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Featured Application: The proposed innovation allows for a significant reduction of large drops
in wind power by using only the self-regulating capabilities of a wind turbine or wind power
plant, as well as upstream wind measurement instrumentation, which may already be present at
the wind farm.

Abstract: As the penetration of renewable energy generation in electric grids becomes more sub-
stantial, its contribution to the variability of the net load becomes more noticeable. Particularly in
small or weak grids, the rate at which the output power of a wind farm decreases may become a
concern to grid operators. In the present work, a novel approach, called forecast-based curtailment
(FBC), is shown to be able to self-mitigate downward ramps on short time scales at a very small
energy penalty, compared to conventional mitigation schemes, such as flat curtailment or up-ramp
limitations. FBC allows to achieve compliance with ramp limits imposed by system operators at a
very small energy cost and modest additional upfront investments.

Keywords: wind power variability; short-term forecast; curtailment

1. Introduction

Renewable energy (RE) technologies are becoming increasingly part of the mainstream
in the electricity sectors worldwide. As opposed to a few decades ago, large-scale wind and
solar photovoltaic power plants are now the cheapest options for generating electricity [1].
This major achievement is finally paving the way towards the deep decarbonization of
the power sector. The low cost of wind and solar power also enables the transition of
the transport and fuel sectors, both by vehicle electrification [2,3] and the production
of green hydrogen [4]. A natural concern regarding variable renewable energy (VRE)
technologies relates to the variability of their power output. Though the impact of this
variability on power systems operations is often misunderstood or overestimated, there is
no doubt that the increase in variability of the net system load has to be addressed in power
sectors with high and very high VRE penetration. Das et al. [5], in their assessment of the
impact of wind energy on the Indian power system, concluded that at a 10% penetration
level (calculated on an energy basis) the increase in variability of the net load was hardly
noticeable; for penetration levels of up to 30% the increase in variability was of the order of
the penetration level or less, an increase which can be comfortably handled with traditional
grid management tools. In small systems, however, e.g., island grids [6], or grids tending
to become fragmented because of insufficient transmission capacities interconnecting high-
resource regions and major load centers, the variability of wind or PV plants may become
an issue even at moderate penetrations. This is where grid operators may often require
the installation of an energy storage system (EES) [7], typically battery-based (BESS),
to provide grid support services, such as frequency response and primary frequency

Appl. Sci. 2021, 11, 4371. https://doi.org/10.3390/app11104371 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0075-8295
https://orcid.org/0000-0003-0822-0705
https://www.mdpi.com/article/10.3390/app11104371?type=check_update&version=1
https://doi.org/10.3390/app11104371
https://doi.org/10.3390/app11104371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11104371
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4371 2 of 21

regulation, and sometimes Automatic Generation Control (AGC). These requirements
are often justified on the grounds of the variability of the VRE plant, confusing services
provided by the plant to the grid with actions designed to mitigate the variability of the VRE
plant output itself. This distinction is important, since though the VRE plant contributes
to the variability of the net load (generally by increasing it), the marginal increase of one
additional plant is often small. In either case, given the discretionary power often invested
in grid operators, some restriction as to the tolerable level of variability of the power output
is likely to be imposed on individual power plants seeking an interconnection permit. Such
a requirement may often be phrased as a maximal negative slope in power output tolerated
by the grid.

The main ideas for managing and mitigating wind power variability in general and
(negative) ramps in particular can be summarized as follows. Not unexpectedly, most
authors consider some kind of storage device (generally battery-based) as the main tool
for smoothing wind power output, often proposing specific algorithms for the optimized
use of such devices [8–11]. Another line of thought is the overall reduction of wind power
variability by an appropriate siting of wind farms, thereby tapping into the complementar-
ity of wind generation at different locations [12,13]. This geographic diversification goes a
long way towards smoothing the overall wind power generation in the system; its impact
is, however, generally limited to the planning stage, at least if all wind farms are expected
to always produce their maximum possible power output. An obvious option for the
management of an already built-out fleet of wind farms is to selectively restrict the output
of certain farms at given times, in order to “tailor” the output according to pre-established
criteria for ramps or variability. This can be done by flat-curtailing a given wind farm [14]
(i.e., restricting the output to a maximal value or fraction of the rated output), or restricting
the rate of increase (or positive ramp rate) to a certain value. The rationale behind this latter
idea is that a positive ramp will be generally followed by a negative one, so restricting the
former will on the average reduce the latter. This approach was studied in an empirical
manner by Martín-Martínez [15] for the case of the Spanish grid, demonstrating that the
general ideas works, albeit at a considerable energy penalty.

A different approach consists in accepting the wind power output as it is, but man-
aging its impact on the grid. This can be done by considering wind power ramps as an
explicit variable in the dispatch operations, allowing for sufficient operating reserves to
be allocated to account for the possibility of large wind power ramps. Pinto et al. [16]
took such an approach by considering ramps as a risk variable in their stochastic unit
commitment problem; ramps were not predicted but used as an external variable in their
optimization problem. Being able to predict the general ramping characteristics is of course
useful for any optimization approach, so the development of suitable wind farm models is
important too. Sorensen et al. [17] presented an approach for wind farm modeling based on
coherence functions and tested their model on the Danish offshore wind farm Horns Rev.
The authors were able to show that their model provided a fair prediction of the spectral
characteristics and the 10-min ramp distributions.

While the papers discussed above deal with the mitigation or management of wind
power fluctuations, other authors have discussed approaches through which wind farms
and turbines can provide frequency support to the grid through adjustments of their
active power in response to variations in grid frequency. The main mechanisms include
turbine de-loading or de-rating by operating wind turbines above their MPP shaft speed,
de-loading through pitching, and energy storage using the DC link of turbines with a
full-scale converter [18]; also see Reference [19] for an interesting combination of these
mechanisms. As mentioned above, frequency support deals with the ways wind turbines
and farms respond to grid fluctuations, rather than with the mitigation of their fluctuations,
but the two topics obviously bear a natural relationship.

As discussed above, the variability in wind power output, and particularly negative
ramps, can be minimized at the planning stage (by appropriate siting), managed during
grid operations (through risk-oriented probabilistic unit commitment), modeled and fore-
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cast, mitigated by storage devices and optimal strategies, and reduced by curtailment
measures, such as flat curtailment or ramp-rate restrictions. While storage-based solutions
require substantial add-on investments (and also imply a certain loss of energy because of
finite round-trip efficiencies), curtailment-based options lead to quite substantial energy
losses and should be considered as the last resort, restricted to systems with substantial
lags in grid upgrades and expansion. An overview of the recent investigation into the
management of wind power variability and grid support is shown in Table 1.

