
applied
sciences

Article

Performance Evaluation of RNN with Hyperbolic Secant in
Gate Structure through Application of Parkinson’s
Disease Detection

Tomohiro Fujita, Zhiwei Luo, Changqin Quan *, Kohei Mori and Sheng Cao

����������
�������

Citation: Fujita, T.; Luo, Z.; Quan, C.;

Mori, K.; Cao, S. Performance

Evaluation of RNN with Hyperbolic

Secant in Gate Structure through

Application of Parkinson’s Disease

Detection. Appl. Sci. 2021, 11, 4361.

https://doi.org/10.3390/app11104361

Received: 13 April 2021

Accepted: 9 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of System Informatics, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan;
tomohiro@cs11.cs.kobe-u.ac.jp (T.F.); luo@gold.kobe-u.ac.jp (Z.L.); mori@cs.kobe-u.ac.jp (K.M.);
jasonsosen@gold.kobe-u.ac.jp (S.C.)
* Correspondence: quanchqin@gold.kobe-u.ac.jp

Abstract: This paper studies a novel recurrent neural network (RNN) with hyperbolic secant (sech)
in the gate for a specific medical application task of Parkinson’s disease (PD) detection. In detail, it
focuses on the fact that patients with PD have motor speech disorders, by converting the voice data
into black-and-white images of a recurrence plot (RP) at specific time intervals and constructing the
detection model that combines RNN and convolutional neural network (CNN); the study evaluates
the performance of the RNN with sech gate compared with long short-term memory (LSTM) and
gated recurrent unit (GRU) with conventional gates. As a result, the proposed model obtained similar
results to LSTM and GRU (an average accuracy of about 70%) with less hyperparameters, resulting
in faster learning. In addition, in the framework of the RNN with sech in gate, the accuracy obtained
by using tanh as the output activation function is higher than using the relu function. The proposed
method will see more improvement by increasing the data in the future. More analysis on the input
sound type, the RP image size, and the deep learning structures will be included in our future work
for further improving the performance of PD detection from voice.

Keywords: recurrent neural network (RNN); hyperbolic secant (sech) function; recurrence plot;
Parkinson’s disease

1. Introduction

In recent years, the recurrent neural network (RNN) has been frequently used in time
series data processing such as in medical information processing, etc. The RNN has a
recursive structure inside and can handle variable lengths of input data.

Generally, since it is difficult for a Simple RNN (Vanilla RNN) [1] with a simple
structure to learn the time series data with long-term dependencies, two types of RNNs
with complex gated structures to control the required information are proposed; they are
long short-term memory (LSTM) [2,3] and gated recurrent unit (GRU) [4], respectively.
However, while the performance of RNNs with gated structures is improved, since back-
propagation through time (BPTT) used for learning works by unrolling all input time steps,
the more parameters there are in the RNN, the more memory is required and the higher
the calculation costs. In order to solve this problem, many papers have been published
that attempted to simplify LSTM and GRU [5–8]. In our previous research, we proposed
SGR (simple gated RNN) that uses the parts of gate structure of LSTM and GRU for Simple
RNN to reduce parameters and realize faster learning [9]. In addition, we also proposed
an RNN that introduced a new activation function “hyperbolic secant (sech)” into the
gate [10], which is even simpler than Simple RNN (Vanilla RNN).

The objective of this paper is to evaluate this RNN model with sech in the gate
through a specific medical application task. In detail, the task here is to detect Parkinson’s
disease (PD) from the sound information of subjects. PD is the second most common

Appl. Sci. 2021, 11, 4361. https://doi.org/10.3390/app11104361 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/app11104361?type=check_update&version=1
https://doi.org/10.3390/app11104361
https://doi.org/10.3390/app11104361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11104361
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4361 2 of 18

neurodegenerative disease after Alzheimer’s disease [11]. The detection of PD is very
important for medical treatments as well as improving the patient’s quality of live (QOL).
Focusing on the fact that patients with PD have motor speech disorders, here we ask
subjects to pronounce a voice of /a/ for about 4 to 10 s to acquire data. In order to check
the periodicity of the voice, the sound data are then converted into a recurrence plot (RP)
at specific time intervals. A recurrence plot (RP) can visualize a periodic nature and chaos
in time series. The generated RPs are set as input to a neural network model that combines
the convolutional neural network (CNN) and RNN for classification.

In the experiments, in order to evaluate the performance of the RNN with sech gate
structure, we compared it with LSTM and GRU with conventional gate structures. We
also compared the performance of this RNN when the used output activation function
was changed between tanh and relu. For performance evaluation, accuracy, F1-score
and Matthews correlation coefficient (MCC) were used. As a result, the proposed model
obtained similar results to LSTM and GRU (an average accuracy of about 70%) with less
hyperparameters, contributing to faster learning. In addition, in the framework of the RNN
with sech in gate, the accuracy obtained by using tanh as the output activation function is
higher than using the relu function.

The outline of the paper is as follows: Section 2 discusses related works. Section 3
explains the framework of PD detection models and data preprocessing. The details of the
experiments, the results, and discussion are described in Section 4. Section 5 is the conclusions.

2. Related Work

In this section, we review important points regarding related works on RNNs and
CNNs and the recurrence plot used in our study.

As mentioned in Section 1, recent RNNs generally refer to RNNs with weighted
gate structures such as LSTM and GRU, rather than Simple RNN (or Vanilla RNN) with
simple structures. This is because the RNN with gate structure succeeded in partially
solving a vanishing gradient problem. When the vanishing gradient occurs, the error
becomes smaller rapidly as it goes back layers, and the learning does not progress well.
The gate structure deals with this problem by controlling the vanishing gradient with
weight parameters. However, the weight parameters increase the calculation cost, and
the analysis is difficult. To address these problems, many papers have been written that
attempted to reduce the parameters of the RNN [5–8]. As in our previous study, we
proposed SGR that reduced weighted gates while maintaining the performance. However,
due to having weighted gates, the calculation costs were not significantly reduced, and the
analysis remained difficult [9]. Therefore, we proposed a new RNN model that reduced
parameters by removing the conventional weighted gate and using a new gate structure
with scalar value controlling the vanishing gradient and the sech function as the activation
function [10]. Regarding this RNN using the sech function, in [10], the task performance
was lower than that of conventional gated RNNs (such as LSTM and GRU) due to the
characteristics of the specific task and tanh activation function. However, in a binary
classification task in natural language processing (NLP), it was found that, despite the
parameter of about 1/6 or less, the performance was comparable to that of conventional
gated RNNs without using normalization methods such as batch normalization. It is
then important to clarify the performance quantity for more tasks such as time series data
processing and image processing.

In this paper, we confirm the performance difference in a practical medical application
task between this RNN with sech function and conventional gated RNNs and evaluate
it. Therefore, in this study, we set the detection of Parkinson’s disease as the practical
medical application task. In time-frequency analysis for analyzing time series data, it
is common to use the short-time Fourier transform (STFT). STFT divides a time signal
into short segments of equal length and computes the Fourier transform separately on
each segment. However, Fourier transform has the drawback of lower resolution for non-
stationary signals. Since the voice of PD patients is non-stationary due to a faint or unstable

Appl. Sci. 2021, 11, 4361 3 of 18

voice caused by dysarthria, in our study, we attempt voice analysis using a recurrence plot
(RP) that can process even non-stationary signals. As the way to represent chaotic time
series and visualize a periodic nature, a recurrence plot (RP) was introduced by Eckmann
et al. [12]. There are various methods for generating recurrence plots, such as plotting
points that are smaller than the arbitrary threshold or generating recurrence plots using
percentile. Compared to the Fourier transform, which is not suitable for describing systems
in which independent basis functions cannot be properly selected, RP can handle both
non-linear and unsteady states [13]. Additionally, RP can detect even faint modulations of
animal voice signals that cannot be captured by conventional time-frequency analysis and
is a very powerful tool [14].

Recently, there has been increasing research in which recurrence plot images are
classified using a CNN [15,16], which is used for the image recognition tasks [17–19].
Furthermore, there is a Parkinson’s disease identification study which used a CNN and
recurrence plots of handwriting dynamics data, too [20]. Therefore, in this paper, we
propose a Parkinson’s disease voice detection model that combines a CNN and RNN and
use it to evaluate RNNs.

Related to other studies on PD detection, in the machine learning approach, there is a
study that used embedding extracted from a deep neural network named x vectors and
classified it using cosine distance, cosine distance preceded by Latent Dirichlet Allocation
(LDA), and Polylingual Latent Dirichlet Allocation (PLDA) [21]. Additionally, in [22], four
machine learning methods (k-nearest neighbor, multi-layer perceptron, optimum-path
forest, and support vector machine) were used with 18 feature extraction techniques for the
detection of PD. In the deep learning approach, in [23], multiple artificial neural networks
(ANNs) were used with 26 speech features for PD detection, and principal component
analysis (PCA) and self-organizing map (SOM) were applied for feature selection. While
in [24], a deep neural network (DNN) was applied for PD severity prediction using 16
biomedical voice measures. In this research, the calculation costs of voice preprocessing
are relatively high, and multiple voice features are required. Compared with this research,
in our study, we propose to use an RP which only calculates the percentile and absolute
distance so as to reduce the calculation cost and make it easy for implementation. By using
an RP generated from simple vowel voice, our approach uniquely detects PD with the
model combining the CNN and RNN. To the best of our knowledge, detecting PD with the
model combining the CNN and RNN using an RP generated from simple vowel voice has
not been referred before.

3. The Model Description and Data Preprocessing

This section describes neural network models used in this paper in detail.

