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Abstract: This article proposes a new framework for a Cloud-based eHealth platform concept focused
on Cloud computing environments, since current and emerging approaches using digital clinical
history increasingly demonstrate their potential in maintaining the quality of the benefits in medical
care services, especially in computer-assisted clinical diagnosis within the field of infectious diseases
and due to the worsening of chronic pathologies. Our objective is to evaluate and contrast the
performance of the architectural patterns most commonly used for developing eHealth applications
(i.e., service-oriented architecture (SOA) and microservices architecture (MSA)), using as reference
the quantitative values obtained from the various performance tests and their ability to adapt to the
required software attribute (i.e., versatile high-performance). Therefore, it was necessary to modify
our platform to fit two architectural variants. As a follow-up to this activity, corresponding tests were
performed that showed that the MSA variant functions better in terms of performance and response
time compared to the SOA variant; however, it consumed significantly more bandwidth than SOA,
and scalability in SOA is generally not possible or requires significant effort to be achieved. We
conclude that the implementation of SOA and MSA depends on the nature and needs of organizations
(e.g., performance or interoperability).

Keywords: cloud computing; eHealth; elderly people; infectious diseases; MSA; SOA; telemonitoring;
versatile high-performance

1. Introduction

Recent developments in the field of Cloud computing have stimulated the need to
create new software solutions for the monitoring, management and optimization of an
organization’s services, in which developers build an application and are not concerned
about the underlying infrastructure. For this reason, several authors have proposed
different software solutions, such as infrastructure as a service (IaaS), platform as a service
(PaaS), software as a service (SaaS) and function as a service (FaaS), focused on the intensive
processing of data from different sources (e.g., Internet of Things (IoT) devices, data
repositories or other sources) that will be consumed by the services to offer users different
business-specific functionalities [1–5].
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Within this context, the eHealth field is an area that is becoming increasingly im-
portant in public health policies because health care delivery systems (e.g., public health
management or electronic health records (EHR)) are constantly evolving towards more
patient-centered customized services and digital transformation (e.g., eGovernment) [6,7],
which, based on data collected by the eHealth systems in conjunction with the recom-
mender systems, can accelerate and drive decision making [8].

Considering the above, we have identified a growing concern regarding the increase in
the aging population in our society. In Europe, the expected growth of the population over
65 will be 74% by 2060 [9–11], while in North America, it will be 20% by 2050 [12–14]. This
trend places a serious burden on the public health system, since this group of people have
high age-related comorbidity (e.g., degeneration in physiology and the abilities of memory,
vision and decision), consuming extensive resources of both primary and specialized
care [9,15], and consequently, it is more difficult for the elderly to adapt within society.

Telemonitoring systems are very popular today, since these systems are primarily
based on the remote analysis of biometric data or daily activities, stemming from either
a low availability of medical centers or mobility complications of people. These systems
require the use of the Internet of Healthcare Things (IoHT) such as body sensors, bed
sensors and smart watches for the collection and monitoring of people through their data,
which allows the detection of anomalies in the vital signs of the elderly, and thus alerting
medical personnel to these problems [16–19]. In addition, telemonitoring is an effective low-
cost means for periodic health exams or preventive treatments in nursing homes [13,20].

Based on the ideas presented and the use of telemonitoring, we have focused on the
design, development and implementation of a platform aimed at detection and clinical
diagnosis assisted by a recommender system based on artificial intelligence (AI) algorithms
within the field of infectious diseases for the elderly population living in nursing homes.
It should be noted that this article is part of an extensive study in the field of infectious
diseases focused on the three target groups of acute respiratory infections, urinary tract
infections and skin and soft tissue infections. However, the article presented here is based
in part on several previous studies by the partners of the Design and implementation of
a low-cost intelligent system for the prediagnosis and telecare of infectious diseases in
elderly people (SPIDEP) [21–25].

Another priority task in the concept of a platform targeted for Cloud computing
environments is to define the architectural pattern to be implemented in the platform (e.g.,
service-oriented architectures (SOA) or microservices architecture (MSA)), which should
be based on the needs (e.g., agility, maintainability or high-performance) and the nature of
the organization (e.g., eHealth, transport, energy or supply chain management) [7,26–29].

For these reasons, this article describes the work done to evaluate and contrast which
of the architectural patterns (SOA or MSA) is more consistent with the attributes of software
focused on versatile high-performance within the eHealth context [21], while considering
the strengths and weaknesses of each architecture based on quality of service (QoS) and its
corresponding metrics. Therefore, it has been necessary to modify the SPIDEP platform
into two variants following the guidelines of each architectural pattern, which allows us to
analyze which of the variants optimally meet the proposed specifications.

However, the contributions of this article are: (i) to provide an overview of the differ-
ences between SOA and MSA; (ii) to identify the implications of designing, implementing
and deploying SOA and MSA oriented platforms; (iii) to measure the performance of SOA
and MSA variants, taking as reference the quantitative values obtained from experiments,
and to contrast these obtained results with respect to existing research results. Neverthe-
less, the SOA and MSA architectural patterns can be considered complementary allies for
an interenterprise architecture that confers a suite of different services rather than being
competitors; therefore, it is expected that this future architecture will allow the integration
and interconnection of different eHealth applications along with microservices adapted
to machine learning for various medical scenarios (e.g., a patient monitoring system for
hemodialysis or early forecasting of COVID-19).