A way out of the dilemma described above was proposed by Probst [20] by introducing
and developing a new strategy called Forecast-Based Curtailment (FBC). The basic idea is
to slightly curtail (if possible) the power output of a wind turbine or farm before a large
expected fall in power, i.e., a large negative ramp, based on an accurate forecast of the
power output for two consecutive time intervals after the last measurement. Analytical
expressions for the increased compliance with a given critical ramp rate and the mitigation
efficiency were provided for typical power change distributions. The analytical framework
included both perfect and non-ideal forecasts, and the results were validated against
numerical simulations using both simulated power change data and data from an operating
wind farm. The actual capabilities of realistic approaches to short-term forecasting were,
however, not subject of the work mentioned. Exploring the suitability of state-of-the-art
forecasting methods for the FBC method is the main objective of the present work.

Table 1. Overview of the recent literature on the study and mitigation of wind power ramps.

Authors Year Title Main Objective Main Contribution Subject Classification

Probst [20] 2020
A new strategy for

short-term ramp rate control
in wind farms

Develop a no-storage
proposal for negative ramp

reduction of wind farms

Analytical framework
assessing compliance,

considering a finite
forecast error

Negative ramp reduction by
wind farm self-regulation

Simla et al.
[21] 2020

Reducing the impact of wind
farms on the electric power
system by the use of energy

storage

Assess the cycling cost of
coal-fired plants due to wind

power intermittency

Evaluation of different
alternatives with varying

degree of storage

Conventional plant
cycling/storage

Kazari et al.
[22] 2019

Assessing the Effect of Wind
Farm Layout on Energy
Storage Requirement for

Power Fluctuation
Mitigation

Simultaneous optimization
of wind farm output and

battery size

Development and use of
stochastic wind farm model to
devise optimal wind farm LO

Turbulence/WF
modeling/storage

Lyu et al.
[19] 2019

Coordinated Control
Strategies of PMSG-Based

Wind Turbine for Smoothing
Power Fluctuations

Smooth power output by
de-loading, pitching,

and DC-link
charging/discharging

Evaluation of the benefit of a
hierarchical use of the

three strategies
Turbine control

Jin et al. [8] 2019

Dynamic modeling and
design of a hybrid CAES &
WT system for wind power

fluctuation reduction

Model the capability of a
CAES system to reduce
short-term fluctuations

Thermodynamic analysis of a
wind turbine operating with

a CAESS
Storage modeling

Lamsal et al.
[9] 2019

Output power smoothing
control approaches for wind
and photovoltaic generation

systems A review

Review techniques for
reduction of power output
fluctuations: wind and PV

Review techniques with and
without storage systems Storage technologies (review)

Musselman
et al. [12] 2019

Optimizing wind farm siting
to reduce power system

impacts of wind variability

Bi-objective optimization to
reduce residual demand and

wind power variability

Algorithms for siting of new
wind farms

Fluctuation mitigation through
wind farm siting

Takayama
et al. [23] 2018

Study on the ramp
fluctuation suppression

control wind power
generation output using

optimization method

Bi-objective optimization to
reduce wind power

variability and storage size
New grid control method Grid control with storage and

power forecast

Ren et al.
[10] 2017

Overview of wind power
intermittency: Impacts,

measurements,
and mitigation solutions

In-depth review of wind
power intermittency and

mitigating measures

Quantitative measures of
intermittency, grid integration

costs etc.
Storage technologies (review)

Gong et al.
[24] 2016

Ramp Event Forecast Based
Wind Power Ramp Control

With Energy Storage System

Devise a wind power ramp
control method using

storage

Optimal control method for
ramp control with storage Ramp control/storage
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Table 1. Cont.

Authors Year Title Main Objective Main Contribution Subject Classification

Bai et al.
[25] 2015

A stochastic power curve for
wind turbines with reduced

variability using
conditional copula

Construct a stochastic on-site
wind power curve

using copula

Methodology for power
construction with decreased
variability and obeying BIC

Stochastic power
curve construction

Islam et al.
[26] 2013

Smoothing of Wind Farm
Output by Prediction and
Supervisory-Control-Unit-

Based FESS

Smooth wind power output
using flywheel storage

Supervisory control of a
flywheel storage unit Control of storage devices

Jiang et al.
[27] 2013

A Battery Energy Storage
System Dual-Layer Control

Strategy for Mitigating Wind
Farm Fluctuations

Smooth combined wind
power/storage output, while
optimizing power allocation

Two-layer optimization
strategy Control of storage devices

Martín-
Martínez
et al. [15]

2013

Analysis of positive ramp
limitation control strategies for

reducing wind power
fluctuations

Reduction of aggregated
negative wind power ramps

Several ramp reduction
strategies are compared

Fluctuation mitigation
strategies

Rahimi et al.
[11] 2013 On the management of wind

power intermittency

Description of wind power
intermittency and reduction

approaches (storage)

Descriptive review of hyrbrid
approaches to reduction wind

power fluctuations

Storage technologies
(review)

Wang et al.
[28] 2011

Reduction of Power
Fluctuations of a Large-Scale

Grid-Connected Offshore
Wind Farm

Reduce power output
fluctuations after a severe

wind speed ramp

PID damping controller for
DFIG generators Turbine control

Tarroja et al.
[13] 2011

Spatial and temporal analysis
of electric wind generation

intermittency and dynamics

Spectral analysis of the effect
of aggregation of wind farms

on intermittency

Quantitative data-driven
analysis based on operating

data from S. California

Fluctuation mitigation
through aggregation

Hori et al.
[29] 2010

Disconnection Control of Wind
Power Generators for the

Purpose of Reducing
Frequency Fluctuation

Disconnect wind farms
based on turbulence level

New control scheme, validated
with model system Grid control

Sorensen
et al. [17] 2007 Power Fluctuations From

Large Wind Farms

Simulate ramps
and compare to

observational data

Coherence models for wind
farm simulation

Turbulence modeling for
wind farms

Current methods for forecasting wind speed or wind power can be grouped into
the following general approaches [30]: (1) Physical methods with parametric models of
the atmosphere [31], (2) statistical methods such times series models [32,33] and artificial
neural networks [34], (3) machine-learning approaches with either supervised or interactive
learning [35], and (4) hybrid methods combining different techniques in order to perform
short-term and medium-term predictions [36].