3.1. RNN Models
3.1.1. Long Short-Term Memory (LSTM)

As is shown in Figure 1, a layer of typical LSTM is defined by Equations (1)–(6)
as follows:

zt = tanh(Wzxt + Uzht−1 + bz) (1)

it = sigmoid(Winxt + Uinht−1 + bin) (2)

ot = sigmoid(Woutxt + Uoutht−1 + bout) (3)

ft = sigmoid
(

W f orxt + U f orht−1 + b f or

)
(4)

ct = it ◦ zt + ft ◦ ct−1 (5)

ht = tanh(ct) ◦ ot (6)

where zt is an input to be added to cell state, ct is an internal cell state, ht is a hidden state at
next time. Additionally, it, ot, ft represent outputs from input gate, output gate, and forget
gate, respectively. From here, unless otherwise specified, the operator symbol ◦ represents

Appl. Sci. 2021, 11, 4361 4 of 18

the Hadamard product, W, U ∈ Rm×n are weighting matrices, b ∈ Rn is bias, regardless
of the subscript, and the explanations are omitted hereafter. In addition, xt is an input at
time step t, ht−1 is a hidden state at time step t− 1, and ht is a hidden state at time step t in
this paper.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 17

= ∘ + ∘ , (5)ℎ = tanh() ∘ , (6)

where is an input to be added to cell state, is an internal cell state, ℎ is a hidden
state at next time. Additionally, , , represent outputs from input gate, output gate,
and forget gate, respectively. From here, unless otherwise specified, the operator symbol ∘ represents the Hadamard product, , ∈ × are weighting matrices, ∈ is
bias, regardless of the subscript, and the explanations are omitted hereafter. In addition,

 is an input at time step , ℎ is a hidden state at time step − 1, and ℎ is a hidden
state at time step in this paper.

Figure 1. A layer of typical LSTM. LSTM has three gates with weight parameters to control the
information that should be retained. The biases are omitted here.

The input gate controls input to cell state, using the value of 	(0 < 	 < 1) which is
the output from Equation (2) so that it can be selectively stored from the input. Addition-
ally, the output gate controls the output from cell state using the value of 	(0 < 	 < 1)
which is the output from Equation (3). Finally, the forget gate controls the internal cell
state directly by 	(0 < 	 < 1) which is the output from Equation (4) [2,3].

3.1.2. Gated Recurrent Unit (GRU)
As is shown in Figure 2, a layer of GRU is defined by Equations (7)–(10) as follows: = sigmoid(+ ℎ +), (7)= sigmoid(+ ℎ +), (8)ℎ = tanh + (∘ ℎ) + , (9)ℎ = ∘ ℎ + (1 −) ∘ ℎ , (10)

where , are outputs from reset gate and update gate. The reset gate controls how
much the previous hidden state ℎ is considered to create a new hidden state ℎ , using
the gate output 	(0 < < 1) which is the output from Equation (7). Similarly, the up-
date gate is in control of deciding how much the new hidden state ℎ is mixed to generate
the next hidden state	ℎ , using the gate output 	(0 < < 1) which is the output from
Equation (8) [4]. The performance of GRU compared to that of LSTM depends on the
learning task, while the required number of weight parameters for the same number of
units is 3/4 that of LSTM.

Figure 1. A layer of typical LSTM. LSTM has three gates with weight parameters to control the
information that should be retained. The biases are omitted here.

The input gate controls input to cell state, using the value of it (0 < it < 1) which is
the output from Equation (2) so that it can be selectively stored from the input. Additionally,
the output gate controls the output from cell state using the value of ot (0 < ot < 1) which
is the output from Equation (3). Finally, the forget gate controls the internal cell state
directly by ft (0 < ft < 1) which is the output from Equation (4) [2,3].

3.1.2. Gated Recurrent Unit (GRU)

As is shown in Figure 2, a layer of GRU is defined by Equations (7)–(10) as follows:

rt = sigmoid(Wrxt + Urht−1 + br) (7)

ut = sigmoid(Wuxt + Uuht−1 + bu) (8)

h̃t = tanh
(
Wgrxt + Ugr(rt ◦ ht−1) + bgr

)
(9)

ht = ut ◦ ht−1 + (1− ut) ◦ h̃t (10)

where rt, ut are outputs from reset gate and update gate. The reset gate controls how much
the previous hidden state ht−1 is considered to create a new hidden state h̃t, using the gate
output rt (0 < rt < 1) which is the output from Equation (7). Similarly, the update gate is in
control of deciding how much the new hidden state h̃t is mixed to generate the next hidden
state ht, using the gate output ut (0 < ut < 1) which is the output from Equation (8) [4].
The performance of GRU compared to that of LSTM depends on the learning task, while the
required number of weight parameters for the same number of units is 3/4 that of LSTM.

3.1.3. Our Proposed RNN Model

In the conventional method, there are various problems such as an increase in the
amount of calculation, difficulty in the analysis of the gate structure, and dependence
on data due to batch normalization. Therefore, in order to solve these problems in the
conventional RNNs, we constructed the new structure using the sech function as the
gate structure [10]. In the conventional gate structure, if the gate structure has weight
parameters, the calculation cost is very high, but if it does not have weight parameters,
scaling for negative and positive values does not work properly, because the sigmoid

Appl. Sci. 2021, 11, 4361 5 of 18

function is not an even function. Hence, instead of the sigmoid function, we used the
sech function that is an even function and has an output range from 0 to 1 for the gate
structure [10].

The sech function is defined by Equation (11) as follows:

sech(x) = 2/
(
ex + e−x) (11)

Additionally, differentiating (11) is defined by Equation (12) as follows

d
dx

(sech(x)) = −sech(x)·tanh(x) (12)

Figure 3 shows a graph of the sech function and sech’s differentiated function.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17

Figure 2. A layer of GRU. GRU controls how much information is retained by two gates, reset gate
and update gate. The biases are omitted here.

3.1.3. Our Proposed RNN Model
In the conventional method, there are various problems such as an increase in the

amount of calculation, difficulty in the analysis of the gate structure, and dependence on
data due to batch normalization. Therefore, in order to solve these problems in the con-
ventional RNNs, we constructed the new structure using the sech function as the gate
structure [10]. In the conventional gate structure, if the gate structure has weight parame-
ters, the calculation cost is very high, but if it does not have weight parameters, scaling for
negative and positive values does not work properly, because the sigmoid function is not
an even function. Hence, instead of the sigmoid function, we used the sech function that
is an even function and has an output range from 0 to 1 for the gate structure [10].

The sech function is defined by Equation (11) as follows: sech() = 2/(+). (11)

Additionally, differentiating (11) is defined by Equation (12) as follows (sech()) = −sech() ∙ tanh(). (12)

Figure 3 shows a graph of the sech function and sech’s differentiated function.

Figure 3. A graph of the sech function and sech’s differentiated function (cited from [10]). Sech
function is even function and has output range from 0 to 1.

Figure 2. A layer of GRU. GRU controls how much information is retained by two gates, reset gate
and update gate. The biases are omitted here.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17

Figure 2. A layer of GRU. GRU controls how much information is retained by two gates, reset gate
and update gate. The biases are omitted here.

3.1.3. Our Proposed RNN Model
In the conventional method, there are various problems such as an increase in the

amount of calculation, difficulty in the analysis of the gate structure, and dependence on
data due to batch normalization. Therefore, in order to solve these problems in the con-
ventional RNNs, we constructed the new structure using the sech function as the gate
structure [10]. In the conventional gate structure, if the gate structure has weight parame-
ters, the calculation cost is very high, but if it does not have weight parameters, scaling for
negative and positive values does not work properly, because the sigmoid function is not
an even function. Hence, instead of the sigmoid function, we used the sech function that
is an even function and has an output range from 0 to 1 for the gate structure [10].

The sech function is defined by Equation (11) as follows: sech() = 2/(+). (11)

Additionally, differentiating (11) is defined by Equation (12) as follows (sech()) = −sech() ∙ tanh(). (12)

Figure 3 shows a graph of the sech function and sech’s differentiated function.

Figure 3. A graph of the sech function and sech’s differentiated function (cited from [10]). Sech
function is even function and has output range from 0 to 1.

Figure 3. A graph of the sech function and sech’s differentiated function (cited from [10]). Sech
function is even function and has output range from 0 to 1.

As is shown in Figure 4, a layer of the RNN with sech gate structure with the highest
performance in the paper [10] is defined by Equations (13)–(15) as follows:

h̃t = sech(aht−1) ◦ ht−1 (13)

ht = (Wxxt + bx) + h̃t (14)

Appl. Sci. 2021, 11, 4361 6 of 18

ot = act(ht) (15)

where a is a scalar value, which is introduced as a parameter for controlling the degree of
vanishing gradient. Additionally, the output to the lower layer is represented by ot, and
act is activation function. Hereinafter, for the sake of simplicity, the RNN with sech gate
structure is referred to as “RNN-SH”.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 17

As is shown in Figure 4, a layer of the RNN with sech gate structure with the highest
performance in the paper [10] is defined by Equations (13)–(15) as follows: ℎ = sech(ℎ) ∘ ℎ , (13)ℎ = (+) + ℎ , (14)= act(ℎ), (15)

where is a scalar value, which is introduced as a parameter for controlling the degree
of vanishing gradient. Additionally, the output to the lower layer is represented by ,
and act is activation function. Hereinafter, for the sake of simplicity, the RNN with sech
gate structure is referred to as “RNN-SH”.

Figure 4. A layer of RNN-SH (cited from [10]). The smaller scalar value is, the larger the hidden
state and the gradient are after passing through the gate, and the larger is, the smaller they are.
This controls the amount of retained information and the degree of vanishing gradient. The
biases are omitted here.

3.2. Parkinson’s Disease Detection
3.2.1. Voice Data Preprocessing and Recurrence Plot Creation

Here, we explain how to preprocess voice data and create recurrence plots. The voice
data used in our experiments are recordings of the voice/a/ including men and women for
about 4 to 10 s. Regardless of the recording, all voice data are converted to monaural,
16,000 Hz, and then, processing to create RPs is started, because voice data are recorded
in various environments. Additionally, all voice data are quantized in 16 bits.

The preprocessing of voice data before creating RPs is as follows:
1. Delete the silent section before and after voice data: In order to avoid the influence of

voice volume, all voice data are normalized so that the maximum amplitude is the
expressible maximum value, and the sections of −40 dB or less are deleted only from
before and after the sound.

