1
m.

OSNPS is a combination of family of ESNPS where a guider is associated with each
rule inside each of the neurons in ENPS to adjust the selection probabilities of the rules.
The OSNPS is a combination of H ESNPS, i.e., ESNPS1, . . . , ESNPSH and each of these
ESNPS has the structure mentioned in [130]. A guider algorithm is also added with the
OSNPS models to adjust the probabilities associated with the rules present in the neurons.
The pseudocode of the guider algorithm can be referred to [130].

Furthermore, the process of solving FSE problem and identifying the fault sections
using the OSNPS model can be explained by the sketch shown in Figure 1:

248 Tao WANG et al.

To clearly present the process in Figure 5, a detailed description is given as follows.
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Fig. 5. The sketch map of fault section estimation based on OSNPS.

Step 1: Input data
To start the method, SCADA data, parameters of OSNPS and initial value of

the fitness function are required. Thus, the input data block/process consist of three
parts which are described as follows.

1) Read SCADA data. The status information including the status of protective
relays and CBs, the topological connection of a given power system and its protection
system structure information are read from an SCADA system;

2) Set parameters of OSNPS. The parameters refer to the number of ESNPS (H),
the dimension of each ESNPS (m), the learning probabilities, the learning rate, the
rule probability matrix, maximum iterations and so on;

3) Initial fitness function. Above mentioned data are used to initial fitness function
of the FSE problem according to (1).

Step 2: Fault section estimation with OSNPS
Perform OSNPS to produce and update spike trains to find the minimum value of

(1). As mentioned in Subsection 3.1, each ESNPS can produce a spike train, which
stores the needed result in binary encoding. H ESNPS are organized into an OSNPS
by a guider to adjust the selection probabilities of rules inside each neuron of each
ESNPS. The guider algorithm, as shown in Figure 4 and described in [18] in detail, is
used to help OSNPS getting the spike train which brings the minimum value of (1).

Step 3: Stopping condition

Figure 1. The sketch map of fault section estimation based on OSNPS.

Now in order to find the fault section, a fault section estimation algorithm (FSE
algorithm) based on OSNPS is introduced. FSE algorithm is different from the reasoning
algorithms discussed in [82,84,88,89,125,129]. These reasoning algorithms are used for
obtaining the truth value of the proposition neurons which do not have any truth value
associated with them. In FSE algorithm, m (number of neurons in every ESNPS), M
(iteration), pa

j , 1 ≤ j ≤ m ( learning probabilities), ∆ (learning rate) and H (numbers of
ESNPS) are given as input and a global optimal value Gbest (a m-vector representing the
status of the sections) is obtained as an output. Furthermore, if Gbesti = 1, then it is
considered that the ith section is faulty. In the reasoning algorithms in [82,84,88,89,125,129],
matrices are used to represent the synaptic connections between the neurons. In FSE
algorithm, instead of the connection matrices, fitness function (E(S)), probability matrix
(PR) are used to obtain the required output.

2.6. Fault Location of Distribution Network

Many new types of small, grid-connected or distribution system-connected devices
can perform electric generation and storage. It is known as “Distribution generation”.
In [86], a fault location identification method was introduced for distribution networks
with distributed generation using improved spiking neural P system with anti-spikes
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(IASNPS). In this method, at first the distribution networks are modeled using IASNPS
and then the faults are located using the matrix algorithm.

Problem Description: The electric generation and storage performed by small, grid-
connected or DER (distributed energy resources) are called as DG (distributed generation).
It also works as an emerging and small power supply connected to 35 kV and below
distribution networks. It is important to note that the structure of distribution networks
can be transformed into multiple power supply from the single power supply when
DG is connected with the distribution networks. So whenever any line fails, the type,
position and capacity of the DG affects the direction and magnitude of the short circuit
current. Furthermore, the impact of the DG connected to the distribution networks cannot
be ignored when the permeability of DG and stiffness ration are greater than 10% and
20% respectively. Moreover, in this case the current protections are not applicable. So
the identification of the faults accurately as well as understanding the protection in the
distribution networks with DG is of great importance. In [86], a novel fault identification
method in distribution networks with DG was introduced which is based on improved
spiking neural P system with anti-spikes (IASNPS). These models can efficiently locate
faults in distribution networks with DG when the messages received from SCADA are
incomplete and uncertain. Furthermore, in the fault identification method, at first the
complex distribution networks with DG are properly partitioned. Subsequently fault
current information of CBs is read from the SCADA system followed by construction of
corresponding fault location model for the suspected fault region. Next the faults are
located using reasoning algorithm and at the end, using fault judgment condition these
faults are located accurately.