Among the different approaches, the Kalman filter (KF) method stands out in its
ability to provide accurate wind speed forecasts [37]. For instance, Poncela et al. [38] report
a recursive wind power forecasting system based on KF, where the parameters of the
filter are tuned with the use of an expectation-maximization algorithm. Liu et al. [39]
demonstrate the combination of an autoregressive integrated moving average (ARIMA)
model of the wind generation process with the KF method for wind speed prediction.
An experimental comparison of three forecasting methods for the one-step ahead wind
speed based on robust Kalman filtering is reported by Zuluaga et al. [40]. The robust KF
methods studied by the authors use the definition of irrational data (wind speed data
not physically possible), as well as unnatural data (wind speed data that produce low
wind output power), as outliers. These data are not processed in the KF algorithm and
are replaced by weighted previous states. Khosravi et al. [34] present a comparison of
machine-learning algorithms for predicting wind speed time series with different time
scales (5-min, 10-min, 15-min, and 30-min). Although the results are fair for one-step ahead
prediction purposes, the computational cost of the algorithms is not discussed. Judging by
the reported architecture of the predictors, involving the implementation of multi-layer
neural networks with up to 15 neurons per each layer for 10 layers, this approach implies
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the use of important computational resources, making it potentially difficult to implement
in real-time applications.

In the present work, the first practical demonstration of the FBC method, introduced
in Reference [20], will be presented, using KF-based forecasting approaches. In the method-
ology section, Section 2, Forecast-Based Curtailment will be reviewed, and a simple prob-
abilistic model for the detection efficiency of negative ramp events exceeding a certain
threshold is presented. A case will be made for the importance of analyzing the correla-
tion between the changes in power output and the corresponding forecast error. It will
be argued that naive forecast methods based on autoregressive techniques and similar
approaches typically produce a negative correlation, leading to unsatisfactory results in
the prediction of (negative) ramps. In the following subsection, the short-term forecast
methods used in this work will be discussed. All methods are based on the Kalman Filter
(KF) approach; the main points of distinction lie with the assimilation of exogenous data,
mostly stemming from an additional met tower lying upstream of the target tower. In the
results Section 3, the effect of correlation on the ability of a forecast algorithm to detect
incompliance events will be discussed. Realistic forecasting results for the site of interest
will be shown next. In the final results subsection, practical results of the FBC method,
based on site data and the forecasting methods implemented in this work will be presented.
The main findings of the work will be wrapped up and discussed in Section 4. Conclusions
and suggestions for future work will be provided in Section 5.

2. Methods and Data
2.1. Forecast-Based Curtailment (FBC)

In the following, a brief overview of FBC method will be provided, and some new
results, relevant to the present context, will be reported. For a detailed description of the
analytical framework of the FBC method, the reader is referred to Reference [20]. We start
our discussion by introducing the random variables

X = vn − vn−1, Y = vn+1 − vn, (1)

Xp = Pn − Pn−1, Yp = Pn+1 − Pn, (2)

which denote the changes in wind speed v and output power P between pairs of time
intervals tn−1, tn, and tn+1, respectively. The FBC method focuses on short-term changes,
so typically the time step ∆t = tn − tn−1 will be of the order of 1 to 10 min. tn−1 is the last
time step with a measured wind speed value; time steps tn and tn+1 lie in the future, so vn
and vn+1 have to be predicted. X and Y have an associated joint or bivariate probability
density function (pdf) fXY(x, y). Similarly, a bi-pdf can be defined for the changes in output
power: fXp ,Yp(xp, yp). As argued in Reference [20], for short time intervals (1–10 min),
the correlation between consecutive changes is generally negligible, and the bivariate pdf
therefore, factorizes: fXY(x, y) = fX(x) fY(y). For the 10-min observational data studied in
this work, this assumption continues to hold to a good approximation.

The wind speed values are converted to corresponding turbine power values by
applying the turbine power curve P(v), i.e., Pn = P(vn). For the purposes of this work,
it will be assumed that P(v) is a monotonically increasing function for the wind speed
range [vcut−in, vrated] and constant elsewhere (= 0 for v < vcut−in, = Prated, for v > vrated].
The considerations in this paper can be generalized to stochastic power curves [25]; al-
ternatively, power, rather than wind speed, can be used for the forecasting procedures.
However, for the sake of brevity, only wind speed forecasting and monotonic power curves
will be considered.

In the following, it will be assumed that negative changes in power can be tolerated
by the electricity grid only up to a critical slope value −α = (dP/dt)crit. Events with
dP/dt > −α will be referred to as (slope) compliant. For the purposes of the discrete
formulation, it is convenient to define the positive quantity ap = α∆t > 0. The variable
of primary interest is the power change in the second time interval, i.e., yp. If yp < −ap,
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the wind farm or turbine is said to be incompliant; however, often, this incompliance can
be avoided by a slight reduction (curtailment) of the output power at tn, resulting in a less
negative power change yp in the second time interval. Figure 1 shows the general idea of
the FBC method.

Figure 1. Basic idea of forecast-based curtailment: (a) Three events on the output power time line;
Pn−1 is the last measured event, Pn and Pn+1 lie in the future. (b) Compliance areas in the x-y-plane,
where the xp = Pn − Pn−1 and yp = Pn+1 − Pn.

2.1.1. Ideal Forecasts

In order to illustrate the idea we will first derive an expression for the FBC correction
in the case of ideal forecasts, i.e., P̂n = Pn and P̂n+1 = Pn+1. In the case of an incompliance
event, i.e., yp < −ap, the criterion for curtailing power at tn is for the average true slope
1
2 (xp + yp) to be larger than the critical slope −ap. Then the expression for the adjusted
power P′n at tn becomes

P′n =

{
Pn+1 + ap if Pm ≥ 0
Pn if Pm < 0,

(3)

where the curtailment margin Pm = 1
2 (xp + yp) + ap has been introduced. Equation (3),

applicable to the case yp < −ap, can be restated in a compact form in terms of the power
changes xp and yp:

x′p = xp + (yp + a)θ(xp + yp + 2ap), (4)

where θ(z) is Heaviside’s theta function. This expression can be easily extended to the
case of arbitrary y-values by applying the factor 1− θ(yp + ap). Taking into account that a
decrease in xp translates into a corresponding increase in yp, we have

x′p = xp − ∆xp = xp + [(yp + ap)θ(xp + yp + 2ap)](1− θ(yp + ap))

y′p = yp + ∆xp = yp − [(yp + ap)θ(xp + yp + 2ap)](1− θ(yp + ap))
, (5)

where the positive quantity ∆xp = −[(yp + ap)θ(xp + yp + 2ap)](1− θ(yp + ap)) has been
introduced. Equation (5) allows for a straightforward generation of a FBC-processed time
series for the case of ideal forecasts (x̂p = xp and ŷp = yp). Analytical expressions for the
FBC compliance fraction ρFBC

ρFBC =
N(yp < −ap ∧ y′p > −ap)