Appl. Sci. 2021, 11, 4350 3 of 28

This article is organized as follows: Section 2 presents a brief description of the related
works, including the motivation for the SPIDEP project and its importance in the field of
eHealth. Section 3 details the case study applied in SPIDEP, which is a project aimed at tele-
monitoring in nursing homes. Section 4 describes in detail the architectural models applied
in the designs of the SPIDEP platforms and the technologies implemented. Section 5 shows
the results of the spike testing based on the three categories of response time, efficient use
of infrastructure and network consumption. The benefits and disadvantages of the results
are evaluated in Section 6. Finally, Section 7 provides the conclusions of this study, analyzes
its potential and suggests future research activities.

2. Background and Related Work

Currently, there is a growing interest in the use of archetypes for the development
of various eHealth applications to represent the structure of clinical information and
its specifications within a platform [30–32]; examples include traditional information
systems, clinical decision support systems, platforms oriented to the HL7-FHIR protocol or
telemonitoring systems, whose purpose is to significantly improve the accuracy of medical
diagnosis by establishing expert systems-based prediction approaches or other means of
artificial intelligence.

This interest is why we have performed a brief review of the various existing projects
that show different analyses, applications and research conducted in this field; however,
classifying these projects according to the architectural pattern implemented (i.e., SOA
or MSA) was needed since it is necessary to analyze how SOA and MSA influence the
development, integration and deployments of eHealth applications and how these patterns
adopt principles or practices to address the software requirements.

2.1. Service-Oriented Architecture (SOA)

According to the norms and standards of service-oriented quality [33,34], SOA was
one of the most used software architectural approaches in the early 2000s; it was used
for the design and development of applications as services. This architecture aims to
provide uniformity in the design, implementation and invoking of services required to
meet the desired needs of the application [35]; that is, any process, subprocess or logic of
an organization can be encapsulated in services [36].

As can be inferred, SOA is a business-focused information technology (IT) architecture
that is supported by the integration of services. Consequently, all the services designed
in SOA must comply with the following three fundamental software attributes [37,38]:
First, each developed component must have the ability to be reused within the application
(reusability). Second, the components must be able to communicate with each other or
with other external applications (interoperability). Third, the application must allow the
ability to adapt to future needs or objectives of the organization (extensibility).

As a follow-up to this activity, several research projects that propose the combined use
of this architectural pattern with several software attributes will be outlined below, focused
on various eHealth scenarios.

For example, Gavrilov et al. [38] propose a novel conceptual model of EHR focused
on the aspect of cross-border interoperability [39], whose objective is to meet the needs of
interconnectivity between the different eHealth systems of Macedonia, under the specifica-
tions of the European Patients Smart Open Services project [40,41]. Thus, the authors chose
to combine the SOA architectural pattern with the use of the data warehouse (DW) and the
following three technologies oriented to an extract, transform and load (ETL) process: the
interface description (using Web services description language (WSDL) documents), the
communication protocol simple object access protocol (SOAP) (using extensible markup
language (XML)) and universal description, discovery and integration (UDDI) repositories
(allowing users to find services) [38]. They have shown that the proposed model achieves
a successful data exchange between the various platforms tested. Additionally, this model
allows the classification and indexing of the data, which allows SOA to be able to commu-
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nicate with different applications other than the predefined DW because each healthcare
system is designed, implemented and validated by the HL7 fast healthcare interoperability
resources (FHIR) protocol.

Likewise, Amin et al. [39] propose building a framework for the exchange of in-
formation among the eHealth systems of Indonesia, whose purpose is to integrate and
synchronize data from different (heterogeneous) platforms through web interoperability.
This framework was designed under the concept of service-oriented analysis and design
(SOAD) [42,43], which is composed of the three main phases of the conceptual view (CV),
which illustrates to those involved all the activities that encompass the workflow of the
organization; the logical view (LV), which encapsulates all the logic identified by the CV in
various software services; and the physical view (PV), which implements the different web
layers, including the presentation, application service, domain model and data access lay-
ers. The three previous phases focus on a logic based on SOA, whose objective is to process
all user information and exchange data among platforms using the RESTful protocol [44].
They validated their framework by successfully relating eHealth systems and integrated
entities and the exchange of data and information in the form of an interoperability matrix
(IM), so that organizations can use this matrix as a point of reference for adaptation.

Hameedet et al. [45] present a framework oriented to the real-time monitoring of the
vital signs of patients (e.g., electrocardiogram, body temperature, pulse rate and oxygen in
blood); their framework consists of the combined use of the SOA architecture, rich Internet
application and the IoT (Arduino and eHealth sensor shield) [46]. This combined use is
necessary because the framework requires the ability to communicate between services
and their sensors and to make associations between different medical administrations
(e.g., clinics or medical centers); therefore, the implementation of the REST protocol was
required to comply with this aspect [47]. They have shown that the proposed framework
increases the efficiency of data collection because each service is designed, implemented
and validated in an automated manner for the monitoring of a large number of patients.