2. Furthermore, delete the first and last of the above voice data for 0.1 s: This was be-
cause the first and last sounds after deleting the silent sections were often unstable.
Next, the procedure of creating recurrence plots is as follows:

1. Divide the above preprocessed voice data into 0.01 s sections.
2. Immediately before creating the recurrence plot, normalize the sound of 0.01 s section

so that it becomes [−1, 1], and then plot points with a distance smaller than the 35th
percentile in 0.01 s section. The reason for using the 35th percentile is that the accu-
racy was highest when the 35th percentile was used in the experiments, which is de-
scribed later.

Figure 4. A layer of RNN-SH (cited from [10]). The smaller scalar value a is, the larger the hidden
state and the gradient are after passing through the gate, and the larger a is, the smaller they are. This
a controls the amount of retained information and the degree of vanishing gradient. The biases are
omitted here.

3.2. Parkinson’s Disease Detection
3.2.1. Voice Data Preprocessing and Recurrence Plot Creation

Here, we explain how to preprocess voice data and create recurrence plots. The voice
data used in our experiments are recordings of the voice/a/ including men and women
for about 4 to 10 s. Regardless of the recording, all voice data are converted to monaural,
16,000 Hz, and then, processing to create RPs is started, because voice data are recorded in
various environments. Additionally, all voice data are quantized in 16 bits.

The preprocessing of voice data before creating RPs is as follows:

1. Delete the silent section before and after voice data: In order to avoid the influence of
voice volume, all voice data are normalized so that the maximum amplitude is the
expressible maximum value, and the sections of −40 dB or less are deleted only from
before and after the sound.

2. Furthermore, delete the first and last of the above voice data for 0.1 s: This was
because the first and last sounds after deleting the silent sections were often unstable.

Next, the procedure of creating recurrence plots is as follows:

1. Divide the above preprocessed voice data into 0.01 s sections.
2. Immediately before creating the recurrence plot, normalize the sound of 0.01 s section

so that it becomes [−1, 1], and then plot points with a distance smaller than the
35th percentile in 0.01 s section. The reason for using the 35th percentile is that the
accuracy was highest when the 35th percentile was used in the experiments, which is
described later.

3. Compress the generated black-and-white RP with 160 × 160 image size to 20 × 20
using bilinear interpolation. This may deteriorate the accuracy, but it is carried out in
consideration of memory efficiency of Video Random Access Memory (VRAM) when
inputting to the neural network.

4. Repeat above 1–3 until all divided voice data become recurrence plots. However, if a
fraction less than 0.01 s appears in the last section, it will be rounded down.

Appl. Sci. 2021, 11, 4361 7 of 18

3.2.2. Parkinson’s Disease Detection Model

Figure 5 shows the structure of the Parkinson’s disease detection model. The CNN
model, RNN model, and output layer are processed in this order for detection. Relu is
used as the activation function in the CNN model, but for each RNN, a suitable activation
function is used (tanh or relu).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 17

3. Compress the generated black-and-white RP with 160 × 160 image size to 20 × 20
using bilinear interpolation. This may deteriorate the accuracy, but it is carried out
in consideration of memory efficiency of Video Random Access Memory (VRAM)
when inputting to the neural network.

4. Repeat above 1–3 until all divided voice data become recurrence plots. However, if a
fraction less than 0.01 s appears in the last section, it will be rounded down.

3.2.2. Parkinson’s Disease Detection Model
Figure 5 shows the structure of the Parkinson’s disease detection model. The CNN

model, RNN model, and output layer are processed in this order for detection. Relu is
used as the activation function in the CNN model, but for each RNN, a suitable activation
function is used (tanh or relu).

Figure 5. The structure of Parkinson’s disease detection model. The input image size (RP) is 20 ×
20, and the relu was used as the activation function after each output of the convolutional layer. In
order to prevent overfitting, dropout is applied immediately after max pooling and before output
layer. If the RNN has two layers, dropout is applied before the RNN of the second layer too. The
size input to RNN is 64 × 5 × 5 (= 1600) because the output from the CNN is flattened. The model
output is binary (2 classes), and the output is generated after all RPs have been input.

4. Performance Evaluation
4.1. Outline of Experiments

In order to evaluate the performance of each RNN using the recurrence plots and the
model constructed in Section 3, experiments were performed using a computer. Here,
PyTorch 1.7.1 which is a machine learning library, cuda11 and Python 3 (version 3.8) was
used. The execution environment was Ubuntu 18.04.4 (64 bit) and we used i7 8700 (RAM
16 GB) and gtx1080 of GPU (VRAM 8 GB) for single precision calculations. For the pro-
cessing of voice data, a python library named Pydub [25] was used. Some of Pydub func-
tions depend on FFmpeg [26]. In addition, when using GPU on PyTorch, it was necessary
to set CUBLAS_WORKSPACE_CONFIG =: 16:8 as an environment variable for reproduc-
ibility due to use of cuda11. In the experiments, all random seeds were initialized to 10.

4.2. Input Voices and Preprocessing
As mentioned in Section 3, the voice dataset used in the experiments are recordings

of the voice/a/ for about 4 to 10 s. This dataset contains data for 22 healthy people (HP)

Figure 5. The structure of Parkinson’s disease detection model. The input image size (RP) is 20 × 20,
and the relu was used as the activation function after each output of the convolutional layer. In order
to prevent overfitting, dropout is applied immediately after max pooling and before output layer. If
the RNN has two layers, dropout is applied before the RNN of the second layer too. The size input
to RNN is 64 × 5 × 5 (= 1600) because the output from the CNN is flattened. The model output is
binary (2 classes), and the output is generated after all RPs have been input.

4. Performance Evaluation
4.1. Outline of Experiments

In order to evaluate the performance of each RNN using the recurrence plots and
the model constructed in Section 3, experiments were performed using a computer. Here,
PyTorch 1.7.1 which is a machine learning library, cuda11 and Python 3 (version 3.8)
was used. The execution environment was Ubuntu 18.04.4 (64 bit) and we used i7 8700
(RAM 16 GB) and gtx1080 of GPU (VRAM 8 GB) for single precision calculations. For
the processing of voice data, a python library named Pydub [25] was used. Some of
Pydub functions depend on FFmpeg [26]. In addition, when using GPU on PyTorch, it was
necessary to set CUBLAS_WORKSPACE_CONFIG =: 16:8 as an environment variable for
reproducibility due to use of cuda11. In the experiments, all random seeds were initialized
to 10.

4.2. Input Voices and Preprocessing

As mentioned in Section 3, the voice dataset used in the experiments are recordings of
the voice/a/ for about 4 to 10 s. This dataset contains data for 22 healthy people (HP) and
30 PD patients, and three times data for each person is recorded. Therefore, the total number
of data is 156 ((22 + 30) × 3). The dataset contains 43 subjects (13 HP and 30 PD cases) who
were hired as volunteers by the GYENNO SCIENCE Parkinson Disease Research Center
(Ethical Approval: All procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional and/or national research
committee and the “Law of the People’s Republic of China on Medical Practitioners” (1998)

Appl. Sci. 2021, 11, 4361 8 of 18

declaration and its later amendments or comparable ethical standards), and nine subjects
(nine HP) who were requested by the authors in order to alleviate the data imbalance. The
breakdown of gender was 27 females and 25 males. PD patients consisted of patients with
HY (Hoehn and Yahr) stage 1–5. A total of 13 PD patients were in stage 3–5, and 17 PD
patients were lower than stage 3.

Figure 6 shows the examples of preprocessed voice data and generated RPs in the
procedure of Section 3. If the value of the 35th percentile is p for the time series {xi}N

i=1 =
{x1, x2, · · · , xN}, the recurrence plot matrix R is plotted by Equation (16) as follows:

R(i, j) =
{

1 if
∣∣xi − xj

∣∣ < p
0 otherwise,

(16)

where i, j ∈ {1, 2, · · · , N} are the numbers of the components. R(i, j) = 1 means that
black is plotted, and R(i, j) = 0 means that white is plotted.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 17

and 30 PD patients, and three times data for each person is recorded. Therefore, the total
number of data is 156 ((22 + 30) × 3). The dataset contains 43 subjects (13 HP and 30 PD
cases) who were hired as volunteers by the GYENNO SCIENCE Parkinson Disease Re-
search Center 1, and nine subjects (nine HP) who were requested by the authors in order
to alleviate the data imbalance. The breakdown of gender was 27 females and 25 males.
PD patients consisted of patients with HY (Hoehn and Yahr) stage 1–5. A total of 13 PD
patients were in stage 3–5, and 17 PD patients were lower than stage 3.

1 Ethical Approval: All procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional and/or national research
committee and the “Law of the People’s Republic of China on Medical Practitioners”
(1998) declaration and its later amendments or comparable ethical standards.
Figure 6 shows the examples of preprocessed voice data and generated RPs in the

procedure of Section 3. If the value of the 35th percentile is for the time series { } ={ , ,⋯ , }, the recurrence plot matrix is plotted by Equation (16) as follows: (,) = 1										if	 − <0										otherwise, (16)

where , ∈ {1, 2,⋯ , } are the numbers of the components. (,) = 1 means that black
is plotted, and (,) = 0 means that white is plotted.

Figure 6. The examples of preprocessed voice data and generated RPs. The left image (a) is an example of a healthy person,
and the right image (b) is an example of a PD patient. (a1,b1) are voice waveform, (a2,b2) are normalized waveform for
0.280 to 0.290 s. (a3,b3) are generated RPs from normalized waveform for 0.280 to 0.290 s. PD patients have a faint voice
by dysarthria and there are differences between the two recurrence plots. The RP was rotated 90 degrees in this figure.