Nall
(6)

and the natural compliance fraction

ρ0 =
N(yp ≥ −ap)

Nall
(7)
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were derived in Reference [20] for simple and generalized Laplace-type, as well as Cauchy-
Lorentz power change distributions, under the assumption of vanishing correlation be-
tween subsequent power changes, and their validity was demonstrated with numerical
simulations. N(.) is the number of events fulfilling the logical condition in brackets,
and Nall is the total number of registered events (power changes). Laplace distributions
were found to be a good fit to empirical 1-min power change distributions of an operating
wind farm. It is also convenient to introduce the FBC efficiency ηFBC by

ηFBC =
ρFBC

1− ρ0
, (8)

which identifies the degree to which incompliance events are mitigated by the FBC method.
In Reference [20], analytical expression for the FBC curtailment cost, i.e., the energy not
served, were also derived. The energy cost of curtailing wind power based on forecasts for
a given critical or tolerable slope a was found to be very small, i.e., around two orders of
magnitude smaller than the cost for flat curtailment, i.e., the permanent reduction of output
power to a certain fraction of the potential output power at any given time step.

2.1.2. Considerations for Finite Forecast Accuracy and Correlation

As shown in Reference [20], a finite forecast accuracy can be mitigated quite effectively
for the idealized case of vanishing correlation between the wind speed or power changes
and the corresponding forecast errors. Then, the true critical slope a can be replaced
in the algorithm by an operational slope limit a′ = a − δa, resulting in the detection of
less negative changes and, consequently, in potentially higher curtailment losses. If, for
simplicity, it is assumed that the predicted wind speed changes x̂ and ŷ are contained
in the intervals [x − δa, x + δa] and [y− δa, y + δa], then it is easy to show that the true
curtailment margin Pm is always positive for predicted (ŷ < −a′) incompliance events
with a positive predicted curtailment margin P̂m. For simplicity, the subscript “p” has been
dropped, as all considerations apply equally to wind speed and power.

One key insight of the present work is, however, the observation that practical forecast-
ing techniques for short time horizons, which are often based on some version of time series
analysis, generally exhibit some degree of negative correlation between the changes of the
variable of interest and the forecast errors. This is particularly notorious for the (trivial)
case of persistence (i.e., for the model with x̂n+1 = xn), which leads to a perfect negative
correlation (x̂n+1 − xn+1 = −(xn+1 − xn)). Less trivial methods obviously improve on this
behavior, but the improvement is often less than spectacular.

As we will show below (Section 2.2), negative correlation has a profound impact on the
ability of an algorithm to forecast a given event, in the current context one where the wind
speed or power change two-steps ahead is more negative than a given threshold value.
The practical implication of a negative correlation between the wind speed changes and the
forecast error is the fact that the forecast variable does not vary symmetrically around the
true value anymore. For negative correlations, we then have ŷ ∈ [y− δa + y1, y + δa + y1],
where y1 is a positive quantity if the true event y is negative. If y1 is large, then the
necessary head room δa + y1 for ensuring a positive curtailment margin at incompliance
events may become prohibitively large. A practical workaround is to take a somewhat
more conservative position by reducing the power change x in the first interval in such
that way that the resulting change is equal to the critical slope, i.e., by setting x′ = −a′.
This strategy was used for all results obtained with the FBC algorithm (see Section 3.6).

2.2. Detection Efficiency for Incompliance Events

The probability for detecting an (incompliance) event, i.e., a specific instance with
y(0) < −a, can be written as the conditional probability for the predicted value to be smaller
than −a as well (ŷ < −a). Writing ŷ = y + δy, we have
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p(ŷ < −a | y(0)) =
∫ −a−y(0)

−∞
fY, δY(δy | y(0)) d(δy), (9)

where fY, δY(δy | y(0)) is the conditional probability density for observing a forecast error
δy, given a true change y(0):

fY, δY(δy | y(0)) = fY, δY(y(0), δy)
fY(y(0))

. (10)

fY,δY(δy, y(0)) is the bivariate probability density function (bi-pdf) for variables y and
δy, and fY(y(0)) is the marginal pdf for y(0). In the special case of vanishing correlation
between the variables (i.e., corr(δy, y(0)) = 0), the conditional probability density simply
reduces to the marginal density for δy. In this work, however, we will remain focused on
the general case of finite correlation.

We can easily state the total probability for detecting an incompliance event by multi-
plying the conditional probability p(ŷ < −a | y(0)) (Equation (9)) with the marginal density
for y(0) and integrating over dy(0):

P(ŷ < −a | y < −a) =
∫ −a

−∞
fY(y(0))

∫ −a−y(0)

−∞
fY,δY(δy | y(0)) d(δy) dy(0). (11)

Using Equation (10), we can simplify the former expression to read:

P(ŷ < −a | y < −a) =
∫ −a

−∞

∫ −a−y

−∞
fY, δY(δy, y) d(δy) dy, (12)

where the superscript (0) has been dropped for brevity. Therefore, the total probability for
detecting an incompliance event is simply obtained from a bi-dimensional integral over
the joint or bivariate pdf fY, δY(δy, y) for the variables y and δy. We can also calculate the
fraction of true positives from

rTP =
P(ŷ < −a | y < −a)

P(y < −a)
, (13)

where

P(y < −a) =
∫ −a

−∞
fY(y) dy (14)

is the true probability for the occurrence of an incompliance event. Equation (12) allows for
a geometric interpretation, which is highly useful for the interpretation of the efficacy of a
given forecasting method. For this interpretation, we turn to Figure 2, where the detection
region DTP = {(y, δy)| −∞ < y ≤ −a ∧−∞ < δy ≤ −a− y} for true positives has been
indicated, together with pictorial representations of bivariate pdfs for uncorrelated (Figure 2b)
and negatively correlated variables (Figure 2c), respectively.

It can be seen (Figure 2a) that only events (y, δy) contained in DTP lead to the correct
identification of an incompliance event, whereas events in the “lost” area go undetected.
It then becomes clear that designing a forecast method is about avoiding a large fraction
of the joint pdf for y and δy to fall within this lost area. In Figure 2b, representative
contours, say, for 95% of cumulative probability, of the joint pdf have been drawn for the
case of comparable variations in the forecast error and the wind speed changes (b.1) and
significantly smaller forecast errors (b.2). The events unaccounted for by the forecasting
system in case (b.1) are represented by the dark pie slice-shaped area; note that the fraction
of undetected events is proportional to the ratio of the dark area and the total area of the
circle. It can seen that even in this relatively stringent case, where the variability of both
y and δy is of the same order as a, the fraction of undetected events is relatively small.
The situation changes, however, quite drastically if a negative correlation exists between
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the two variables, as shown in Figure 2c. In this case, a significant fraction of all events
overlaps with the lost area; a large fraction of incompliance events then goes undetected.