Silva et al. [48] develop a pilot system called the mHealth application, based on existing
practices of IoT and the SOA architecture, focused on telemonitoring of patients. The main
objective of this system is to optimize the follow-up services and treatment of arrhythmias
or other heart conditions of the patients remotely, which provides coverage to rural or
difficult to access areas. This system consists of the four main modules of the monitoring
process and patient electronics (main component of the application), body sensor (cardiac
arrhythmia detection), caching mechanisms (temporarily stores data in case of network
unavailability) and an alert messaging system (sends a warning to health care professionals
if an anomaly is detected). They validated their system using a performance assessment
and quality of experience (QoE); their results demonstrated a significant improvement in
medical care and assistance to patients. In addition, an unexpected result was that the
management of medications was more accurate, efficient and less costly for the medical
institution.

2.2. Microservice Architecture (MSA)

Currently, there is a growing interest in MSA in both the industrial and research sectors
due to its various advantages, including flexibility, agility, infrastructure automation and
loose coupling [49–51]. MSA is considered a more refined and simplified version of
SOA [33,52], since this architecture responds to the needs of scalability of applications by
segmenting the logic of an organization into a series of separate services that are executed
as independent processes; that is, it is not necessary to use the same languages, databases
or development platforms [21,53,54]. In addition, MSA inherits from SOA the concept of
interoperability through the implementation of lightweight mechanisms such as HTTP-
based API and others [39,50,55].

Many organizations have recognized the benefits in the migration of their legacy
software to microservices-based solutions to enable their applications to evolve, rather than
acquiring new third-party software [52,54]. However, performing this process (known as
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granularity) requires using a pathway or model that can successfully migrate the appli-
cation; consequently, this factor depends on the use of design patterns (e.g., decompose
by business, by verb or use case, by subdomain or by nouns or resources) and how the
performance stability of the services is affected [50,51,53,56].

A description of the most significant studies of the new MSA solutions within the
eHealth domain is necessary.

Carranza-García et al. [57] present two technological solutions based on MSA (i.e.,
cognitive training “VIRTRAEL” and frailty prevention “PREFRA”). These solutions aim to
integrate the different age-related aspects from the cognitive, physical and social levels;
therefore, when addressing these factors, more complete and reliable assessments of the
elderly are obtained. However, to achieve this objective, the systems must have the four
essential software attributes of reusability, extensibility, interoperability and composition,
since these are required for the design, development and implementation of more complex
functionalities that make use of different recent technologies (e.g., web or mobile). They
have shown that the proposed technologies are a viable solution aimed at meeting the
required quality attributes.

García-Moreno et al. [58] develop an MSA-based system that collects sensory data
of the elderly in their daily activities (e.g., toilet hygiene or functional mobility); these
data include not only a physical dimension but also cognitive and social dimensions. This
system is supported by using IoT (i.e., wearable devices), which are used by microservices
focused on the collection, analysis and interpretation of data. In addition, this system is
supported by several machine learning algorithms (e.g., kNN, RF or NB) to build more
accurate models for detecting anomalies in people [59].

Jarwar et al. [17] provide a model focused on semantic interoperable data-driven
microservices. This model is responsible for capturing, representing and analyzing various
types of data related to depressive disorders (DD). These data are vital to providing the
model with a way to monitor the symptoms of DD through the use of indicators (e.g.,
user facial expressions, voice tone, user emotions from wearable sensors, social network
services posts (SNS) and tweets). Generally, microservices do not make intelligent decisions
based on data [60]; therefore, it is necessary to implement the following two dedicated
servers in the model for this scenario: data mining/machine learning (extracts features and
monitors the symptoms from the sensor data and SNS) and web of objects server (applies
the semantic web technologies and inference of the user situation to provide the services to
the users).

Da Silva et al. [30] propose a tool called Microservice4EHR, which is based on the
OpenEHR standard used for the computational representation of EHR (archetype) [61]
and the conceptualization of a microservices-oriented software architecture. This tool
consists of the five functionality phases of a tool access key, the host server address of the
MSA component, a graphical interface with health data based on archetypes, a graphical
interface filename and the input/output data (in JSON format), which is processed and
presented in a web application [30]. Moreover, all these approaches have the purpose of
building reusable components that can be used as building blocks in health applications
(e.g., a blood donation center in northeastern Brazil). Additionally, this attribute improves
the capacity of the maintainability and interoperability of the applications between the
information systems.

2.3. SOA vs. MSA

Considering the above, the previously cited studies reveal different eHealth appli-
cations, based on SOA or MSA, that focus on one or several of the software attributes of
interoperability, maintainability, reusability and scalability.

Both architectures have their strengths and weaknesses, according to the needs of
the software and implementation [62]. SOA focuses mainly on the sharing of services in
relation to the processes or capabilities of an organization [50,63]. In this sense, SOA can
refer to a broad accumulation of knowledge over the last two decades [62]. Regardless, this
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approach presents many issues when correcting errors or adding new functionalities, since
the design of the application is very complex and time consuming. In addition, scalability
in SOA is generally not possible or requires significant effort to be achieved. Consequently,
organizations are beginning to migrate to other architectural solutions such as MSA [64,65].

MSA allows efficient development, implementation and maintenance of services
compared to SOA. In fact, since the services are autonomous, they can be developed,
maintained and tested independently, which facilitates their automation and continuous
deployment (e.g., DevOps practices) [21,50,66]; however, such practices entail complexities
inherent to a distributed computing environment in relation to the isolation, availability,
security and transaction of services [33,50], which in turn causes a fundamental problem
known as granularity (i.e., if a microservice needs to decompose or merge) [21,51].