We divided dataset into, train: 28 × 3 (HP: 10 × 3, PD: 18 × 3, about 54%), validation:
12 × 3 (HP: 6 × 3, PD: 6 × 3, about 23%), and test: 12 × 3 (HP: 6 × 3, PD: 6 × 3, about 23%).
However, the three data of the same person were divided so that they belonged to the
same group (train or validation or test) in the experiments. Additionally, at the time of
training, the voices of healthy person data shifted by 2 s were used as oversampling data
so that the total number of data did not become imbalanced. Furthermore, in order to
avoid the influence of dispersion due to data division, the data were shuffled, experiments
were performed five times consecutively for each RNN, and the performance was evalu-
ated based on the average.

4.3. RNN Model Configuration and Hyperparameters
The RNNs used in the experiments were LSTM, GRU, and RNN-SH. Additionally,

the number of hidden units was set to 64, 128, and 256. RNN-SH used tanh or relu as the
output activation function. We also experimented when the RNNs are stacked in two lay-
ers. We used RAdam [27], which is a kind of stochastic gradient descent algorithm for
learning, and set RAdam parameters to recommended values in Adam [28]. The dropout

Figure 6. The examples of preprocessed voice data and generated RPs. The left image (a) is an example of a healthy person,
and the right image (b) is an example of a PD patient. (a1,b1) are voice waveform, (a2,b2) are normalized waveform for
0.280 to 0.290 s. (a3,b3) are generated RPs from normalized waveform for 0.280 to 0.290 s. PD patients have a faint voice by
dysarthria and there are differences between the two recurrence plots. The RP was rotated 90 degrees in this figure.

We divided dataset into, train: 28 × 3 (HP: 10 × 3, PD: 18 × 3, about 54%), validation:
12 × 3 (HP: 6 × 3, PD: 6 × 3, about 23%), and test: 12 × 3 (HP: 6 × 3, PD: 6 × 3, about
23%). However, the three data of the same person were divided so that they belonged to
the same group (train or validation or test) in the experiments. Additionally, at the time of
training, the voices of healthy person data shifted by 2 s were used as oversampling data so
that the total number of data did not become imbalanced. Furthermore, in order to avoid
the influence of dispersion due to data division, the data were shuffled, experiments were
performed five times consecutively for each RNN, and the performance was evaluated
based on the average.

4.3. RNN Model Configuration and Hyperparameters

The RNNs used in the experiments were LSTM, GRU, and RNN-SH. Additionally,
the number of hidden units was set to 64, 128, and 256. RNN-SH used tanh or relu as the
output activation function. We also experimented when the RNNs are stacked in two layers.
We used RAdam [27], which is a kind of stochastic gradient descent algorithm for learning,
and set RAdam parameters to recommended values in Adam [28]. The dropout ratio and
parameter of weight decay were set to 0.5 and 0.01, respectively, to prevent overfitting. The
number of epochs was 50, and the mini-batch size was 27. Regarding the initialization
of weight parameters, they were initialized to a Gaussian distribution with a mean of 0
and a variance of 1/n (n: the number of input units) [29], and all biases were initialized
to 0. Additionally, CNN weights were initialized to a uniform distribution [−v, v] where

Appl. Sci. 2021, 11, 4361 9 of 18

v =
√

3/n [29]. The scalar value a of gate structure of RNN-SH was initialized with 1.0.
Finally, Softmax cross entropy was used as the loss function. This loss function (L) is
expressed by the following Equation (17):

L = − 1
m ∑

i,j
tij log

(
exp

(
yij
)

∑o
k=1 exp(yik)

)
(17)

where m is the batch size, o is the output size, yij is the output from output layer, and tij is
the correct answer label. In addition, i is the data number, j is the dimension, and tij is the
correct answer label of j-th dimension in the i-th data.

4.4. Experimental Results

The results of the experiments are shown in Table 1. In addition, Figure 7 shows
graphs of the average values in Table 1 of each model. Table 1 shows the results of the
validation set and test set at the time when the loss was the lowest with respect to the
validation set in 50 epochs. Since the experiments were performed five times each, the
mean and standard deviation of the validation set and the test set are respectively shown.
Additionally, the overall mean and standard deviation of the validation set and test set
are shown too. “Average (validation/test)” is the average of five times for each validation
set or each test set, respectively. “Total Average” is the all average of the validation set
and test set. Here, we used accuracy, F-score and Matthews correlation coefficient (MCC)
as performance evaluation indicators. Each formula is defined by Equations (18)–(20)
as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (18)

F− score = 2TP/(2TP + FP + FN) (19)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (20)

where TP, TN, FP, FN are the number of true positives, true negatives, false positives,
and false negatives, respectively. Accuracy and F-score is a value between 0 and 1, the
closer they are to 1, the better the performance is. For unbalanced data, F-score can perform
more accurate performance evaluation than accuracy. Note that the F1-score shown in the
experiments is macro-average. The MCC is a correlation coefficient value between −1
and +1, and +1 indicates a perfect prediction, 0 an average random prediction and −1
an inverse prediction. The MCC was calculated for more accurate evaluation, including
inverse predictions. In Table 1, accuracy and F-score show the value rounded off the third
decimal place, and MCC shows the value rounded off the fourth decimal place.

Appl. Sci. 2021, 11, 4361 10 of 18

Table 1. Experimental results (validation set/test set).

The Number of Trials
Average (Validation/Test) Total Average

Layers Model Units Indicators 1 2 3 4 5

1

LSTM

64
Acc. (%) 75.00/72.22 77.78/55.56 58.33/75.00 69.44/63.89 61.11/63.89 68.33 ± 7.58/66.11 ± 6.89 67.22 ± 7.33
F1. (%) 74.98/72.14 77.50/55.42 58.04/74.51 69.42/63.18 60.63/62.47 68.11 ± 7.67/65.54 ± 6.95 66.83 ± 7.43
MCC 0.501/0.447 0.570/0.112 0.169/0.521 0.390/0.289 0.228/0.302 0.371 ± 0.154/0.334 ± 0.141 0.353 ± 0.149

128
Acc. (%) 69.44/69.44 75.00/55.56 66.67/69.44 61.11/72.22 44.44/27.78 63.33 ± 10.45/58.89 ± 16.61 61.11 ± 14.05
F1. (%) 69.23/68.84 74.02/55.42 66.56/68.24 60.63/72.22 44.44/27.55 62.98 ± 10.23/58.46 ± 16.48 60.72 ± 13.90
MCC 0.394/0.405 0.543/0.112 0.335/0.422 0.228/0.444 -0.111/-0.447 0.278 ± 0.219/0.187 ± 0.340 0.233 ± 0.290

256
Acc. (%) 75.00/77.78 80.56/61.11 72.22/61.11 61.11/72.22 55.56/77.78 68.89 ± 9.20/70.00 ± 7.54 69.44 ± 8.43
F1. (%) 74.98/77.71 80.17/60.99 70.78/59.09 60.63/72.14 55.42/77.78 68.40 ± 9.13/69.54 ± 8.04 68.97 ± 8.62
MCC 0.501/0.559 0.636/0.224 0.496/0.248 0.228/0.447 0.112/0.556 0.395 ± 0.194/0.407 ± 0.145 0.401 ± 0.171

GRU

64
Acc. (%) 69.44/75.00 80.56/58.33 63.89/63.89 63.89/55.56 58.33/77.78 67.22 ± 7.54/66.11 ± 8.85 66.67 ± 8.24
F1. (%) 69.42/74.98 80.17/58.30 63.18/60.17 63.86/55.42 58.04/77.78 66.94 ± 7.54/65.33 ± 9.19 66.13 ± 8.44
MCC 0.390/0.501 0.636/0.167 0.289/0.351 0.278/0.112 0.169/0.556 0.352 ± 0.158/0.337 ± 0.176 0.345 ± 0.167

128
Acc. (%) 69.44/77.78 75.00/63.89 69.44/66.67 66.67/72.22 47.22/52.78 65.56 ± 9.56/66.67 ± 8.43 66.11 ± 9.03
F1. (%) 69.42/77.78 73.33/62.47 69.42/62.50 66.56/72.22 46.18/49.63 64.98 ± 9.64/64.92 ± 9.64 64.95 ± 9.64
MCC 0.390/0.556 0.577/0.302 0.390/0.447 0.335/0.444 -0.058/0.064 0.327 ± 0.209/0.363 ± 0.170 0.345 ± 0.191

256
Acc. (%) 69.44/75.00 83.33/58.33 75.00/61.11 72.22/69.44 52.78/69.44 70.56 ± 10.03/66.67 ± 6.09 68.61 ± 8.52
F1. (%) 69.42/74.98 83.13/58.30 74.83/57.86 72.22/68.84 51.85/69.23 70.29 ± 10.29/65.84 ± 6.70 68.07 ± 8.97
MCC 0.390/0.501 0.684/0.167 0.507/0.267 0.444/0.405 0.058/0.394 0.417 ± 0.205/0.347 ± 0.117 0.382 ± 0.170

RNN-SH
(tanh)

64
Acc. (%) 72.22/69.44 83.33/58.33 63.89/69.44 75.00/63.89 61.11/55.56 71.11 ± 7.97/63.33 ± 5.67 67.22 ± 7.93
F1. (%) 72.14/68.84 83.13/57.51 61.48/69.23 74.98/63.18 59.09/50.00 70.16 ± 8.87/61.75 ± 7.27 65.96 ± 9.13
MCC 0.447/0.405 0.684/0.174 0.321/0.394 0.501/0.289 0.248/0.149 0.440 ± 0.151/0.282 ± 0.107 0.361 ± 0.153

128
Acc. (%) 75.00/72.22 77.78/63.89 66.67/63.89 69.44/61.11 55.56/55.56 68.89 ± 7.74/63.33 ± 5.39 66.11 ± 7.22
F1. (%) 74.98/71.88 77.14/63.64 65.71/63.18 69.42/60.63 47.64/55.00 66.98 ± 10.48/62.86 ± 5.45 64.92 ± 8.60
MCC 0.501/0.456 0.589/0.282 0.354/0.289 0.390/0.228 0.177/0.114 0.402 ± 0.140/0.274 ± 0.111 0.338 ± 0.142