Now we explain the fault identification process in detail. So we start with discussing
the structure and working of IASNPS model. Spiking neural P systems with anti-spikes
are fundamentally different from SNPS models. In this model, along with an alphabet for
spike, there exists an alphabet symbol which is associated to represent anti-spikes. This
model can be mathematically formulated in the following manner.

Definition 7. An IASNP system [86] of degree m(m ≥ 1) is a (m+ 4)-tuple Π = (O, σ1, . . . , σm,
syn, IN, OUT) where

(1) O = {a, ā} is the alphabet (a and ā are called spike and anti-spike, respectively);
(2) The neurons σ1, σ2, . . . , σm are of the form σi = (θi, ri), 1 ≤ i ≤ m, where
(i) θi ∈ {1,−1, 0} represents the potential value of the spike present in the neuron σi;
(ii) ri represents the rules present in the neuron σi and the rules are of the following form:
(a) E/bθ → b

′β, k, where E is a regular expression over {a} or {ā}. When the neuron σi have
only the spike a then θi ∈ {1, 0} and similarly when ā is contained in σi, then θi ∈ {1, 0}. Again,
k ∈ {k1, k̄1}. When neuron σi sends pulses to neurons σj along the synapse, it is indicated by k1
and similarly when the neuron σj sends pulses to neurons σi along the synapse, it is indicated by k̄1.
Otherwise, k = ∅;

(b) aā → λ is called as the annihilating rule and it has priority over spiking and forget-
ting rules;

In the SNP models discussed in [82,84,88,89,91,126], the neurons are divided into
proposition and rule neurons. However, the neurons in IASNPS are divided into node
neurons and region neurons. The node neurons are also divided into two types, i.e., node
neurons with positive spikes and node neurons with anti-spikes. Moreover, note that in the
case of region neuron, the neurons fire only if the number of spikes received by the region
neuron is equal to the number of pre-synapses and after firing a spike with potential value
θ is produced.

The main steps of the reasoning algorithm based on IASNP systems for distribution
networks with DG include: (1) the fuzzy truth value of node neuron are given as input and
using the reasoning algorithm; and (2) fuzzy truth values of unknown neurons are derived.
More details can be referred to [86].
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A new method for identification of faults in distribution network based on electrical
synaptic transmission-based SNPS [67] was introduced in 2019. This variant of SNPS has
some novel features such as (1) new types of synapses; (2) bidirectional model; (3) two
types of neurons (4) the delay associated with the axons has been removed. In this model,
the bidirectional characteristics of electric synaptic transmission is incorporated into SNPS.
The bidirectional characteristic of electrical synaptic transmission is an important feature
of distribution networks with DGs. Moreover, the concepts from the SNPS with rules on
synapse have been used in [67]. More specifically, in the proposed model, the rules are
on the electrical synapse. It infers that different rules can be used by each synapse. In
the fault diagnosis model, at first fault location model based on the electrical synaptic
transmission-based spiking neural P system is constructed for subareas of the distributed
power distribution network. Next the reasoning algorithm is performed in order to locate
the fault and verify the fault current information.

In order to explain the fault diagnosis process at first we explain the structure of the
electrical synaptic transmission-based SNPS [67].

Definition 8. An electrical synaptic transmission-based spiking neural P system (ESTSNPS) [67]
of degree m ≥ 1, is an (m + 4)-tuple Π = (O, σ1, σ2, . . . , σm, syn, IN/OUT, OUT/IN) where:

• σ1, σ2, . . . , σm, represents the neurons and σi = (αi) (1 ≤ i ≤ m). Again, αi ∈ (−1, 0, 1)
and it represents the spike value;

• syn is the collection of electrical synapses between neurons and syn ⊆ ((i, j), R(i, j)), where
(1) (i, j)(1 ≤ i, j ≤ m) represents electrical synapses i 6= j connecting neurons σi and σj.
(2) R(i, j) represents a finite set of rules on electrical synapses. The rules in R(i, j) are of the
following form:
A. E/aα → aβ represents the firing rule; E/aβ → aα represents backward firing rule; where
E is regular expression over {a}, α ∈ (−1, 0, 1), β ∈ (−1, 0, 1).
B. The forgetting rule is of the form E/aα → λ ( i.e., β = 0).
If α = 0 in backward firing rule, then E/aβ → λ, and it is called as backward forgetting rule.