Figure 2. Geometric interpretation of the condition for the detection of incompliance events (y < −a).
(a) Detection region DTP and lost area in the coordinate space spanned by the true wind speed
changes (horizontal axis) and the forecast error (vertical axis). (b) Non-correlated joint probability
distributions. (b.1) Similar variability of changes and forecast errors. (b.2) Forecasts errors about half
the size of the variations. (c) Negatively correlated forecast errors and wind speed changes.

In order to conduct a systematic assessment of the combined effect of forecast un-
certainty δy and the correlation between y and δy, bi-normal pdfs have been explored
first. Though empirical joint pdfs will be shown to be generally more complex, study-
ing bi-normal distributions provides a general feel for the situation and prepares the
reader for the discussion of the empirical results. Introducing normalized variables
ỹ = y/σy and δ̃y = δy/σy, the variability ratio κ = σy/σδy, and the correlation coeffi-
cient ρ = corr(y, δy) = cov(ỹ, δ̃y)κ, the joint bi-normal pdf can be written as:

fỸ, ˜δY(ỹ, δ̃y) =
κ

2π
√

1− ρ2
exp

(
− ỹ2 + κ2δ̃y2 − 2ρκỹδ̃y

2(1− ρ2)

)
(15)

2.3. Forecasting Methods

The prediction methods previously mentioned use the standard formulation of Kalman
Filters (KF), which implies that wind speed observations are assumed to have Gaussian
noise. KF is a recursive estimation algorithm capable of predicting future states of a system
based on a previous state. The standard KF formulation is as follows [41]:

x(k + 1) = Ax(k) + Bu(k) + w(k) (16)

y(k) = Cx(k) + v(k),

where x ∈ <n, u ∈ <m, and y ∈ <p are the state vector, the input vector, and the vector
of measured output signals, respectively; w is the vector of the state noise; v denotes the
measurement noise. Note that the letters x and y used for the state and the output vectors
are not to be confused with the variables x and y (identifying wind speed or power changes
for the first and second forecast interval, respectively) of the previous section. Noise vectors
are independent Gaussian processes with the following properties:

E
[(

w(k)
v(k)

)]
= 0 (17)

E
[(

w(k)
v(k)

)(
w′(l) v′(l)

)]
=

(
Qw Qwv
Q′wv Qv

)
δkl .
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The problem to be solved consists in estimating the system’s state from the previously
observed values: [

y(k− k0) y(k− k0 + 1) . . . y(k− 1) y(k)
][

u(k− k0) u(k− k0 + 1) . . . u(k− 1) u(k)
]
.

It is convenient to define a priori state estimation x̂− ∈ <n at step k, given knowledge
prior to step k of the observed values of y and u, and a posteriori state estimate at step
k, x̂ ∈ <n given the measurement of y(k). A priori and a posteriori errors are defined
as follows:

e−(k) = x(k)− x̂(k)− (18)

e(k) = x(k)− x̂(k). (19)

A priori estimate error covariance and a posteriori estimate error covariance are
calculated as follows:

P−(k) = E
[
e(k)−eT(k)−

]
, (20)

P(k) = E
[
e(k)eT(k)

]
. (21)

A formulation for the posteriori state estimation can then be written as:

x̂(k) = x̂(k)− + K(k)
(
y(k)− Cx̂(k)−

)
, (22)

which resembles a state observer. The gain K(k) is also called blending factor, and its
purpose is to minimize the a posteriori error covariance, Equation (21). This optimization
procedure, the details of which are not presented here for brevity, can be conducted by
substituting Equation (22) into the definition of the error, Equation (19), performing the
corresponding expectation operations, taking the derivative of the trace of the result with
respect to K, setting the result equal to zero and finally solving the equation for K. One
particular form of K that minimizes Equation (21) is given by:

K(k) = P(k)CT
(

CP(k)−CT + Qv

)−1
. (23)

Finally, the KF algorithm implies solving Equations (20) to (23) recursively. In this
research, we use the standard KF formulation described above to formulate six forecasting
approaches, five of which (methods KF1, 2, 3, 5, and 6) assimilate exogenous variables,
i.e., wind speed measurements from towers (T9 & T3) other than the target tower. The re-
maining method (KF4) only uses data from the tower at which future readings are to be
predicted (tower T2). The time step of all time series is 10-min. See Section 2.4.

The state matrix, as well as the input matrix of each proposed model, is obtained
by data fitting of an autoregressive integrated moving average model with exogenous
variables (ARIMAX) as a state space model of the wind generation process. The Akaike
Information Criterion (AIC) [42] is used as the evaluation method for data fitting of each
ARIMAX model of the six approaches. The KF parameters are tuned by considering
a prediction horizon of two samples, Np = 2. The optimization method for selecting
these parameters uses the mean-square error (MSE) of each approach as the cost function.
The search algorithm for the optimization is the interior-point method.

Table 2 shows a summary of the setup and the nominal performance of each model
as measured by its root mean squared (RMS) error value. RMS values are typically used
as figures of merit in the forecasting literature; however, as will become apparent below
(see Section 2.2), the RMS error is actually not a very good predictor of the capability of a
method to forecast wind speed changes one or two steps into the future, as required by the
FBC method.
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Table 2. KF model details and performance summary
(

Np = 2
)
. T2 is the target tower, and T3 and

T9 are additional towers providing exogenous wind speed data.

Model Details RMS [m/s]

KF1 x1(k + 1) = A1x1(k) + B1

[
T9(k)
T3(k)

]
+ K1[T2(k)− Cx1(k)] 0.5534

KF2 x2(k + 1) = A2x2(k) + B2T9(k) + K2[T2(k)− Cx2(k)] 0.5699
KF3 x3(k + 1) = A3x3(k) + B3T3(k) + K3[T2(k)− Cx3(k)] 0.5426
KF4 x4(k + 1) = A4x4(k) + K4[T2(k)− Cx4(k)] 0.7081
KF5 x5(k + 1) = A1x5(k) + B51

[
T9(k)
T3(k)

]
+ B52T9(k− 1) + K5[T2(k)− Cx5(k)] 0.6733

KF6 x6(k + 1) = A1x6(k) + B61T9(k) + B62T9(k− 1) + K1[T2(k)− Cx6(k)] 0.7145

As described in previous sections, the variables of interest to the FBC method are
the wind speed changes x and y. The predicted values (x̂ and ŷ) of these variables were
calculated as follows:

x̂ = v̂n,1 − vn−1,0
ŷ = v̂n+1,2 − vn,1

, (24)

where vn,1 is the wind speed prediction for time step tn obtained with either of the forecast
methods tuned for predictions one time step ahead; similarly, vn+1,2 is the prediction for
time step tn+1 forecast two time steps ahead. vn−1,0 is the last measured wind speed.