256
Acc. (%) 72.22/80.56 83.33/61.11 72.22/66.67 63.89/72.22 61.11/69.44 70.56 ± 7.78/70.00 ± 6.43 70.28 ± 7.14
F1. (%) 72.22/80.54 83.13/61.11 72.14/63.88 63.64/72.22 59.09/68.84 70.04 ± 8.26/69.32 ± 6.80 69.68 ± 7.58
MCC 0.444/0.612 0.684/0.222 0.447/0.401 0.282/0.444 0.248/0.405 0.421 ± 0.155/0.417 ± 0.124 0.419 ± 0.140

RNN-SH
(relu)

64
Acc. (%) 63.89/77.78 44.44/50.00 63.89/69.44 58.33/66.67 55.56/75.00 57.22 ± 7.16/67.78 ± 9.72 62.50 ± 10.04
F1. (%) 63.64/77.71 37.50/37.69 58.47/69.23 57.51/66.56 55.00/74.98 54.42 ± 8.92/65.24 ± 14.33 59.83 ± 13.10
MCC 0.282/0.559 -0.149/0.000 0.402/0.394 0.174/0.335 0.114/0.501 0.164 ± 0.185/0.358 ± 0.195 0.261 ± 0.213

128
Acc. (%) 75.00/66.67 66.67/63.89 66.67/66.67 63.89/69.44 55.56/52.78 65.56 ± 6.24/63.89 ± 5.83 64.72 ± 6.09
F1. (%) 74.83/65.71 62.50/60.17 64.94/66.25 63.64/69.42 44.62/39.23 62.10 ± 9.78/60.16 ± 10.88 61.13 ± 10.39
MCC 0.507/0.354 0.447/0.351 0.372/0.342 0.282/0.390 0.243/0.169 0.370 ± 0.099/0.321 ± 0.078 0.346 ± 0.092

256
Acc. (%) 66.67/75.00 83.33/61.11 69.44/63.89 66.67/75.00 63.89/44.44 70.00 ± 6.89/63.89 ± 11.25 66.94 ± 9.82
F1. (%) 66.25/74.83 83.13/61.11 68.24/63.64 66.56/74.98 63.64/42.86 69.56 ± 6.94/63.48 ± 11.76 66.52 ± 10.13
MCC 0.342/0.507 0.684/0.222 0.422/0.282 0.335/0.501 0.282/−0.118 0.413 ± 0.143/0.279 ± 0.229 0.346 ± 0.202

Appl. Sci. 2021, 11, 4361 11 of 18

Table 1. Cont.

The Number of Trials
Average (Validation/Test) Total Average

Layers Model Units Indicators 1 2 3 4 5

2

LSTM

64
Acc. (%) 80.56/69.44 77.78/58.33 83.33/61.11 69.44/66.67 61.11/77.78 74.44 ± 8.13/66.67 ± 6.80 70.56 ± 8.44
F1. (%) 80.54/69.42 77.14/58.30 83.33/57.86 69.42/66.56 60.99/77.78 74.29 ± 8.12/65.98 ± 7.43 70.14 ± 8.82
MCC 0.612/0.390 0.589/0.167 0.667/0.267 0.390/0.335 0.224/0.556 0.496 ± 0.165/0.343 ± 0.130 0.420 ± 0.167

128
Acc. (%) 75.00/75.00 75.00/58.33 75.00/66.67 69.44/66.67 55.56/77.78 70.00 ± 7.54/68.89 ± 6.89 69.44 ± 7.24
F1. (%) 74.98/74.98 74.02/58.30 74.02/62.50 69.42/65.71 55.42/77.78 69.57 ± 7.34/67.85 ± 7.40 68.71 ± 7.42
MCC 0.501/0.501 0.543/0.167 0.543/0.447 0.390/0.354 0.112/0.556 0.418 ± 0.163/0.405 ± 0.136 0.411 ± 0.150

256
Acc. (%) 63.89/75.00 75.00/55.56 69.44/61.11 63.89/72.22 52.78/83.33 65.00 ± 7.37/69.44 ± 9.94 67.22 ± 9.02
F1. (%) 62.47/74.83 74.02/55.42 68.24/59.09 63.64/72.14 49.63/83.28 63.60 ± 8.08/68.95 ± 10.30 66.27 ± 9.64
MCC 0.302/0.507 0.543/0.112 0.422/0.248 0.282/0.447 0.064/0.671 0.322 ± 0.160/0.397 ± 0.197 0.360 ± 0.183

GRU

64
Acc. (%) 75.00/77.78 77.78/63.89 63.89/55.56 66.67/61.11 61.11/69.44 68.89 ± 6.43/65.56 ± 7.58 67.22 ± 7.22
F1. (%) 74.98/77.71 77.14/63.64 61.48/53.25 66.56/61.11 61.11/69.23 68.26 ± 6.69/64.99 ± 8.18 66.62 ± 7.65
MCC 0.501/0.559 0.589/0.282 0.321/0.124 0.335/0.222 0.222/0.394 0.394 ± 0.133/0.316 ± 0.150 0.355 ± 0.147

128
Acc. (%) 66.67/77.78 80.56/61.11 80.56/66.67 69.44/69.44 55.56/55.56 70.56 ± 9.40/66.11 ± 7.54 68.33 ± 8.80
F1. (%) 66.56/77.78 80.17/61.11 80.54/62.50 69.42/68.84 55.42/54.29 70.42 ± 9.36/64.90 ± 7.93 67.66 ± 9.10
MCC 0.335/0.556 0.636/0.222 0.612/0.447 0.390/0.405 0.112/0.118 0.417 ± 0.193/0.350 ± 0.158 0.383 ± 0.180

256
Acc. (%) 69.44/77.78 83.33/55.56 77.78/66.67 63.89/72.22 58.33/77.78 70.56 ± 9.06/70.00 ± 8.31 70.28 ± 8.70
F1. (%) 69.42/77.71 83.13/55.00 77.71/62.50 63.64/72.14 58.30/77.71 70.44 ± 9.04/69.01 ± 8.94 69.72 ± 9.02
MCC 0.390/0.559 0.684/0.114 0.559/0.447 0.282/0.447 0.167/0.559 0.416 ± 0.186/0.425 ± 0.163 0.421 ± 0.175

RNN-SH
(tanh)

64
Acc. (%) 61.11/52.78 83.33/61.11 72.22/61.11 61.11/66.67 66.67/38.89 68.89 ± 8.31/56.11 ± 9.69 62.50 ± 11.06
F1. (%) 54.18/39.23 83.13/60.00 70.78/60.00 56.25/63.88 66.56/38.13 66.18 ± 10.50/52.25 ± 11.18 59.21 ± 12.89
MCC 0.354/0.169 0.684/0.236 0.496/0.236 0.298/0.401 0.335/-0.228 0.433 ± 0.142/0.163 ± 0.210 0.298 ± 0.225

128
Acc. (%) 72.22/69.44 75.00/63.89 72.22/58.33 63.89/66.67 61.11/55.56 68.89 ± 5.39/62.78 ± 5.15 65.83 ± 6.09
F1. (%) 70.78/69.23 74.02/61.48 71.43/55.56 63.64/66.56 54.18/44.62 66.81 ± 7.19/59.49 ± 8.78 63.15 ± 8.82
MCC 0.496/0.394 0.543/0.321 0.471/0.193 0.282/0.335 0.354/0.243 0.429 ± 0.097/0.297 ± 0.071 0.363 ± 0.108

256
Acc. (%) 75.00/75.00 80.56/63.89 69.44/75.00 58.33/58.33 58.33/61.11 68.33 ± 8.89/66.67 ± 7.03 67.50 ± 8.06
F1. (%) 74.98/74.51 80.42/63.18 68.24/74.98 57.51/56.70 54.04/56.25 67.04 ± 10.03/65.12 ± 8.23 66.08 ± 9.23
MCC 0.501/0.521 0.620/0.289 0.422/0.501 0.174/0.181 0.211/0.298 0.385 ± 0.170/0.358 ± 0.132 0.372 ± 0.153

RNN-SH
(relu)

64
Acc. (%) 72.22/77.78 69.44/63.89 63.89/72.22 58.33/63.89 52.78/55.56 63.33 ± 7.11/66.67 ± 7.66 65.00 ± 7.58
F1. (%) 72.14/77.71 66.30/60.17 61.48/72.22 57.51/63.18 51.85/53.25 61.86 ± 6.99/65.31 ± 8.69 63.58 ± 8.08
MCC 0.447/0.559 0.491/0.351 0.321/0.444 0.174/0.289 0.058/0.124 0.298 ± 0.163/0.354 ± 0.146 0.326 ± 0.158

128
Acc. (%) 69.44/75.00 80.56/58.33 63.89/63.89 63.89/63.89 61.11/66.67 67.78 ± 6.94/65.56 ± 5.44 66.67 ± 6.34
F1. (%) 67.41/74.51 80.54/55.56 61.48/63.86 63.64/63.18 60.00/62.50 66.61 ± 7.40/63.92 ± 6.08 65.27 ± 6.90
MCC 0.449/0.521 0.612/0.193 0.321/0.278 0.282/0.289 0.236/0.447 0.380 ± 0.136/0.346 ± 0.120 0.363 ± 0.129

256
Acc. (%) 66.67/72.22 77.78/63.89 61.11/63.89 58.33/55.56 52.78/50.00 63.33 ± 8.50/61.11 ± 7.66 62.22 ± 8.16
F1. (%) 66.25/71.88 77.71/62.47 57.86/63.64 57.51/53.25 42.86/37.69 60.44 ± 11.46/57.78 ± 11.65 59.11 ± 11.63
MCC 0.342/0.456 0.559/0.302 0.267/0.282 0.174/0.124 0.101/0.000 0.288 ± 0.158/0.233 ± 0.157 0.261 ± 0.160

Appl. Sci. 2021, 11, 4361 12 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17

RNN-SH
(tanh)