Based on these considerations, the implementation of SOA or MSA depends on the
nature of the target system to be developed. Thus, for the development of our eHealth
application, it is of utmost importance to contrast the performance between SOA and
MSA based on the concept of versatile high-performance [21], since it is necessary to meet
the needs of the environment of health organizations, focused on horizontal scalability.
Quicker and more accurate real-time responses to demand peaks are thus enabled [22].
Additionally, it is necessary to allow the hierarchy and consolidation of a patient’s clinical
information, including what is necessary not only for generating standard reports but also
for allowing the integration of recommender systems, to support decision making with
consistent and truthful parameterized indicators of the data collected [21].

3. A Case Study from eHealth

The work presented here is based on a previous study performed by the SPIDEP
project part of the Joint Call ERANET LAC 2015—FP7 [67], whose objective was to build an
intelligent system based on information and communication technologies (ICT) to support
the early diagnosis of infectious respiratory and urinary diseases in the elderly [21,24].
For this, an international consortium was formed between the clinical research teams and
the Infectious Diseases Unit of the Hospital Universitario Principe de Asturias (Alcalá de
Henares, Spain), the Chronic Diseases and Cancer Area of the Ramón y Cajal Institute for
Health Research (Madrid, Spain) and the School of Medicine Autonomous University of
Santo Domingo (Dominican Republic) and the research teams of the Computer Sciences
group of the University of Alcalá (Universidad de Alcalá) and the Technological University
of Panama (Universidad Tecnológica de Panamá).

This study incorporates patients living in the Francisco de Vitoria and Cardenal
Cisneros nursing home in Spain and residents of the Carls George and Nuestra Señora
del Carmen Institution for the Care of the Elderly in the Dominican Republic. The main
purpose of the study is to provide health services and care to people at risk or who have
difficulties in accessing health services through the use of new technologies to achieve
greater efficiency in the organization and care of special population groups, with the added
value of cost savings [21].

Actually, health monitoring has become one of the biggest areas in the technology in-
dustry, developing many smart devices like watches or another more specific body sensors.
This has allowed researchers to contribute to the development of eHealth platforms focused
on regularly monitoring the vital signs of at-risk patients, with the aim of carrying out
treatments or preventive interventions to minimize health problems and reduce emergency
care [10,16–18,46,48,58].

4. Model and Design of SPIDEP Platforms

To perform this study, a merging of the computational paradigms of the Edge and
the Cloud was used [68,69], based on a hybrid Cloud architecture to support medical
telemonitoring applications [21] under the two architectural patterns (i.e., SOA and MSA).
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In this sense, we focus on the evaluation of the design, development and implementa-
tion of the services created for our use case (SPIDEP) and how they affect performance related
to the response time to queries, the efficient use of infrastructure and network consumption.

4.1. Analysis of Software Attributes

This preliminary step is fundamental for the design and development of applications,
since it is necessary to define an adequate set of software attributes according to the needs
identified [7].

In response to these considerations, it is of utmost importance to mention our needs;
they are as follows: (i) neutral technology—those responsible for the development, imple-
mentation and monitoring of the assigned services may decide which is the best technology
to use according to their objectives; (ii) automation and continuous deployment—each
component should be autonomous, independent and focused on a specific task according
to the established decomposition (e.g., by verb or use case). In addition, it must have
the individual ability to replicate to balance the load, as necessary; (iii) scalable to the
demand—the services require a horizontal scalability that allows a faster and more precise
reaction to the demand peaks; (iv) interoperable—each service must run a lightweight
communication mechanism (e.g., RESTful) to communicate between the different applica-
tions or services, either their own or those of third parties. In addition, this mechanism
should not have access to visual elements, i.e., it must be separate from the front-end; and
(v) high performance—the application must support a large volume of queries of the REST
methods (e.g., GET, POST, PATCH and DELETE) from the integration, transfer and storage
of the biometric sensors from the different nursing homes (Edge) to the various services
offered by the SPIDEP hybrid (Cloud).

As explained in Section 2.3 (SOA vs. MSA), it was decided to adopt the concept of
versatile high-performance, since it allows us to meet the needs of the project [21].

4.2. Variants of Software Architectures

Considering the above, it was necessary to build two variants of SPIDEP, according to
the specific attributes of each architectural pattern; however, SOA and MSA have different
approaches in terms of how their services are designed, implemented and deployed [33,70].
In addition, it must be remembered that MSA remains an architecture in training, while
SOA has been studied for more than a decade [35,62].

Therefore, it has been decided to establish two branches of the SPIDEP application since
it allows us to contrast and evaluate which of the variants fully meets our criteria [71–73].

4.2.1. SPIDEP SOA Variant: Platform Design

The first proposed platform (SPIDEP-SOA) is intended to manage the interactions
between users (consumers in the upper layer) and health services (software functionalities
in the lower layer), according to the changing needs of the platform (technology, demand
and security), as shown in Figure 1.

Next, we will briefly outline our first variant of the platform, which consists of six
layers focused on the management of services under the computational paradigms (i.e.,
Edge and Cloud) [23], as follows:

• Consumers: This layer allows interaction and exchange between the health profes-
sionals of the different homes (nurses and assistants), the hospitals in charge of each
region (general physicians) and the eHealth applications (SPIDEP or others).