• IN/OUT and OUT/IN are input/output neuron set and output/input neuron set, respec-
tively.

Electric synaptic transmission-based spiking neural P system is different from the
traditional SNPS models. In this model, the value of the spikes in a neuron is not repre-
sented by the number of spikes or real numbers. Instead, it is represented by a discrete
value from {−1, 0, 1}. The firing rules in the proposed model in [67] are also different
and along with traditional firing and forgetting rule, there exist backward firing rule and
backward forgetting rule which are associated with backward reasoning process. Moreover,
the neurons are divided into two types, i.e., input/output and output/input neurons.

Next we explain the reasoning process for the proposed fault location identification
method in distribution network with distributed generations. Since the electrical synaptic
transmission-based spiking neural P system is a bidirectional system and it performs
bidirectional reasoning. So the reasoning process in [67] is divided into forward reasoning
process and the backward verification process. Moreover, note that results contained in the
neuron are different during the forward reasoning process and the backward verification
process. Unlike in [82,84,88,89,91], the neurons are divided into input/output (IN/OUT)
and output/input (OUT/IN) neurons where instead of truth values, the neurons contain
discrete values, i.e., the values associated with the neurons are from {−1, 0, 1}. Furthermore,
during the backward reasoning process, the synaptic connection between the IN/OUT and
OUT/IN neurons and the connection between the section neurons and OUT/IN neurons
are represented by a direction matrix. Next, the information is used to verify whether fault
current information is wrong.

The proposed method in [67] is efficient and it has the following advantages: (1)
it can efficiently express the relationship between the various parts of the distribution
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network and the logical relationship of the graphics and also can represent the fault
location process visually;

(2) strong information processing capability because of parallel-distributed architec-
ture;

(3) bidirectional characteristics of electrical synaptic transmission which is combined
with electrical quantity (direction of current) for fault location of distribution network with
distributed generations (DGs);

(4) high accuracy, less computation time, the fault diagnosis model and reasoning
process is simple. Another important feature of the reasoning algorithm is that it is
applied according to the bidirectional power flow characteristics of a distribution network
with DGs;

(5) single faults, multiple faults, and misinformation faults in the distribution network
with DGs can be located accurately and quickly by the proposed method.

(6) this method is applicable to a variety of fault conditions for distribution network
with DGs. Moreover, in fault location, it can verify the fault current information, improves
the reliability of the fault current information and the accuracy of the fault location result.

2.7. Fault Lines Detection

In [85], a fault diagnosis method based on FRSNPS model was introduced to solve the
problem of detecting fault lines in a small current grounding systems. The authors analyzed
six features of current/voltage signals in a small current grounding system. Furthermore,
the analysis was done by considering transient and steady components. Moreover, a fault
measure is considered and it is further used to quantify that a line has faults. Next, the idea
of information gain degree was introduced in order to understand the importance of six
features of current/voltage signals. Then in order to reduce the features, the concept of
rough set theory was applied and it was followed by construction of fault line detection
models based on the framework of FRSNPS.

Problem description: The fault diagnosis approach in [85] is considered for a
110 kV/35 kV distribution network with 6 feeders. At any time a single-phase-to-ground
fault can occur in the distribution network and during this time the fault can occur in any
of the 6 lines, i.e., lines 1–6 or in the bus. This fault affects the safe and stable operation of
the distribution network. Moreover, the faults compromise the security of the system. So it
is necessary to identify the faults in the distribution networks as soon as possible.

The fault line detection method proposed in [85] for a small current grounding system
are divided into four processes, i.e., (1) feature analysis, (2) fault measure calculation, (3)
feature information fusion and (4) fault line detection model construction. The framework
of this method consists of zero sequence current/voltage signals, transient and steady
component signal features, fault measures, information gain degree, rough set theory and
fault line detection model with rFRSN P systems. Furthermore, the fault line detection
method is based on fuzzy reasoning spiking neural P systems with real numbers (rFRSNPS).

Now we discuss the fault diagnosis process in detail. We start with discussing the
structure and functioning of rFRSNPS. rFRSNPS models have similar structure as FRSNPS
models and can be represented mathematically in the following manner.