In addition to the KF methods summarized in Table 2, three ensemble methods, com-
bining the predictions of all methods assimilating exogenous data, have been constructed.
In those cases, no wind speed time series were constructed. Rather, the indices of detected
events indi = {index(ŷ)|ŷ < −a} by each of the methods (i ∈ [1, 2, 3, 5, 6]) were calculated,
and then the union of all detected events was formed: ind =

⋃
indi.

All methods introduced in this work were coded by the authors, based on the equa-
tions exhibited, using MATLAB.

2.4. Site Description and Wind Data

On-site tall tower wind resource data from the development phase of a commercial
wind farm in Mexico were used for model construction and validation. All towers at the site
were equipped with three pairs of redundant cup anemometers (class I for primary sensors,
standard for redundant) placed at 80, 60, and 40 m above ground level. The wind direction
was measured at two levels. Data were recorded in 10-min intervals; for each variable
the mean, maximum, minimum, and standard deviation were recorded. A subset of three
towers was selected for this study. One full year of concurrent information with only minor
data gaps was selected to avoid seasonal biases. There were few gaps in general, and those
only extend to a few hours in most cases. Apart from missing data, a few stretches of data
were eliminated because of poor data quality. Initial quality assurance was conducted in a
semi-automatic way using Windographer. Overall data recovery after quality assurance
was 99.9 %. Only 80-m wind speed data were used for the purposes of this study.

The relative location of the three towers used in this study (T2, the target tower, T9
the “upstream tower”, and the additional tower T3) are shown in Figure 3a; the wind roses
are exhibited in Figure 3b.
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Figure 3. Site characteristics. (a) Relative locations of meteorological towers used in this work.
(b) Wind roses from all towers.

3. Results & Discussion
3.1. Detection of Incompliance Events for Bi-Normal Joint Pdfs

As described above, some intuition can be built with regards to the impact of (a) fore-
cast accuracy and (b) correlation between changes in the primary variable (wind speed)
and the forecast error by studying bi-normal pdfs (Equation (15)). In Section 2.2, a case
was made for the importance of minimizing these correlations in the forecasting pro-
cess, in addition to the obvious requirement of minimizing the rms forecast error. Using
Equation (15), the absolute fractions of true positives and their rates relative to the true
number of events (the detection rate for true positives) can be calculated as a function
of the correlation coefficient ρ and the ratio κ = σy/σδy of the standard deviations of the
wind speed changes and the forecast error, respectively. Some representative results are
shown in Figure 4. The results of the numerical simulations obtained with two normally
distributed time series with T = 5× 106 time steps and a given correlation coefficient are
shown in open circles, whereas the results obtained from the integration of Equation (12)
using Equation (15) are shown as continuous lines. It can be seen that the theory and the
simulation produce identical results.

As expected intuitively, the probability of forecasting a large negative change (an
incompliance event) decreases with the size of the event (i.e., the tolerable negative slope),
and the overall behavior is similar for joint pdfs with negative (Figure 4a) or zero (Figure 4b)
correlation, albeit with a varying sensitivity with respect to the standard deviation ratio.
Given that the probability of occurrence of such events decreases, as well (not shown
for brevity), it is more relevant for the present context to inspect the detection efficiency,
again as a function of the size of the event (the tolerable slope). From the comparison of
Figure 4c,d, it can be seen that the case with negative correlation (Figure 4c) not only has
an overall smaller detection efficiency for a given standard deviation ratio, but also decays
much faster as a function of the tolerable slope, i.e., incompliance events with large negative
wind speed changes are more difficult to detect, compared to the uncorrelated case. This is
a fully consistent with the geometric interpretation offered in Figure 2. The practical impli-
cation is that, for detecting small wind speed changes, it is important to reduce the overall
forecast error, whereas, for larger incompliance events, it is more important to have a small
correlation coefficient. Evidently, this is the more relevant case for practical applications.

3.2. Realistic Forecasts: Exploratory Results

After these conceptual discussions we now turn to actual forecasts obtained for the
target site (T2). Figure 5 shows the true wind speed time series, as well as the forecast wind
speed obtained with one method assimilating exogenous data (KF1), and the one method
in this study using only on-site (local) data (KF4), both for a prediction horizon of two steps
into the future. As evidenced by the figure, the local method shows the usual characteristics
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associated with autoregressive techniques, a lagging forecast signal, emulating the true
wind speed time series, but always trying to catch up. Clearly, such a forecast is of very
limited use for detecting future changes, and for acting on them. The non-local method
(KF1), on the other hand, can be seen to actually predict the ramps, both upwards and
and downwards.
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Figure 4. Fraction of true positives observed (a,b) and the respective detection efficiencies (c,d),
for different combinations of the correlation coefficient ρ and the standard deviation ratio κ. Left col-
umn (a,c): Negative correlation coefficient. Right column (b,d): Zero correlation. Circles: Numerical
simulation. Solid lines: Theory.
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In order to illustrate how these findings translate into the relevant variables of the
FBC method, the two-step ahead wind speed changes (y) and the curtailment margin
(Pm), we refer to Figure 6, where results obtained with method KF1 are shown as an
example. It can be seen that three out of five incompliance events (taken to be events
with y < −a = −1 m/s) are correctly identified by the forecast. The curtailment margin
(Pm = 1

2 (x + y) + a) can be seen to be positive at all times, and the forecast margin P̂m
is close to the true value at most times, particularly at the detected incompliance events.
Therefore, this qualitative inspection suggests that incompliance events can indeed by
mitigated, using the FBC method, based on a realistic forecast method.
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Figure 6. Example time series of the true wind speed changes, the forecast wind speed changes,
as well as the true and the forecast curtailment margins, all for two time steps into the future, shown
for methods KF1 and KF4; see Table 2. The critical slope was set to a = 1 m/s in this example.

3.3. Correlations and Empirical Kernel Density Estimates for Different Forecast Methods

As discussed in Section 2.3, six versions of Kalman Filter-based forecast methods
(KF1–KF6) have been implemented in this work. Method KF1, 2, 3, 5, and 6 assimilate
exogenous data, whereas method KF4 only uses data from the target site. From Table 2,
it can be seen that the methods using exogenous data have similar standard errors (with
an rms error of the order of 0.55 m/s), whereas method KF4 has a somewhat higher error
(rms = 0.71 m/s), i.e., some 30% higher. While this does point to an inferior performance
by method KF4, the rms error does not fully capture the impact on the capability of the
method to predict future incompliance events. Based on the considerations described in
Section 2.2, it is convenient to inspect the empirical joint probability density function for
the wind speed changes y and the prediction error δy for those changes, both for two time
steps into the future.