• Edge layer: Establishes HTTP connections with the APP for the asynchronous sending
of medical data in the Cloud (i.e., the Cloud layer) [33], whose data come from the
different users and their sets of biometric sensors (i.e., blood pressure, pulse rate, body
temperature, oxygen saturation and electrodermal activity) [23]. It should be noted
that this communication is encrypted by the security layer.

• Cloud layer: This layer performs heavyweight computations; that is, it helps con-
sumers discover, route and deploy health services and infrastructure. In addition, this
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layer consists of the three sections of infrastructures and resource, support functions
and control system. Additionally, different algorithms are used to achieve various
objectives (e.g., error tolerance and load balancing) [74].

• Service layer: Contains services for the end users like medical personnel and nursing
home administrative staff with their respective profiles.

• Security layer: Ensures access control and consumer authentication through estab-
lished security policies, whose objective is to determine the user privileges for certain
resources and/or specified levels of services.

• Management system: This layer mainly controls the flow of messages between the
different layers. In addition, it is responsible for executing the real-time adaptation
of the services (versatility) according to demand, e.g., automatically adding a new
instance, monitoring the status of the different components that integrate the platform
or other monitoring tasks.

Figure 1. General scheme of the services applied in the SPIDEP platform under the SOA variant (SPIDEP-SOA).

It should be noted that this variant of SPIDEP was a refactoring of the legacy ap-
plication [23] whose purpose was the modernization of existing services oriented to our
current software attribute (i.e., versatile high-performance) [64]; however, the strengths
and weaknesses of SOA must be considered.

Considering the above, the strengths of SOA are the following:

• Provides a higher level of compression related to the abstraction of the interfaces than
MSA (decoupling) [62], since SOA traditionally has the integration of an enterprise
service bus (ESB) [75], which facilitates the interaction between the services of the
platform.

• Offers extensive knowledge that has been established over more than a decade, which
has proven to be effective and reusable in building platforms. It is thus easier for
developers to ensure the quality of service required by the organization [76].
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• Suitable for large and heterogeneous systems consisting of many applications, non-
independent services and shared components [33,77]. It provides a roadmap for the
adoption of its principles, which allows developing or transforming the capabilities
of an organization’s software system into reusable services for greater flexibility and
agility [78].

However, when applying SOA, the following weaknesses or difficulties must be con-
sidered:

• Message exchange is traditionally synchronous (wait-to-connect); i.e., it depends on
the state of the ESB [33]. However, when applying a design oriented to service imple-
mentation patterns, the support of asynchronous messages is integrated, increasing
complexity and maintainability and reducing flexibility [33,76,79,80].

• When developing platforms based on SOA, it is complex to add or modify functionali-
ties to what has already been established; redesigning this type of platform consumes
significant time and resources [64,81].

4.2.2. SPIDEP SOA Variant: Implementation of the Platform

For the implementation of the SPIDEP-SOA platform, we opted to modernize the
first version developed (Beta “traditional implementation of seven SOA services, without
API support”) [23] to the release candidate (RC) (“Modernization of services and current
technologies (language, database, libraries and integration of an API)”), whose purpose is
to provide the necessary attributes for the implementation of versatile high-performance
applications and contrast it with the MSA variant. Therefore, we proceeded to the refactor-
ing and restructuring of the existing components along with their data [53,82], as shown in
Table 1 for each version.

Table 1. General structure in the SPIDEP-SOA platform.

Description Version

Category Subcategory Beta RC

System architecture

Architecture styles SOA SOA-based on Quality Requirements
SOA patterns Enterprise Service Bus (ESB) Service Implementation Patterns

Communication protocol HTTP HTTP
HTTP methods Disable GET, POST, PATCH & DELETE
Messaging type Synchronous Synchronous/Asynchronous

Used technologies

Programming language PHP 5.6 PHP 7.4
Framework Laravel 5.1 LTS Laravel 6 LTS

Core libraries

acoustep/entrust-gui;
zizaco/entrust; Laravel Passport;

mockery/mockery;
phpunit/phpunit; tinker;

composer, and others

Guzzle; fideloper/proxy;
kylekatarnls/laravel-carbon-2;

zizaco/entrust; Queues; Laravel Sanctum;
mockery/mockery; phpunit/phpunit;

tinker; composer, Custom libraries, and
others

UI Bootstrap 3 Bootstrap 4

Web server Apache Apache as an endpoint and NGINX as a
load balancer for the implementation

DBMS MariaDB 10.1 Postgresql 10
Data access methods Stored procedures Stored procedures

Object–relational mapping Eloquent Eloquent
API Scheme Disable RESTful (JSON Request/Response HTTP)

API Gateway Disable Central Entry Point
Deployment Bare Metal Custom Docker Container

OS Ubuntu 16 LTS Ubuntu 18 LTS

Authentication Scheme HTTP Basic Authentication Custom Authentication (OAuth1, OAuth2 or
JWT Web Token)

Encryption Protocol OpenSSL (AES-256 and AES-128) OpenSSL (AES-256 and AES-128) and
public/private rsa key pair
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4.2.3. SPIDEP SOA Variant: Deployment of the Platform

When applying an SOA design pattern (compound, service implementation, service
composition, inventory and others) [80], a positive impact is obtained on certain quality
requirements (i.e., performance or interoperability), which negatively affects other quality
requirements (i.e., redundancy or security). Therefore, it is important to select design
patterns according to the software attributes and quality requirements [76].