Definition 9. An rFRSN P system [87,90] of degree m ≥ 1 is a (m+ 4)-tuple Π = (O, σ1, . . . , σm,
syn, IN, OUT), where:

(2) The neurons σ1, . . . , σm are of the form σi = (θi, ci, ri), 1 ≤ i ≤ m, where:
(a) θi ∈ [0, 1] is a real number and it represents the potential value of spikes (i.e., value of

electrical impulses) contained in neuron σi;
(b) ci ∈ [0, 1] is a real number and it represents the fuzzy truth value corresponding to

neuron σi;
and
(c) ri represents the firing /spiking rule in neuron σi and it is of the form E/aθ → aβwhere E

is the firing condition and θ, β ∈ [0, 1] are real numbers;



Appl. Sci. 2021, 11, 4376 20 of 35

The working of the rFRSNPS and FRSNPS [84] is similar. So in this section we do not
explain it in detail. Moreover, like the FRSNPS models [84], rFRSNPS models contain two
types of neurons, i.e., proposition neurons and rule neurons. The fuzzy production rules in
the framework of rFRSNPS can be expressed in the similar manner as shown in Section 2.1.
Since we have already described the construction of these rules in detail, we skip their
explanation in this section.

2.8. Electric Locomotive Systems

The rFRSNPS models are also useful in constructing fault diagnosis method in electric
locomotive systems. A new method for fault diagnosis in electric locomotive systems based
on fuzzy reasoning spiking neural P systems with real numbers (rFRSNPS) was introduced
in 2014 [87]. Electric locomotives consist of many subsystems. In [87], the fuzzy production
rules are useful in expressing the relationship among the breakdown signals and faulty
sections. Then a fault diagnosis model for subsystems is constructed based on rFRSNPS
according to the fuzzy production rules.

Problem description: It is well-known that electric locomotive systems are composed
of several systems where the functions associated with the subsystems are different. So
these systems can be represented as a hierarchical tree structure of sections and subsystems
(which can be referred to [87]). Next, the relationship among breakdown signals and
faulty sections present in the subsystems are abstracted using the fuzzy production rules.
Then based on these, the fault diagnosis models for the subsystems are constructed. More
specifically, in [87], the fault diagnosis model based on rFRSNPS is constructed based on
the causality among faulty sections, faulty subsystems, SS4 (Shaoshan4) electric locomotive
systems. Furthermore, fault diagnosis method consists of the fault diagnosis for SS4 electric
locomotive systems and their main subsystems, i.e., main circuit systems, power supply
systems, traction and breaking systems. At first the the diagnosis models are constructed for
the subsystems and then these models are analyzed. Next the relationships among electric
locomotive systems, its subsystems and their corresponding faulty sections are studied. At
the end, the fault diagnosis model for SS4 electric locomotive systems was introduced.

Now we give a summary of the fault diagnosis method of a SS4 electric locomotive
systems. As mentioned above, at first a fault diagnosis model for the main circuit systems
is constructed. It is followed by construction of fault diagnosis model for power supply
systems. Next the same is done for the traction and braking systems. Subsequently,
fault diagnosis model for electric locomotive systems is introduced. If one or more that
one subsystems of electric locomotive system, i.e., main circuit systems, power supply
systems, and traction and braking systems have faults, then faults occur in the electric
locomotive system.

The fuzzy production rules for electric locomotive systems are as follows:
Rule 1: IF P1 OR P2 OR P3 OR P4 THEN P16 (CF = 0.95)
Rule 2: IF P5 OR P6 OR P7 OR P8 THEN P17 (CF = 0.95)
Rule3: IF P7 OR P8 OR P9 OR P10 OR P11 OR P12 OR P13 OR P14 OR P15 THEN P18

(CF = 0.95)
Rule 4: IF P16 OR P17 OR P18 THEN P19 (CF = 0.98)
The meaning of the propositions P1, P2, . . . , P19 are shown in Table 1 [87] and CF

represents the certainty factor of the rules.
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Table 1. Meaning of each proposition in fuzzy production rules for electric locomotive systems.