64
Acc. (%) 61.11/52.78 83.33/61.11 72.22/61.11 61.11/66.67 66.67/38.89 68.89 ± 8.31/56.11 ± 9.69 62.50 ± 11.06
F1. (%) 54.18/39.23 83.13/60.00 70.78/60.00 56.25/63.88 66.56/38.13 66.18 ± 10.50/52.25 ± 11.18 59.21 ± 12.89
MCC 0.354/0.169 0.684/0.236 0.496/0.236 0.298/0.401 0.335/-0.228 0.433 ± 0.142/0.163 ± 0.210 0.298 ± 0.225

128
Acc. (%) 72.22/69.44 75.00/63.89 72.22/58.33 63.89/66.67 61.11/55.56 68.89 ± 5.39/62.78 ± 5.15 65.83 ± 6.09
F1. (%) 70.78/69.23 74.02/61.48 71.43/55.56 63.64/66.56 54.18/44.62 66.81 ± 7.19/59.49 ± 8.78 63.15 ± 8.82
MCC 0.496/0.394 0.543/0.321 0.471/0.193 0.282/0.335 0.354/0.243 0.429 ± 0.097/0.297 ± 0.071 0.363 ± 0.108

256
Acc. (%) 75.00/75.00 80.56/63.89 69.44/75.00 58.33/58.33 58.33/61.11 68.33 ± 8.89/66.67 ± 7.03 67.50 ± 8.06
F1. (%) 74.98/74.51 80.42/63.18 68.24/74.98 57.51/56.70 54.04/56.25 67.04 ± 10.03/65.12 ± 8.23 66.08 ± 9.23
MCC 0.501/0.521 0.620/0.289 0.422/0.501 0.174/0.181 0.211/0.298 0.385 ± 0.170/0.358 ± 0.132 0.372 ± 0.153

RNN-SH
(relu)

64
Acc. (%) 72.22/77.78 69.44/63.89 63.89/72.22 58.33/63.89 52.78/55.56 63.33 ± 7.11/66.67 ± 7.66 65.00 ± 7.58
F1. (%) 72.14/77.71 66.30/60.17 61.48/72.22 57.51/63.18 51.85/53.25 61.86 ± 6.99/65.31 ± 8.69 63.58 ± 8.08
MCC 0.447/0.559 0.491/0.351 0.321/0.444 0.174/0.289 0.058/0.124 0.298 ± 0.163/0.354 ± 0.146 0.326 ± 0.158

128
Acc. (%) 69.44/75.00 80.56/58.33 63.89/63.89 63.89/63.89 61.11/66.67 67.78 ± 6.94/65.56 ± 5.44 66.67 ± 6.34
F1. (%) 67.41/74.51 80.54/55.56 61.48/63.86 63.64/63.18 60.00/62.50 66.61 ± 7.40/63.92 ± 6.08 65.27 ± 6.90
MCC 0.449/0.521 0.612/0.193 0.321/0.278 0.282/0.289 0.236/0.447 0.380 ± 0.136/0.346 ± 0.120 0.363 ± 0.129

256
Acc. (%) 66.67/72.22 77.78/63.89 61.11/63.89 58.33/55.56 52.78/50.00 63.33 ± 8.50/61.11 ± 7.66 62.22 ± 8.16
F1. (%) 66.25/71.88 77.71/62.47 57.86/63.64 57.51/53.25 42.86/37.69 60.44 ± 11.46/57.78 ± 11.65 59.11 ± 11.63
MCC 0.342/0.456 0.559/0.302 0.267/0.282 0.174/0.124 0.101/0.000 0.288 ± 0.158/0.233 ± 0.157 0.261 ± 0.160

Figure 7. The graphs of the average value of each model in Table 1. The left is the validation average, the middle is the test
average, and the right is the total average. Here, the standard deviation is omitted to make the graphs easier to see.

As a result, from Table 1, there was no significant difference in the performance be-
tween RNNs. Statistically significant difference was not found between the top three mod-
els (GRU: two layers and 256 units, LSTM: two layers, 64 units, and RNN-SH (tanh): one
layer and 256 units) by the Friedman test. Here, Figure 8 shows the average ROC curve
with AUC values of RNN-SH and GRU, and Figure 9 shows a graph of the relationship
between the number of units and the parameters of the PD detection model. From Figure
8, it is clear that the AUC value of GRU is higher than the value of RNN-SH (tanh); how-
ever, from Figure 9, the parameters of RNN-SH (tanh) with one layer and 256 units are
less than a third of the parameters of GRU with two layers and 256 units, although the

Figure 7. The graphs of the average value of each model in Table 1. The left is the validation average, the middle is the test
average, and the right is the total average. Here, the standard deviation is omitted to make the graphs easier to see.

As a result, from Table 1, there was no significant difference in the performance
between RNNs. Statistically significant difference was not found between the top three
models (GRU: two layers and 256 units, LSTM: two layers, 64 units, and RNN-SH (tanh):
one layer and 256 units) by the Friedman test. Here, Figure 8 shows the average ROC curve
with AUC values of RNN-SH and GRU, and Figure 9 shows a graph of the relationship
between the number of units and the parameters of the PD detection model. From Figure 8,
it is clear that the AUC value of GRU is higher than the value of RNN-SH (tanh); however,
from Figure 9, the parameters of RNN-SH (tanh) with one layer and 256 units are less than
a third of the parameters of GRU with two layers and 256 units, although the difference in
the performance is small. In addition, the parameter amount of LSTM with two layers and
64 units is not much different from that of RNN-SH with one layer and 256 units. However,
in the case of the LSTM, though the total average is high, there is a difference between
the validation average and the test average, and it can be confirmed that overfitting has
occurred. On the other hand, for the RNN-SH, the validation average and test average are
about the same value. Figure 10 shows the examples of confusion matrix in the first trial of
LSTM and RNN-SH (tanh). In Figure 10, LSTM has a better performance for the validation
set than RNN-SH, but not so much for the test set.

Appl. Sci. 2021, 11, 4361 13 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17

difference in the performance is small. In addition, the parameter amount of LSTM with
two layers and 64 units is not much different from that of RNN-SH with one layer and 256
units. However, in the case of the LSTM, though the total average is high, there is a dif-
ference between the validation average and the test average, and it can be confirmed that
overfitting has occurred. On the other hand, for the RNN-SH, the validation average and
test average are about the same value. Figure 10 shows the examples of confusion matrix
in the first trial of LSTM and RNN-SH (tanh). In Figure 10, LSTM has a better performance
for the validation set than RNN-SH, but not so much for the test set.

(a) GRU (b) RNN-SH (tanh)

Figure 8. The average ROC curve with AUC values of GRU and RNN-SH. (a) is the ROC curve of the GRU, and (b) is that
of the RNN-SH (tanh). The average here is an average of the validation set and the test set.

Figure 9. The graph of the relationship between the number of units and the number of parameters of PD detection model.
If RNNs have the same number of units, the number of parameters of PD detection model using RNN-SH is considerably
reduced.

Figure 8. The average ROC curve with AUC values of GRU and RNN-SH. (a) is the ROC curve of the GRU, and (b) is that
of the RNN-SH (tanh). The average here is an average of the validation set and the test set.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17

difference in the performance is small. In addition, the parameter amount of LSTM with
two layers and 64 units is not much different from that of RNN-SH with one layer and 256
units. However, in the case of the LSTM, though the total average is high, there is a dif-
ference between the validation average and the test average, and it can be confirmed that
overfitting has occurred. On the other hand, for the RNN-SH, the validation average and
test average are about the same value. Figure 10 shows the examples of confusion matrix
in the first trial of LSTM and RNN-SH (tanh). In Figure 10, LSTM has a better performance
for the validation set than RNN-SH, but not so much for the test set.

(a) GRU (b) RNN-SH (tanh)

Figure 8. The average ROC curve with AUC values of GRU and RNN-SH. (a) is the ROC curve of the GRU, and (b) is that
of the RNN-SH (tanh). The average here is an average of the validation set and the test set.

Figure 9. The graph of the relationship between the number of units and the number of parameters of PD detection model.
If RNNs have the same number of units, the number of parameters of PD detection model using RNN-SH is considerably
reduced.

Figure 9. The graph of the relationship between the number of units and the number of parameters of PD detection
model. If RNNs have the same number of units, the number of parameters of PD detection model using RNN-SH is
considerably reduced.

Appl. Sci. 2021, 11, 4361 14 of 18Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17

(a) LSTM (b) RNN-SH (tanh)

Figure 10. The examples of confusion matrix in first trial of LSTM and RNN-SH (tanh). (a) is the confusion matrix of the
LSTM, and (b) is that of the RNN-SH (tanh). Here, the confusion matrix is normalized.

From Table 1 and Figure 7, in RNN-SH, the performance when the output activation
function was tanh was higher than that of relu.

Figure 11 shows the execution time of each RNN in the case of one layer and 256 units
in the first execution. Here, since we used LSTM and GRU that were pre-implemented in
pytorch, accurate speed comparison with RNN-SH, which was implemented by the com-
bination of pytorch functions, cannot be performed. Therefore, in Figure 11, we used
LSTM and GRU that were individually implemented by the combination of pytorch func-
tions, and the speeds are compared. In order to perform speed comparisons fairly, we
considered the parallelism of LSTM and GRU, and implemented LSTM and GRU so that
they could be calculated at high speed by splitting the result of parallel calculation for
each weight of gate, etc. From Figure 11, since RNN-SH has fewer parameters and a lower
calculation cost than LSTM and GRU, the learning of RNN-SH was faster than them.

Figure 11. The execution time of each RNN in the case of 1 layer and 256 units. The number in
parentheses is the epoch at the time when the loss was the lowest for the validation set. RNN-SH
is faster than LSTM and GRU. GRU is slow due to its low parallelism.

Figure 12 shows learning curves of loss for each RNN with 256 units and one or two
layers. From Figure 12, it can be seen that the losses oscillate due to the small amount of
dataset, but the learning of RNN-SH progresses relatively gently compared to that of
LSTM and GRU. However, RNN-SH (tanh) with two layers oscillate violently and could
not learn well.