Considering the above, service implementation patterns were chosen for the develop-
ment of the SPIDEP-SOA platform, since they allow creating versatile and scalable services
that run in the Cloud [83,84]; however, an automated workflow must be defined for the
integration and continuous deployment of services [21,80].

Within this concept, we have adjusted our framework for this variant (mainly in the
first three sections) [21], because SOA is geared to a modular design to reduce dependencies
between platforms [37,85], i.e., that the services collaborate and share their resources (loose
coupling), unlike MSA where the services are decoupled and isolated [33].

In addition to the situation, a general overview of the SOA-based proposal follows [21]:

• Teamwork: Responsible for the coordination and monitoring of all platform services
(business-centric IT) [86].

• Services: Unlike our MSA framework, each team does not have the autonomy to
decide which is the best technology for the development of services. These teams
should adhere to the Teamwork decisions that follow the business functionalities. For
example, all SPIDEP-SOA services were developed under the Laravel PHP framework
and a single DBMS, PostgreSQL 10 (the core systems, except for the mobile app, were
developed in Java); however, all services are supported by an asynchronous HTTPS
server that is based on transport layer security (TLS) for client authentication and can
replicate instances based on demand, unlike the traditional SOA approach.

• Code repository: A Git repository is used to maintain version control of the code from
the development branch of the services that make up the platform [87,88].

• Software analysis and testing: The source code and the environment are reviewed to
ensure correct functionality and that they meet the desired standard; then, unit tests
of the services are performed (e.g., PHPUnit).

• Docker containers (test environment (TE)): To ensure the stability and scalability of our
platform, we opted for the customization of a test container (Ubuntu Server 18.04 LTS,
2 Core, 4 GB RAM and 80 GB SSD); however, these containers must pass preliminary
test criteria defined by Teamwork before being published in the Docker Hub in a
private repository.

• Quality assurance (QA): Functional tests, interoperability tests, and load and perfor-
mance tests are performed to ensure the quality of services [21,34].

• Docker containers (production environment (PE)): If the integration of all services in
the platform is successful, the stable version of the container is deployed to Docker
instances (under the same TE attributes); otherwise, the code should be debugged and
the QA tests rerun.

• Performed postproduction: Additional tests (e.g., long-term spike testing) are run to
ensure that the services work properly in all instances [21,53,89].

• Managed Kubernetes: Kubernetes is used for automating management of comput-
erized services, since it reduces the manual and repetitive processes involved in
container management [90]. In addition, Kubernetes scales according to demand,
i.e., it increases the use of resources in high demand, and if demand decreases, idle
resources are reused [91]. Unlike the traditional SOA approach (which does not have
scalability support), it was necessary to make several adjustments to the RC version
of the platform.
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4.2.4. SPIDEP MSA Variant: Platform Design

The second proposed platform (SPIDEP-MSA) is geared to the use of microservices in
the expected medical scenarios of infectious diseases (like its other variant) [21,22,24], as
shown in Figure 2.

Figure 2. General scheme of the services applied in the SPIDEP platform under the MSA variant (SPIDEP-MSA).

Both platforms aim to support the interpretation of changes in vital signs of elderly
people living in residential facilities, thus alerting the medical team in advance of possible
infections; however, the MSA variant has a recommender system to improve decision
support in the prediagnosis of infectious diseases [25,92]. Following, we will briefly
explain the flow of the SPIDEP platform in relation to microservices [23]:

• Edge architecture: Manages the collection, preprocessing and sending of data from the
different biometric sensors (e.g., ECG, blood pressure, SPO2 or others), whose data
are backed up locally. If necessary, temporary actions can be performed (e.g., delete,
filter or update) before the data are sent to the Cloud architecture, which enables
analysis with local data to streamline decision making in case of emergency [16,93]. It
should be noted that the connections with each APP are made asynchronously and
independently for each stakeholder.

• User communication: Provides the necessary mechanisms for correct communication
between the different layers and sublayers (e.g., data, validation of credentials or
other). This communication is achieved through the representational state transfer
(REST) protocol and its methods (i.e., GET, POST, PATCH and DELETE); however,
this protocol requires the use of an API gateway. Therefore, taking advantage of
some of the strengths of MSA (e.g., decoupling and isolation of microservices) [30], the
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Backends for Frontends design was implemented in the API gateway [56,89]. Requests
are handled by each stakeholder (i.e., desktop, mobile and third-party source) and not
traditionally (i.e., single entry point); consequently, additional security mechanisms
must be implemented for their validation [7,94,95].

• Cloud architecture: Provides services for end users (e.g., core or auxiliary microser-
vices) according to their needs and the levels of user roles and permissions [21].
In addition, it manages the stored data of the different DBMS (database per ser-
vice) [54,96] to provide benefits to target users (e.g., patients, medical personnel or
health authorities) [16].

Similarly, we must remember the strengths and weaknesses of MSA. The strengths of
microservices are the following:

• Each microservice is incapsulated; therefore, it has more flexibility to use new frame-
works, libraries, data sources and other resources [64].

• It allows horizontal scaling of the services instead of vertical scaling as in the case of
a traditional or monolithic SOA, which facilitates the ability to use more computing
resources (e.g., CPU, GPU and RAM) that will act as a single unit; however, it can be
distributed through multiple virtual networks [50,55].