No Propositions Description

1 P1 no current in pantograph
2 P2 traction transformer breakdown
3 P3 pulling motor inoperation
4 P4 contactor breakdown
5 P5 DC750V input breakdown
6 P6 fan inoperation
7 P7 main traction invertor breakdown
8 P8 DC110V breakdown
9 P9 control source converter plate breakdown
10 P10 main protective relay breakdown
11 P11 traction power controller breakdown
12 P12 A/D breakdown
13 P13 25/5V breakdown
14 P14 linear electromotor inoperation
15 P15 phase current sensor inoperation
16 P16 main circuit system has faults
17 P17 power supply system has faults
18 P18 traction and braking system has faults
19 P19 electric locomotive systems has faults

Next a fault diagnosis model based on rFRSNPS is constructed based on these fuzzy
production rules, i.e., Π4 = (O, σ1, . . . , σ23, syn, IN, OUT) where

(1) O = {a} is the singleton alphabet (a is called spike);
(2) The proposition neurons associated with the propositions P1, P2, . . . , P19 are σ1, . . . ,

σ19 respectively.
(3) The OR rule neurons associated with the fuzzy production rules R1, . . . , R4 are

σ20, . . . , σ23 respectively.
(4) syn = {(1, 20), (2, 20), (3, 20), (4, 20), (5, 21), (6, 21), (7, 21), (7, 22), (8, 21), (8, 22),

(9, 22), (10, 22), (11, 22), (12, 22), (13, 22), (14, 22), (15, 22), (16, 23), (17, 23), (18, 23), (20, 16),
(21, 17), (22, 18), (23, 19)};

(5) IN = {σ1, . . . , σ15}, OUT = {σ19}.
So from the above constructions we can observe that the rFRSPS models can effec-

tively construct the fault diagnosis models for SS4 electric locomotive systems and their
subsystems. However, in [87], reasoning algorithm based on rFRSNPS models was not
introduced and the construction of reasoning algorithm based on this model can be an
interesting direction of future research.

2.9. Comparisons

This section makes a comparison of several fault diagnosis models with spiking
neural P systems, from the aspects of their applications in power systems, their features,
advantages and disadvantages, and reasoning algorithms. Table 2 lists fault diagnosis
models with spiking neural P systems in terms of applications, features and references.
Tables 3–6 provide the advantages and disadvantages of fault diagnosis models with
spiking neural P systems. Tables 7–9 compares several reasoning algorithms related to
fault diagnosis models with spiking neural P systems.
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Table 2. Comparisons of fault diagnosis models with spiking neural P systems.

No Electric Equipment Models Features Ref.

Fuzzy production rules in the [84]
framework of FRSNPS;

1 Transformers FRSNPS Fuzzy reasoning algorithm based
on FRSNPS; Proposition neuron:
and and or rule neuron
IEC ratio of gases are given as input

Learning model in the framework [91]
of SNPS with belief

2 Transformers LSNPS AdaBoost; Use LMS algorithm
for training of the weights in the network;
Identify faults using DGA
data;

FDSNPS FRSNPS with trapezoidal [89]
fuzzy numbers; Effectively

Power analyze uncertain and incomplete
3 transmission messages from SCADA;

networks Proposition neuron; general,
and, or rule neuron; Reasoning
algorithm based on FRSNPS with
trapezoidal fuzzy numbers;

FRSNPS with weights [88]
Traction associated with synapses; Weighted

4 power WFRSNPS matrix-based fuzzy reasoning algorithm;
supply Proposition neuron; simple, general
systems and, or rule neuron;

MFRSNPS FRSNPS with modified [82]
Metro threshold condition E = {aθ , θ > λi};

5 traction Reasoning algorithm based on
power MFRSNPS; Proposition neuron; general,

systems and, or rule neuron;

Combination of extended SNPS; [130]
Capable of searching and output fault
sections automatically; Effectively
identify faults with uncertain and

6 Power OSNPS incomplete messages from SCADA;
Systems Used for FSE problem;

probabilities are associated with
the rules; Guider algorithm associated
with OSNPS

SNPS with spikes and anti-spikes; [86]
Matrix fuzzy reasoning algorithm

7 Distribution IASNPS based on IASNPS; Effectively
network analyze uncertain and incomplete

messages from SCADA; Neurons
are divided into node and region neurons;

FRSNPS with real numbers; [85]
Small Reasoning algorithm based on rFRSNPS;

8 current rFRSNPS Proposition neurons;
grounding rule neurons; Rough set theory is

systems used to reduce the feature of the faults;

FRSNPS with real numbers; [87]
9 Electric rFRSNPS Proposition neurons; rule neuron;

Locomotive Fault diagnosis for SS4 locomotive
Systems systems;
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Table 3. Advantages and disadvantages of fault diagnosis models for transformers with spiking
neural P systems.