Figure 10. The examples of confusion matrix in first trial of LSTM and RNN-SH (tanh). (a) is the confusion matrix of the
LSTM, and (b) is that of the RNN-SH (tanh). Here, the confusion matrix is normalized.

From Table 1 and Figure 7, in RNN-SH, the performance when the output activation
function was tanh was higher than that of relu.

Figure 11 shows the execution time of each RNN in the case of one layer and 256 units
in the first execution. Here, since we used LSTM and GRU that were pre-implemented
in pytorch, accurate speed comparison with RNN-SH, which was implemented by the
combination of pytorch functions, cannot be performed. Therefore, in Figure 11, we
used LSTM and GRU that were individually implemented by the combination of pytorch
functions, and the speeds are compared. In order to perform speed comparisons fairly,
we considered the parallelism of LSTM and GRU, and implemented LSTM and GRU so
that they could be calculated at high speed by splitting the result of parallel calculation for
each weight of gate, etc. From Figure 11, since RNN-SH has fewer parameters and a lower
calculation cost than LSTM and GRU, the learning of RNN-SH was faster than them.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17

(a) LSTM (b) RNN-SH (tanh)

Figure 10. The examples of confusion matrix in first trial of LSTM and RNN-SH (tanh). (a) is the confusion matrix of the
LSTM, and (b) is that of the RNN-SH (tanh). Here, the confusion matrix is normalized.

From Table 1 and Figure 7, in RNN-SH, the performance when the output activation
function was tanh was higher than that of relu.

Figure 11 shows the execution time of each RNN in the case of one layer and 256 units
in the first execution. Here, since we used LSTM and GRU that were pre-implemented in
pytorch, accurate speed comparison with RNN-SH, which was implemented by the com-
bination of pytorch functions, cannot be performed. Therefore, in Figure 11, we used
LSTM and GRU that were individually implemented by the combination of pytorch func-
tions, and the speeds are compared. In order to perform speed comparisons fairly, we
considered the parallelism of LSTM and GRU, and implemented LSTM and GRU so that
they could be calculated at high speed by splitting the result of parallel calculation for
each weight of gate, etc. From Figure 11, since RNN-SH has fewer parameters and a lower
calculation cost than LSTM and GRU, the learning of RNN-SH was faster than them.

Figure 11. The execution time of each RNN in the case of 1 layer and 256 units. The number in
parentheses is the epoch at the time when the loss was the lowest for the validation set. RNN-SH
is faster than LSTM and GRU. GRU is slow due to its low parallelism.

Figure 12 shows learning curves of loss for each RNN with 256 units and one or two
layers. From Figure 12, it can be seen that the losses oscillate due to the small amount of
dataset, but the learning of RNN-SH progresses relatively gently compared to that of
LSTM and GRU. However, RNN-SH (tanh) with two layers oscillate violently and could
not learn well.

Figure 11. The execution time of each RNN in the case of 1 layer and 256 units. The number in parentheses is the epoch at
the time when the loss was the lowest for the validation set. RNN-SH is faster than LSTM and GRU. GRU is slow due to its
low parallelism.

Figure 12 shows learning curves of loss for each RNN with 256 units and one or two
layers. From Figure 12, it can be seen that the losses oscillate due to the small amount
of dataset, but the learning of RNN-SH progresses relatively gently compared to that of
LSTM and GRU. However, RNN-SH (tanh) with two layers oscillate violently and could
not learn well.

Appl. Sci. 2021, 11, 4361 15 of 18Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17

Figure 12. Learning curves of loss for each RNN with 256 units and one or two layers. (a1,a2), (b1,b2), (c1,c2), and (d1,d2)
represent the graphs of learning curves of RNN-SH (tanh), RNN-SH (relu), LSTM, and GRU, respectively. The number
after the letters corresponds to the number of layers.

4.5. Discussion
Statistically significant difference was not found between RNN models, but the total

number of parameters of the PD detection model using RNN-SH is about 1/4 of the model
using LSTM and about 1/3 of the model using GRU when the number of units and layers
are the same. This difference becomes even wider when the units increase or multiple
layers are used. Hence, it is very effective in terms of memory efficiency and faster learn-
ing. When using RNN-SH, it is easy to take measures against overfitting because there are
few parameters, slow learning progresses, and only weight parameters for the input.

Regarding the comparison when tanh and relu are used in RNN-SH, taking the case
of one layer and 256 units for example, the scalar value , which is the gate parameter, is
about 1.007 for tanh and about 1.012 for relu, and they are very close with each other. This
was also the case under other conditions in these experiments. Therefore, it is considered
that the difference in the performance of tanh and relu is caused by the difference only in
activation function. From Figure 12, RNN-SH (tanh) with 256 units and two layers oscil-
late violently, and the reason why it could not learn well comes from the vanishing gradi-
ent at the output due to tanh. On the other hand, RNN-SH (relu) with 256 units and two
layers could be learned smoothly; however, the accuracy was lower than that of tanh.
Here, Figure 13 shows the examples of confusion matrix in the first trial of the tanh and
relu RNN-SH. From Figure 13, the FP rate of relu was higher than that of tanh, and TN
rate of relu was lower than that of tanh, indicating that the relu model could not identify
PD patients properly and could not be learned well. Relu has gathered attention as the
activation function that contributes to the multi-layering of neural networks. However,
relu is not symmetric with respect to the origin and has problems such as a dying relu
problem [30]. In our experiments, we did not use optimal parameter initialization or nor-
malization methods that optimize for relu. Thus, dying relu may have occurred and
caused the accuracy to deteriorate. Since relu is the function that is important for multi-
layering, it is necessary to analyze in the future what is needed to improve the perfor-
mance when using the relu.

Figure 12. Learning curves of loss for each RNN with 256 units and one or two layers. (a1,a2), (b1,b2), (c1,c2), and (d1,d2)
represent the graphs of learning curves of RNN-SH (tanh), RNN-SH (relu), LSTM, and GRU, respectively. The number after
the letters corresponds to the number of layers.

4.5. Discussion

Statistically significant difference was not found between RNN models, but the total
number of parameters of the PD detection model using RNN-SH is about 1/4 of the model
using LSTM and about 1/3 of the model using GRU when the number of units and layers
are the same. This difference becomes even wider when the units increase or multiple
layers are used. Hence, it is very effective in terms of memory efficiency and faster learning.
When using RNN-SH, it is easy to take measures against overfitting because there are few
parameters, slow learning progresses, and only weight parameters for the input.

Regarding the comparison when tanh and relu are used in RNN-SH, taking the case
of one layer and 256 units for example, the scalar value a, which is the gate parameter, is
about 1.007 for tanh and about 1.012 for relu, and they are very close with each other. This
was also the case under other conditions in these experiments. Therefore, it is considered
that the difference in the performance of tanh and relu is caused by the difference only in
activation function. From Figure 12, RNN-SH (tanh) with 256 units and two layers oscillate
violently, and the reason why it could not learn well comes from the vanishing gradient
at the output due to tanh. On the other hand, RNN-SH (relu) with 256 units and two
layers could be learned smoothly; however, the accuracy was lower than that of tanh. Here,
Figure 13 shows the examples of confusion matrix in the first trial of the tanh and relu RNN-
SH. From Figure 13, the FP rate of relu was higher than that of tanh, and TN rate of relu
was lower than that of tanh, indicating that the relu model could not identify PD patients
properly and could not be learned well. Relu has gathered attention as the activation
function that contributes to the multi-layering of neural networks. However, relu is not
symmetric with respect to the origin and has problems such as a dying relu problem [30]. In
our experiments, we did not use optimal parameter initialization or normalization methods
that optimize for relu. Thus, dying relu may have occurred and caused the accuracy to
deteriorate. Since relu is the function that is important for multi-layering, it is necessary to
analyze in the future what is needed to improve the performance when using the relu.

Appl. Sci. 2021, 11, 4361 16 of 18Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 17

(a) RNN-SH (tanh) (b) RNN-SH (relu)

Figure 13. The examples of confusion matrix in first trial of RNN-SH. (a) is the confusion matrix of the RNN-SH (tanh),
and (b) is that of the RNN-SH (relu). In first trial case, although the model could be learned relatively well when tanh is
used, it could not be learned well when relu is used, and the PD detection ability was low.

In terms of PD detection using an RP, the accuracy is around 70%. This is because
some of the voice data of healthy people had hoarse voices and uneven voice volume. In
our experiments, the voice/a/ was used; however, it was difficult for even a healthy person
to utter the voice/a/ at a constant volume for a long time. Therefore, from the results of
our experiments, the voice/a/ was not sufficient for PD detection. In order to improve the
accuracy of PD detection, it is necessary to consider what pronunciation is more suitable
for the detection in the future. Additionally, in our experiment, the RP images were
resized by bilinear interpolation in consideration of the memory usage. However, when
the RP image is compressed, features different from the original features may appear or
important features may disappear. Since it is possible that the accuracy had deteriorated
due to resizing, it is necessary to further study the image resizing method and the archi-
tecture of the CNN in the future.

5. Conclusions
This paper evaluated the effectiveness of our RNN-SH model in a practical medical

application of PD detection using RP with less parameters than other gated RNNs such as
LSTM and GRU. RNN-SH can greatly reduce parameters, more so than other RNNs, with
comparable accuracy for time series data processing although the difference in accuracy
was small and a statistically significant difference was not found between RNN models.

Since the gate parameter of RNN-SH is scalar, it is easy to analyze the result. In ad-
dition, another advantage is that the activation function can be easily changed according
to the tasks. However, it turned out that it is difficult to improve the accuracy by simply
replacing tanh with relu as the activation function in RNN-SH. From our experiment, the
PD detection ability is lower using relu in comparison to using tanh, and we consider that
dying relu might be the cause. It is necessary to analyze and make further improvements
by considering parameter initialization and normalization methods, etc.