• Each microservice is autonomous, has independence in the execution of its tasks, can
be hosted in a specific server on the Internet, is available on the Internet (i.e., any
software can interact with it) and does not share the same resources [30,97,98].

• The fault isolation can be obtained without interrupting the normal functioning of the
whole system [16,52].

• However, when applying MSA, the following weaknesses or difficulties must also be
considered:

• MSA provides many different advantages, but it also increases a solution’s complexity.
To address increased complexity, an organization should prepare the specific infras-
tructure for microservices (i.e., obtain a clear picture of the data structure) [64,99].

• If the level of granularity is determined before knowing the business process or the
useful life of the platform, it can lead to problems in the reasoning about the services
(e.g., if a microservice should be decomposed or merged with another) [33,51].

4.2.5. SPIDEP MSA Variant: Implementation of the Platform

Similarly, for this variant (SPIDEP-MSA), the respective modernization of the latest
built version was performed (β v2 “implementation of the nine microservices, with hybrid
instances in MariaDB Galera Cluster and NoSQL, and two EndPoint (Mobile/PC)” [21]
to the RC (“Modernization and restructuring of microservices and current technologies
(language, database, libraries and integration of a third EndPoint)”).

The following is a general description of the technologies implemented in each version,
as shown in Table 2.

Table 2. General structure in the SPIDEP-MSA platform.

Description Version

Category Subcategory Beta v2 RC

System architecture

Architecture styles MSA MSA

MSA patterns
Service instance per-container;

Database per service & API
Gateway

Service instance per-container;
Database per service & API Gateway-

Communication protocol HTTP HTTP

HTTP methods GET, POST, PATCH &
DELETE GET, POST, PATCH & DELETE

Messaging type Synchronous/Asynchronous Synchronous/Asynchronous
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Table 2. Cont.

Description Version

Category Subcategory Beta v2 RC

Used technologies

Programming language PHP 7.2 (µs-A) & Python 3.6
(µs-B~I)

Python 3.7 (µs-A~G) & Python 3.8
(µs-H~I)

Framework Laravel 5.4 LTS (µs-A) &
Django 2.1 (µs-B~I)

Django 2.2 LTS (µs-A~G) & Flask 1.1
(µs-H~I)

Core libraries

PHP/Laravel dependencies
(Guzzle;Laravel Sanctum and

others), Python/Django
dependencies (setup-

tools;requests;psycopg2;
requests_futures;lxml;six;django-

cas-server;django-cas-
ng;djangorestframework;

celery, TensorFlow and others)
& Custom libraries

Python/Django~Flask dependencies
(setuptools; requests;

psycopg2; requests_futures;
lxml;six;werkzeug

django-cas-server;django-cas-ng;
python-cas; djangorestframework;

Flask-RESTful; celery, TensorFlow and
others) & Custom libraries

UI Bootstrap 3 Bootstrap 4

Web server
Apache as an endpoint and

NGINX as a load balancer for
the implementation

Apache as an endpoint and NGINX as
a load balancer for the implementation

DBMS MariaDB Galera Cluster
(Galera 3), Cassandra & Redis Postgresql 10, Cassandra & Redis

Data access methods Stored procedures & Column
Family Stored procedures & Column Family

Object–relational mapping Eloquent, QuerySet &
Django-Cassandra-Engine

QuerySet, SQLALchemy &
CQLAlchemy

API Scheme RESTful (JSON
Request/Response HTTP)

RESTful (JSON Request/Response
HTTP)

API Gateway Backends for Frontends (2
EndPoints) Backends for Frontends (3 EndPoints)

Deployment Custom Docker Container Custom Docker Container
OS Ubuntu 18 LTS Ubuntu 18 LTS

Authentication Scheme

Custom Authentication
[OAuth1, OAuth2 or JWT

Web Token] & CAS Protocol
3.0 Specification

Custom Authentication [OAuth1,
OAuth2 or JWT Web Token] & CAS

Protocol 3.0 Specification

Encryption Protocol

HTTP Authentication (Tokens
and SSL); PBKDF2 with a

SHA256 hash; public/private
rsa key pair and custom
authentication settings

HTTP Authentication (Tokens and SSL);
PBKDF2 with a SHA256 hash;

public/private rsa key pair and custom
authentication settings

4.2.6. SPIDEP MSA Variant: Deployment of the Platform

To meet the software attributes and quality requirements, it was necessary to establish
an automated workflow for the integration and continuous deployment of the microser-
vices in SPIDEP-MSA. Therefore, we assigned a cross-team (typically a small group of
six to eight people [100,101]) for each case (e.g., decomposed by verb or use case [56]);
each team is responsible for the development, debugging and deployment of the assigned
microservice. This workflow reduces the time between updates or new system func-
tionality (without affecting end users) and implementation of changes to the production
environment (without affecting system performance) [21,102,103].