Device SNPS Model Advantages and Disadvantages

1. Transformers [84] FRSNPS Suitable to model
fuzzy production rules in a fuzzy diagnosis
knowledge base and their
reasoning process;
Feasibility and effectiveness
in fault diagnosis;
Handling incomplete
and uncertain information
Graphical representation;
No time delay;
neurons are always open;
Dynamic reasoning
process can be realized by the
firing mechanism of neurons;
Proposition neurons
works as input neurons;
Reasoning algorithm uses
firing mechanism and matrix
operations;
Parallel computing model;
Not much
experimental data for comparison.
Diagnosis model
based on DGA.

2. Transformers [128] FRSNPS Information is
represented using linguistic variables,
membership functions,
inference rule base,
Four gas ratio (IEC 60599) signature
as input to FRSNPS;
Diagnosis the fault with more
informative and more
correctly decisions.
Fault types interpretation of DGA.
different; Linguistic terms (L.T)
different;

3. Transformers [91] LSNPS Uses Widrow-Hoff learning
and belief AdaBoost; More accurate
than Improved Three-Ratio Method, BPNN,
SVM, DBN. fault occurrence in transformer
can be found through the ratio of gas
Better generalization ability;
Gas ratios given as input
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Table 4. Advantages and disadvantages of fault diagnosis models for power transmission networks
with spiking neural P systems.

Device SNPS Model Advantages and Disadvantages

1. Power transmission FDSNP Good fault tolerant
network [89] capacity; Handle incomplete and

uncertain messages efficiently;
Simple, understandable mathematical
expression to represent
connections between faults, PRs, CBs;
Efficient in identifying
single and multiple faults; Matrix
based reasoning algorithm;
trapezoidal fuzzy numbers express the
relationships more efficiently;
In some cases, superior to
to FL, FPN, and GA on
correctly identifying fault sections;
Good accuracy;

2. Power transmission srSNPS SNPS model with biological apoptosis
network [125] mechanism; Self-updating

matrix reasoning algorithm;
Effectively unitizes the
attribute reduction ability of
rough sets; Simple graphical
fault diagnosis model;
Efficiently deal with
uncertain and incomplete
fault information without using
historical statistics and
expertise;
srSNPS+ Apoptosis algorithm for
condition neurons+Self-updating
matrix reasoning algorithm
+ DSA + WSNM + PDET;
good fault diagnosis capacity;
high-fault tolerance, good speed;
General, And, Or-rule neurons;
Identify single and multiple
faults; Less number of
neurons w.r.t CEN,
FPN, and FRSNPS;
Good diagnostic accuracy.

3. Power transmission IVFSNPS Interval-valued fuzzy logic + SNPS;
network [129] Process and incomplete and uncertain

messages efficiently;
CFs is expressed by interval-valued fuzzy
numbers;
Linguistic terms are used to describe the CFs;
Perform good in large scale
network; fast parallel computation;
Efficient fault identification;
Identify incorrect signals;
Suitable to deal with complex fault;
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Table 5. Advantages and disadvantages of fault diagnosis models for fault location with spiking neural P systems.

Device SNPS Model Advantages and Disadvantages

1. Fault section estimation of power
systems [126] OSNPS OSNPS can automatically

search and output fault sections;
Effective for single fault, multiple faults
and multiple faults with incomplete
and uncertain information.

2. Fault location distribution network [86] IASNPS Express causality between
regions and the associated nodes efficiently;
Reasoning algorithm based
on IASNPS; Locate
faults more accurately
and quickly; Locate
single and multiple faults;

3. Fault location distribution network [67] ESTSNPS SNPS with new synapses,
bidirectional model, two
types of neurons;
No delay in axon.
Understandable graphical feature;
Process information in parallel
Bidirectional characteristics of
electrical synaptic transmission;
High accuracy, less
computation time, simple and
intuitive model and reasoning;
Good for large scale DGs;
Strong visibility; high versatility;
Backward firing rules,
backward forgetting rules,
Forward reasoning process;
backward reasoning process;
O/I and I/O neurons;
Applicable to many fault
condition; verify the fault
current information;
improve the reliability
and accuracy.

4. Fault line detection [85] rFRSNPS Six features of current/voltage
signals in a small current
grounding system are analyzed;
Rough set theory is used for
feature reduction
Good accuracy;



Appl. Sci. 2021, 11, 4376 26 of 35

Table 6. Advantages and disadvantages of fault diagnosis models for other types of power systems with spiking neural
P systems.