The results for method KF4 and a representative method with exogenous data (KF2)
are shown in Figure 7. It can be seen that not only is the forecast error (vertical axis)
dramatically smaller for method KF2, but also is there a significant difference in the
correlation structure between the two methods. Whereas the bi-pdf of method KF4 is
reminiscent of a bi-normal pdf, the probability density for KF2 shows two distinctive lobes
or modes, and also a larger concentration of the density near the origin. Both methods show
a negative correlation between the wind speed changes and the forecast errors, but the effect
is much less pronounced in the case of method KF2. From the comparison of Figure 7 and
Figure 2, it can be concluded that a much larger fraction of the events will fall into the “lost”
area in Figure 2, i.e., correspond to incompliance events that go undetected. Method KF2,
on the other hand, while also showing some overlap with the lost area, mainly because of
the lobe with a high negative slope (of around −1), an important fraction of the data falls
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onto the lower lobe, with its much less negative slope, and thereby increases the probability
for the detection of incompliance events.
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Figure 7. Estimates of the joint probability density functions for variables y (wind speed changes)
and δy (forecast error of wind speed changes) for a forecast horizon of two steps into the future.
(left) Method KF2, (right) KF4.

3.4. Detection Efficiency and Bivariate Pdfs for Realistic Forecasts

The qualitative findings obtained from the inspection of the joint pdf for y and δy can
be translated into quantitative results by integrating the probability density according to
Equation (12). The results are shown, again for methods KF2 and KF4, in Figure 8, both of
the simulation (dots) and the numerical integration (solid lines) of the empirical joint pdf
for y and δy. The results of the simulation and the integration can be seen to be consistent,
with some discrepancies occurring at the high a-values, where the number of both the true
events and the forecast true positives are small numbers.
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Figure 8. Rates of true events and true positives, as well as their ratio (=detection efficiency) for
methods KFX2 (left) and KF4 (right).
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As evidenced by Figure 8, method KF2 clearly outperforms the local method KF4,
detecting about 20% of all true incompliance events at large a-values, as opposed to KF4,
which only detects about 10%.

3.5. Detection Efficiency and Curtailment Margin Prediction for Different Methods

After discussing the fundamental differences between a forecasting method (KF4)
based exclusively on data from the target site and a representative method using exogenous
data (KF2), it is interesting to inspect the performance of the different methods introduced
in this work. Apart from the true-positive rate (or detection efficiency), already introduced in
Section 2.2, it is convenient to also keep track of the false-positive rate, as the latter is an
indicative measure of the energy cost associated with forecast-based curtailment (FBC).

Figure 9 shows the true-positive (TP) and false-positive (FP) rates for all six KF-based
methods introduced in Table 2, as well as the three ensemble methods (see Section 2.3)
combining the predicted incompliance events from certain combinations of exogenous
methods. It can be seen (Figure 9a) that all exogenous methods outperform the local
method KF4 by far, with KF5 and KF6 showing both the highest detection efficiency for
all individual methods and the slowest decay with a, exhibiting an almost constant value
of nearly 40%. Interestingly, KF6, the method assimilating exogenous data from only the
upstream tower T9 but for two previous time steps, has a much lower false-positive rate
(∼0.1 for KF6 vs. ∼0.3 for KF5, Figure 9b), with KF6 exhibiting the highest performance
ratio (=true/false positives) of all methods at large a-values, being only second to KF2 for
small a-values. (Not shown for brevity.)

Combining all exogenous methods into an ensemble approach, a further boost to
the true-positive rate is obtained. All three ensemble methods achieve a detection rate
of around 50%, with KF12356 being the top-ranking method in term of its efficiency for
detecting incompliance events. In other words, nearly half of all incompliance events can be
detected two time steps ahead, as required by the FBC method. This is quite encouraging.
It terms of the cost-benefit ratio, the highest-ranking method is KF1236, given its relatively
low false-positive rate (see Figure 9b). It should be noted that, in the context of the FBC
method, given the quite low false-positive rates, the overall energy penalty is quite small
to begin with, and variations in the true/false positive ratio, therefore, have a small impact
on the overall performance of the FBC method.
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(2× 10 min) into the future. Left: True-positive rate vs. the critical slope a. Right: False-positive rate
vs. the critical slope a.
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3.6. Forecast-Based Curtailment

Now that the capability of the different forecast approaches to predict wind speed
changes two time steps into the future has been documented at some detail, it can be
explored how these results translate into the mitigation of incompliance events through
forecast-based curtailment (FBC). Two metrics will be discussed: (1) The FBC efficiency
(Equation (8)), and (2) the relative energy cost ∆E/E, where ∆E is the curtailed amount of
energy, and E is the uncurtailed energy production for the observation period (∼1a). Both
quantities depend on the critical or tolerable slope a introduced before.

The results can be inspected in Figure 10, together with those of the ideal case, i.e., for
perfect forecasts. The ideal FBC efficiency curve can seen to be nearly flat, with an average
value of around 80% and a slight nearly linear increase towards higher critical slope values.
While not all incompliance events can be mitigated with the FBC method, it is certainly
encouraging to see that a method relying solely on the self-regulation capabilities of a
wind turbine should be able to mitigate most of the events that might be of concern to the
operator of the electric grid. The associated energy penalty for the ideal case is very small,
about 0.2% for a critical slope a of 1 m/s and practically zero for slopes of 2 m/s or higher.
(It should be remembered that a is always taken as a positive quantity, and all incompliance
events correspond to y < −a.) This is particularly noteworthy in the light of the common
practice of utilities or independent system operators to require a flat curtailment of wind
power plants during periods of low regulation reserves (i.e., a restriction to a maximum
power output below rated power, or reduction by a constant factor), which may result in
very substantial energy penalties. (See Reference [14] for an introduction to the subject
and Reference [20] for a systematic comparison between the energy cost of FBC and flat
curtailment.)
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Figure 10. FBC results for all methods. Left: FBC efficiency, right: curtailment cost.