Since the dataset size in our experiment was relatively small, the proposed method
will see more improvement by increasing the data in the future. More analysis on the
input sound type, the RP image size, and the deep learning structures will be included in
our future work for further improving the performance of PD detection from voice. In
regard to RP image compression, we would investigate an image size or a CNN structure
that does not deteriorate the accuracy of PD detection in more detail to improve the cur-
rent model.

Author Contributions: Conceived and designed the model, T.F. and Z.L.; performed the experiment
and analyzed the results, T.F.; wrote the preliminary version of this manuscript, T.F.; revised the
manuscript, Z.L., C.Q., K.M., and S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Figure 13. The examples of confusion matrix in first trial of RNN-SH. (a) is the confusion matrix of the RNN-SH (tanh), and
(b) is that of the RNN-SH (relu). In first trial case, although the model could be learned relatively well when tanh is used, it
could not be learned well when relu is used, and the PD detection ability was low.

In terms of PD detection using an RP, the accuracy is around 70%. This is because
some of the voice data of healthy people had hoarse voices and uneven voice volume. In
our experiments, the voice/a/ was used; however, it was difficult for even a healthy person
to utter the voice/a/ at a constant volume for a long time. Therefore, from the results of
our experiments, the voice/a/ was not sufficient for PD detection. In order to improve the
accuracy of PD detection, it is necessary to consider what pronunciation is more suitable
for the detection in the future. Additionally, in our experiment, the RP images were resized
by bilinear interpolation in consideration of the memory usage. However, when the RP
image is compressed, features different from the original features may appear or important
features may disappear. Since it is possible that the accuracy had deteriorated due to
resizing, it is necessary to further study the image resizing method and the architecture of
the CNN in the future.

5. Conclusions

This paper evaluated the effectiveness of our RNN-SH model in a practical medical
application of PD detection using RP with less parameters than other gated RNNs such as
LSTM and GRU. RNN-SH can greatly reduce parameters, more so than other RNNs, with
comparable accuracy for time series data processing although the difference in accuracy
was small and a statistically significant difference was not found between RNN models.

Since the gate parameter of RNN-SH is scalar, it is easy to analyze the result. In
addition, another advantage is that the activation function can be easily changed according
to the tasks. However, it turned out that it is difficult to improve the accuracy by simply
replacing tanh with relu as the activation function in RNN-SH. From our experiment, the
PD detection ability is lower using relu in comparison to using tanh, and we consider that
dying relu might be the cause. It is necessary to analyze and make further improvements
by considering parameter initialization and normalization methods, etc.

Since the dataset size in our experiment was relatively small, the proposed method
will see more improvement by increasing the data in the future. More analysis on the input
sound type, the RP image size, and the deep learning structures will be included in our
future work for further improving the performance of PD detection from voice. In regard to
RP image compression, we would investigate an image size or a CNN structure that does
not deteriorate the accuracy of PD detection in more detail to improve the current model.

Author Contributions: Conceived and designed the model, T.F. and Z.L.; performed the experiment
and analyzed the results, T.F.; wrote the preliminary version of this manuscript, T.F.; revised the
manuscript, Z.L., C.Q., K.M., and S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Appl. Sci. 2021, 11, 4361 17 of 18

Institutional Review Board Statement: All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institutional and/or national
research committee and the “Law of the People’s Republic of China on Medical Practitioners” (1998)
declaration and its later amendments or comparable ethical standards.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Due to the nature of this research, participants of this study did not
agree for their data to be shared publicly at present, so supporting data is not available.

Acknowledgments: We wish to express our appreciation to the editor and reviewers for their
insightful comments as well as the participants for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
2. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
3. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.

[CrossRef]
4. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representa-tions

using RNN encoder-decoder for statistical machine translation. Conf. Empir. Methods Nat. Lang. Process. 2014, 1724–1734.
5. Zhou, G.-B.; Wu, J.; Zhang, C.-L.; Zhou, Z.-H. Minimal gated unit for recurrent neural networks. Int. J. Autom. Comput. 2016, 13,

226–234. [CrossRef]
6. Lei, T.; Zhang, Y.; Wang, S.I.; Dai, H.; Artzi, Y. Simple Recurrent Units for Highly Parallelizable Recurrence. In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics (ACL):
Stroudsburg, PA, USA, 2018; pp. 4470–4481.

7. Yue, B.; Fu, J.; Liang, J. Residual Recurrent Neural Networks for Learning Sequential Representations. Information 2018, 9, 56.
[CrossRef]

8. Li, S.; Li, W.; Cook, C.; Zhu, C.; Gao, Y. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper
RNN. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
23 June 2018; pp. 5457–5466.

9. Fujita, T.; Luo, Z.; Quan, C.; Mori, K. Simplification of RNN and Its Performance Evaluation in Machine Translation. Trans. Inst.
Syst. Control Inf. Eng. 2020, 33, 267–274. [CrossRef]

10. Fujita, T.; Luo, Z.; Quan, C.; Mori, K. Structure Construction and Performance Analysis of RNN Aiming for Reduction of
Calculation Costs. Trans. Inst. Syst. Control Inf. Eng. 2021, 34, 89–97.

11. Wirdefeldt, K.; Adami, H.-O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: A review
of the evidence. Eur. J. Epidemiol. 2011, 26, 1–58. [CrossRef]

12. Eckmann, J.-P.; Eckmann, J.-P.; Kamphorst, S.O.; Kamphorst, S.O.; Ruelle, D.; Ruelle, D. Recurrence Plots of Dynamical Systems.
Synchronization Syst. Time Delayed Coupling 1995, 16, 441–445.

13. Shiro, M.; Hirata, Y.; Aihara, K. Similarities and Differences between Recurrence Plot and Fourier Transform. Seisan Kenkyu 2020,
72, 137–138.

14. Facchini, A.; Kantz, H.; Tiezzi, E. Recurrence plot analysis of nonstationary data: The understanding of curved patterns. Phys.
Rev. E 2005, 72, 021915. [CrossRef] [PubMed]

15. Garcia-Ceja, E.; Uddin, Z.; Torresen, J. Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network
for Activity Recognition. Procedia Comput. Sci. 2018, 130, 157–163. [CrossRef]

16. Chen, Y.; Su, S.; Yang, H. Convolutional Neural Network Analysis of Recurrence Plots for Anomaly Detection. Int. J. Bifurc. Chaos
2020, 30, 2050002. [CrossRef]

17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2012,
60, 1097–1105. [CrossRef]

18. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

20. Afonso, L.C.; Rosa, G.H.; Pereira, C.R.; Weber, S.A.; Hook, C.; Albuquerque, V.H.C.; Papa, J.P. A recurrence plot-based approach
for Parkinson’s disease identification. Futur. Gener. Comput. Syst. 2019, 94, 282–292. [CrossRef]

21. Jeancolas, L.; Petrovska-Delacrétaz, D.; Mangone, G.; Benkelfat, B.E.; Corvol, J.C.; Vidailhet, M.; Lehéricy, S.; Benali, H. X-Vectors:
New quantitative biomarkers for early Parkinson’s disease detection from speech. Front. Neuroinform. 2021, 15, 4. [CrossRef]

http://doi.org/10.1207/s15516709cog1402_1
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1162/089976600300015015
http://doi.org/10.1007/s11633-016-1006-2
http://doi.org/10.3390/info9030056
http://doi.org/10.5687/iscie.33.267
http://doi.org/10.1007/s10654-011-9581-6
http://doi.org/10.1103/PhysRevE.72.021915
http://www.ncbi.nlm.nih.gov/pubmed/16196612
http://doi.org/10.1016/j.procs.2018.04.025
http://doi.org/10.1142/S0218127420500029
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.future.2018.11.054
http://doi.org/10.3389/fninf.2021.578369

Appl. Sci. 2021, 11, 4361 18 of 18

22. Almeida, J.S.; Rebouças Filho, P.P.; Carneiro, T.; Wei, W.; Damaševičius, R.; Maskeliūnas, R.; de Albuquerque, V.H.C. De-tecting
Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognit. Lett. 2019,
125, 55–62. [CrossRef]

23. Berus, L.; Klancnik, S.; Brezocnik, M.; Ficko, M. Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial
Neural Networks. Sensors 2018, 19, 16. [CrossRef]

24. Grover, S.; Bhartia, S.; Akshama; Yadav, A. Predicting Severity of Parkinson’s Disease Using Deep Learning. Procedia Comput. Sci.
2018, 132, 1788–1794. [CrossRef]

25. Pydub. Available online: https://github.com/jiaaro/pydub (accessed on 15 February 2021).
26. FFmpeg. Available online: https://github.com/FFmpeg/FFmpeg (accessed on 15 February 2021).
27. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and beyond. arXiv 2019,

arXiv:1908.03265.
28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learning

Representations (ICLR), San Diego, CA, USA, 5–8 May 2015.
29. LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient BackProp. In Transactions on Petri Nets and Other Models of Concurrency

XV; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; pp. 9–48.
30. CS231n Convolutional Neural Networks for Visual Recognition Course Website. Available online: https://cs231n.github.io/

neural-networks-1/#actfun (accessed on 15 February 2021).

http://doi.org/10.1016/j.patrec.2019.04.005
http://doi.org/10.3390/s19010016
http://doi.org/10.1016/j.procs.2018.05.154
https://github.com/jiaaro/pydub
https://github.com/FFmpeg/FFmpeg
https://cs231n.github.io/neural-networks-1/#actfun
https://cs231n.github.io/neural-networks-1/#actfun

	Introduction
	Related Work
	The Model Description and Data Preprocessing
	RNN Models
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Our Proposed RNN Model

	Parkinson’s Disease Detection
	Voice Data Preprocessing and Recurrence Plot Creation
	Parkinson’s Disease Detection Model

	Performance Evaluation
	Outline of Experiments
	Input Voices and Preprocessing
	RNN Model Configuration and Hyperparameters
	Experimental Results
	Discussion

	Conclusions
	References