Device SNPS Model Advantages and Disadvantages

1. Traction power supply system [88] WFRSNPS Four types of neurons;
Expressing status information of
protective relays and circuit breakers
efficiently; Weighted matrix-based
reasoning algorithm (WMBRA);

2. Metro traction power system [82] MFRSNPS Three types of nerons;
Represent operation information of
PRs and CBs efficiently;
Reasoning algorithm based
on MFRSNPS;
Accurately identify faults
with certain/uncertain and
complete/incomplete operate information.

3. Electric locomotive systems [87] rFRSNPS (1) Efficiently expresses
Relationships among breakdown
signals and faulty sections
in subsystems of electric
locomotive systems; (2)
No experimental data
for large scale
systems.

Table 7. Comparisons of reasoning algorithms for transformers.

Device SNPS Model Features of Reasoning Algorithms

1. Transformers [84] FRSNPS Proposition neurons work
as input neuron;
Based on neuron’s firing
mechanism and uses matrix operation;
Reason out the fuzzy truth
values of other unknown fuzzy.
propositions from known
fuzzy propositions (input neurons)
Based on FRSNPS;
The components of truth
value vector are real
numbers.

2. Transformers [128] FRSNPS Same as [84]

3. Transformers [91] LSNPS No reasoning algorithm;
Uses Belief AdaBoost
Algorithm;

4. Power transmission network [89] FDSNPS Proposition neurons work
as input neuron;
as input neuron;
Based on neuron’s firing
mechanism and uses matrix operation;
Reason out the fuzzy truth
values of other unknown fuzzy
propositions from known
fuzzy propositions (input neurons)
Based on FDSNPS;
Components of truth
value vectors are
trapezoidal fuzzy numbers;
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Table 8. Comparisons of reasoning algorithms for transmission lines.

1. Power transmission network [125] srSNPS Self-updating matrix
reasoning algorithm;
Reason out the fuzzy truth
values of other unknown fuzzy
propositions from known
fuzzy propositions (input neurons)
Based on srSNPS
Components of truth
value vectors are real
numbers.

2. Power transmission network [129] IVFSNPS Based on IVFSNPS;
Synaptic connection between
proposition neuron and
∨ and ∧

rule neurons represented
using matrix and used.
in algorithm. Components
of truth value
vector are integer
valued fuzzy numbers.

3. Traction power supply system [88] WFRSNPS Weighted matrix-based reasoning
algorithm (WMBRA)
Along with matrix for
synaptic connections,
there exists synaptic weight
matrix.
Components of truth
value vectors are real
numbers.

4. Metro traction power system [82] MFRSNPS Based on MFRSNPS;
The matrix representing
synaptic connections between
proposition and General,
And, Or rule neuron used.
Components of the
vectors representing potential
values of neurons are
real numbers.
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Table 9. Comparisons of reasoning algorithms for other types of power systems.

1. Fault section estimation of power systems [126] OSNPS Based on OSNPS;
Uses guider algorithm
and OSNPS fault
section estimation algorithm.

2. Fault location distribution network [86] IASNPS Based on IASNPS;
The values of components of the
vectors representing fuzzy
truth values of the neurons
are −1, 1, 0.

3. Fault location distribution network [67] ESTSNPS High accuracy, less computation,
simple and intuitive model and reasoning.
Applied reasonably in the
bidirectional power flow
characteristics of a distribution
network with DGs;
Forward reasoning process;
Backward verification process
Results contained in the
neuron are different during
the forward reasoning
process and the backward
verification process;
Based on ESTSNPS

4. Fault line detection [85] rFRSNPS Based on rFRSNPS;
Matrices represent synaptic
connections between the
neurons; The components
of the vector
representing truth value
of neurons are real
numbers.

5. Electric locomotive systems [87] rFRSNPS Based on rFRSNPS;
Matrices represent synaptic
connections between the
neurons; The components
of the vector
representing truth value
of neurons are real
numbers.

3. Software

The fault diagnosis models based on different variants of SNPS discussed above are
performed manually. So it is time consuming as well as very difficult to be used for large
scale networks. Next we discuss a method which can perform the task of fault diagnosis
automatically.

The FRSNPS model and its variants introduced in [82,84,87–89,125,128,131,132] can
efficiently describe the relationship between the faults and protective devices and fault
diagnosis model because of the use of mathematical expressions. These models also
have good fault tolerant capacity. These intrinsic properties make the FRSNPS models a
preferable choice for applications of fault diagnosis. However, one of the major drawback
of these models is that the implementation of these models is manual and it prohibits the
use of these models to diagnose faults on large power systems networks. In [127], in order
to automatically perform this task, an automatic implementation method was introduced.
This method is called as Membrane computing fault diagnosis method (MCFD) and this method
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consists of automatic input and output. Furthermore, the diagnosis process is divided into
four sections, i.e., (i) network topology analysis; (ii) suspicious fault component analysis;
(iii) construction of FRSNPS models based on (ii); and (iv) fuzzy inference.