Not unexpectedly, the practical forecast methods implemented in this work do not
quite live up to the expectations of the ideal method, but their contributions are still
fairly substantial. As before, the ensemble methods constructed from the methods using
exogenous data fare best, with an FBC efficiency of around 35%, as shown in Figure 10.
The FBC efficiency is nearly independent of the critical slope a, with only a slight increase
towards larger a-values. Interestingly, the reference method (KF4), based on measurement
data from the target tower alone, not only fails to improve compliance but even decreases it,
as demonstrated by its negative FBC efficiency in Figure 10. This is readily explained in terms
of the unfavorable ratio between false and true positives of the method; see Figures 9 and 11.
Given that the rate for false positives is about one order of magnitude higher than the rate of
true positives (which is only about 10%), there are many events that lead to overcorrection.
This stresses the need for exogenous data, as successfully demonstrated in this work.
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logarithmic ordinate.

4. Discussion and Practical Implications

As shown in the previous section, the forecasting methods used in this work assimilate
exogenous data from two meteorological towers in addition to the target tower to accurately
forecast the wind speed one and two time steps ahead; one of the extra towers is located at
an upstream position with respect to the target tower, considering the predominant lobe of
the bi-modal wind direction distribution at the site. An additional method, using only on-
location records from the target tower, was used for reference purposes. The assimilation
of exogenous data dramatically boosts the capability of predicting wind speed changes,
particularly in the critically important case of two-time-steps-ahead forecasts, compared
to the reference method. While the reference method detects only about 10% of large
(δws < −1 m/s) negative wind speed (ws) changes, the highest-ranking methods with
exogenous data detect up to 40% of such events, while producing only about 20% false
positives. The detection efficiency for incompliance events can be further boosted by
building ensemble methods, which combine the predicted incompliance events of several
exogenous methods, leading to a detection efficiency of about 50%.

The application of these forecasts to the FBC method translates into similar results
for the FBC efficiency ηFBC, defined as the additional compliance achieved by the FBC
method, divided by the natural incompliance fraction, at any given critical slope value.
ηFBC measures the capability of mitigating naturally occurring incompliance events. For the
case of the target tower studied in this work, the ideal FBC efficiency is around 80%, where
it is assumed that the wind speed changes one and two time steps ahead can be predicted
perfectly. For the highest-ranking method implemented in this work, based on an ensemble
approach, the realistic FBC efficiency is about 35%, i.e., a little below half the ideal value.

The key advantage of the FBC method, as opposed to other curtailment strategies,
such as flat curtailment (e.g., methods reducing power output by a constant factor or
limiting power to a constant maximum) or fixed positive ramp rate limitations, is its very
low energy penalty. Particularly at high critical slopes, where compliance matters the most,
the energy penalty is of the order of 0.1% for all methods; even for very small tolerable
slopes, the curtailment cost is well below 1%. These numbers have to be compared with
the tens of percents of energy which are lost by conventional curtailment approaches
under similar conditions. Battery energy storage systems (BESS), finally, are well suited to
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mitigate negative ramps but represent a significant upfront investment. A brief summary
of the methods for ramp control is given in Table 3.

Table 3. Comparison of the FBC method vs. other strategies for short-term ramp control.

Method Advantages Disadvantages

FBC (this work) Very low energy penalty Requires upstream measurements
Flat curtailment No instrumentation/investment required High energy penalty

Positive ramp limit No instrumentation/investment required Moderate to high energy penalty
BESS Low to moderate energy penalty High upfront investment

The FBC efficiency can be further boosted by activating the FBC algorithm at operational
critical slope values that are less negative than the true system limit. In the indicative case
of triggering curtailment at 75% of the true critical value, the FBC efficiency is increased to
over 40% at high slopes, but the energy penalty now increases more drastically (compared
to the variations among forecast methods), while still remaining well below 1% for relevant
slope values.

As pointed out before, the FBC method critically relies on the capability of forecasting
future wind speed changes one, and more importantly, two time steps ahead. In this work,
it was argued that this capability is typically limited by the negative correlation between the
wind speed changes and the corresponding forecast errors. A simple probabilistic model
was developed to demonstrate and explore this effect for idealized joint probability density
functions (bi-pdfs) for the changes and forecast errors, and a geometrical explanation was
offered. The combined effect of correlation and forecast error was explored with bi-normal
pdfs, and the numerical simulations were found to be fully consistent with the theory.
Practical bi-pdfs are not bi-normal but show a qualitatively similar pattern for the case of
the local forecast method (i.e., the one without exogenous data). Not only is the forecast
error distribution much wider for the local method than for the methods with exogenous
data, but also is there a strong negative correlation. The exogenous methods, on the other
hand, were found to display a bi-modal structure in their joint probability density functions
for the changes and forecast errors, with one of the lobes showing a more narrower error
distribution. This translates into a much higher detection efficiency for incompliance
events, as was demonstrated by applying the probabilistic model to the empirical bi-pdf.

5. Conclusions and Outlook to Future Work

The present work represents the first practical demonstration of a novel method for
mitigating negative ramps in wind turbine power, previously introduced by one of the
authors. This method, termed Forecast-Based Curtailment (FBC), relies on the accurate
forecast of wind speed or power changes one and two steps into the future; wind speed
forecasting was used in the present work. FBC only uses the self-regulating capacity
of wind turbines and does not require external storage devices, such as Battery Energy
Storage (BES) systems, although a combination with BES systems is possible. The FBC
focuses on the detection of incompliance events, where the wind speed or power change (or
tolerable slope) is more negative than a preset value; this value will typically depend on
the requirements of the system operator of the electric grid.

It was shown in this paper that about 40% of all incompliance events can be mitigated,
at an energy cost of only about 0.1%. This mitigation efficiency increases somewhat towards
large tolerable slopes (where avoiding incompliance is more critical), but the increase is
small. While a mitigation efficiency for incompliance events of about 40% as demonstrated
in this work, at a negligible energy cost, can be considered a substantial improvement
over traditional curtailment schemes, it will depend on the specific case if these mitigation
figures are enough or not. An obvious extension of the method is the combination with
an energy storage system, such as a BESS, which can be downsized compared to the base
case with no ramp mitigation method, leading to a more competitive economic proposal.
As an alternative, the BESS could be left at its original capacity, but now being allowed to
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provide additional services and increase its value stack. Such options will be explored in
follow-up work.

A further improvement of the FBC method may be possible even without building
FBC-BESS hybrid systems, by assimilating additional upstream data. In the current work,
exogenous data were limited to one upstream tower located at a distance of about 11 km,
which is equivalent to a naive (i.e., ballistic time-of-flight) lead time of about 10 min (i.e., one
time step) for a wind speed of 8 m/s and two time steps for 4 m/s. This somewhat limits the
capability of predicting two time steps ahead. Furthermore, upstream measurements were
available only for the (predominant) southern lobe of the wind rose, not for the (minor)
northern part. Future improvements of the method will explore forecasting approaches
that fully exploit the predictive power of upstream measurements in more generalized
wind direction distributions.
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