Now we give a summary of the MCFD method step by step:
1. Automatized Input: Network topology information and protection configuration

information is given as input and stored in the access database. These information is also
used to construct topology and protection configuration table. Furthermore, topology data
of a power system and protection configuration data are given as input to fault diagnosis
model based on FRSNPS.

2. Topology Data of Power Systems: The topology data is stored into a table which
contains the information of the main components and switches. It also contains the
connection relationship between the components and switches and the protection number
associated with the components.

3. Protection configuration data: Whenever there is a fault in power systems, the pro-
tective relays and circuit breakers are operated in order to isolate the fault. The information
regarding the tripped CBs and PRs is obtained from the SCADA systems and a correlation
database is constructed from these information.

4. Automatized Network Topology Analysis: Using this method the suspicious fault
components are identified. In this method, at first all subsets are searched and then passive
networks (outage areas) are identified from these subsets.

5. Automatized Suspicious Fault Component Analysis: A logic diagram is constructed
where the suspected fault component is the starting point. It also portrays the topological
association of the suspected faults components and the protection associated with it in
power grid. The logic diagram searches and builds towards each connection from the
starting point so that the component remains protected.

6. Automatized Modeling Suspicious Fault Components with FRSNP System: Accord-
ing to the fault production rules of the suspected fault components, a FRSNPS model is
constructed.

7. Automatized Fuzzy Inference: Then reasoning algorithm is performed. It is
performed after the confidence level of the proposition, i.e., proposition neuron and CF
(certainty factor) of the rule neuron are obtained. Furthermore, after executing the fuzzy
reasoning algorithm, output of the proposition neurons is obtained which also represents
the fuzzy values of the propositions.

8. Automatized Output: The fault component information, protective relay informa-
tion and circuit breakers operation evaluation are obtained as output of MCFD. Whenever
any fault occurs in the system the suspected fault components can be identified from the
fuzzy value of the output proposition neuron which is obtained according to the fault
threshold associated with it. More specifically, if there is any fault in the component, then
the fault component information and fault credibility value are obtained as output. Next
from the reasoning process, it is estimated whether any misoperation occurred in the circuit
breakers and protective relays. If no misoperation occurred inside the CBs and PRs, then
the output appears normal.

4. Conclusions and Future Research Lines

In this paper we provided a comprehensive survey of the membrane computing
models, i.e., spiking neural P systems used for fault diagnosis of power systems. We
also discussed corresponding reasoning algorithms based on these models. However the
investigation regarding the construction of fault diagnosis models based on membrane
computing models is still in preliminary stage. Hence there exists many topics which need
to be investigated further. We discuss some of the topics which can be considered as future
topic of research below.

(1) The FRSNPS models and their variants have been very useful for fault diagnosis
in power systems. Constructing new variants of FRSNPS models by incorporating the
properties of neural networks or deep neural networks such that these models have
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the capability of handling fuzzy, vague or incomplete information could be a future
research direction.

(2) The reasoning algorithms discussed in this paper are efficient. However, there
has been no known study discussing the complexity of these algorithms. It is not known
whether the time and space complexity of these algorithms are optimal or not. Investigating
optimality of these algorithms and constructing reasoning algorithms with better bounds
could also be a future research direction.

(3) In this paper we discussed the use of a supervised learning algorithm in the
framework of SNPS for identification of faults in transformers. However, it remains to be
investigated whether any unsupervised learning algorithm in the framework of SNPS can
be constructed such that it can be used for fault diagnosis in power systems.

(4) The investigations on the use of FRSNPS models for power systems fault diagnosis
in the literature mentioned in this paper indicate that FRSNPS models have the potential to
diagnose faults in large-scale power systems with a linear or polynomial time. However,
the proof or experimental verification is a future work.
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SVM Support Vector Machine
DBN Deep Belief Network
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ESNPS Extended Spiking Neural P Systems
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74. Su, Y.; Wu, T.; Xu, F.; Păun, A. Spiking Neural P Systems with Rules on Synapses Working in Sum Spikes Consumption Strategy.

Fundam. Inform. 2017, 156, 187–208. [CrossRef]
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