Considering the above, we implemented the same framework proposed for the MSA
variant of SPIDEP (beta v2), whose framework is divided into the following nine phases:
(i) cross-team project, (ii) service, (iii) code repository, (iv) software analysis and testing, (v)
test environment, (vi) quality assurance, (vii) production environment, (viii) performed
postproduction and (ix) managed Kubernetes [21].
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Unlike the SPIDEP-SOA variant, this platform requires applying the implementation
patterns based on MSA (i.e., service instance per container, database per service and
Backends for Frontends), since it is necessary to fully support a horizontal scalability of
the resources. However, this entails an increase in the effort and complexity to manage
all interactions between microservices, according to the size of the organization to be
implemented [60]. Additionally, in this variant, we verify the identity of the user for
each message sent and/or received through the signal mechanisms; therefore, a secure
communication channel is established for different computer attacks (e.g., man-in-the-
middle) during active sessions [104].

5. Validation of Results
5.1. Experiments Settings

To evaluate the performance of the resources of each SPIDEP variant incorporat-
ing SOA and MSA (i.e., networks and infrastructure), spike testing was used to obtain
quantitative values regarding the behavior of the services and their interaction with end
users [53,89,105,106].

Before performing these controlled tests, it was necessary to create two Kubernetes
environments (K8s). The first environment, named SPIDEP-SOA-K8s, contains all the
services of the SPIDEP SOA variant platform, with the following specifications: a custom
instance of an Ubuntu Server 18.04 LTS (2 Core, 4 GB RAM and 80 GB SSD), PostgreSQL
cluster (database dedicated server only) and a PODs replica. The second environment,
named SPIDEP-MSA-K8s, contains all the services of the SPIDEP MSA variant platform,
with the following specifications: each microservice has a custom instance of an Ubuntu
Server 18.04 LTS (2 Core, 4 GB RAM and 80 GB SSD), PostgreSQL cluster (database
dedicated server only) and no PODs replica. Additionally, each environment uses Apache
as an endpoint and Nginx as a load balancer. The various user requests are received
initially by Nginx, which sends the request to the corresponding services to address the
URI-request [21].

After deployment of the K8 environments, the use of scripts with random variables
developed in Apache JMeter (5.2) is required to measure and contrast the performance
among the 50 virtual users (simulating the terminals of the biometric sensors) and the
SPIDEP platforms; however, to avoid altering the results, it is necessary to use dedicated
servers to perform these tests. Therefore, we have selected the BlazeMeter servers (US
East [Virginia, Google]) to generate a heavy workload towards the platforms, according to
small or medium instances of medical telemonitoring environments and their specifications
(approximately 200,000 queries every 20 min) [7,21,53,60,93]; however, these platforms
have the capacity of automatic scaling that will determine the distribution of computer
resources according to demand (for these tests they were disabled, since we had medium
instances), as shown in Figure 3.

It should be noted that these experiments were evaluated and agreed upon by the
experts within the project to be implemented in custom instance of an Ubuntu Server 18.04
LTS [21], as they were previously used to perform load and performance tests, all in order to
ensure the quality of the services developed (i.e., performance, scalability and availability),
and in conjunction with the use of recent technologies such as: (i) Docker, all platform
services have been encapsulated as Docker images to enable their simple management,
update and deployment processes within a Cloud environment. In addition, the Docker
implementation can be based on individual containers or grouped into a combination
of elements that form an overall service [28,29]; (ii) Kubernetes, this technology is used
for the orchestration of Docker containers, as it allows the initialization and scaling of
container-based jobs, the exposure of services, as well as the rescheduling of failed jobs
and long running services [90,91].
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Figure 3. Process Flowchart for the simulation performed on the K8s SPIDEP environments.

However, all this set of technologies allows its adaptation and implementation in a
simpler way by developers, which results in consistent, measurable, and replicable results.
However, this cloud computing-based framework is intended to be implemented in dif-
ferent Linux distributions (e.g., Fedora, CentOS, Amazon Linux, Debian, and others) or
Windows Server (e.g., 2016 or 2019). e.g., 2016 or 2019), since this framework is governed
by the segmentation of an organization’s logic into a series of separate services that run as
independent and isolated processes; that is, it is not necessary to use the same languages,
OS, database, or development platforms; however, to replicate these results all the specifi-
cations implemented in each variant must be taken into account, for more details please
refer to Tables 1 and 2 in Section 4.

Other considerations to take into account would be: (i) type of input and output,
for both platforms the RESTful protocol is used to communicate and HTTP methods
(GET, POST, DELETE and PATCH). However, the data sent or received are delivered in
JSON (Javascript Object Notation) format, since this format is easier to be interpreted by
developers or electronic platforms. However, these platforms support other formats like
HTML, YAML, XML, XLSX or TXT; (ii) general accessibility, the application was deployed
in a cloud environment that can be accessed through a browser (i.e., Google Chrome,
Fire-fox, Opera or others); (iii) number of tests performed, four joint tests were created
divided into two concepts (Response time and Network consumption, and Efficient use
of infrastructure) with an average of 200,000 samples per test for 20 min, grouped in two
groups (SPIDEP-SOA-K8s-T1/T2 and SPIDEP-MSA-K8s-T1/T2).

It should be noted that both environments follow the same steps to summon their
services. The first step is to authenticate all active sessions using the JWT token that will be
verified by the API gateway (all user interface “UI” use is excluded). The second step is
to generate approximately 150,000 initial data points in each database, using as seed the
existing medical data (8500 records). In this sense, all the data generated is only intended
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to generate a workload that will drastically increase (ten of ten users every five minutes)
to emulate a specific number of concurrent user sessions (50 virtual users); it will not be
used to train, validate or test any expert system. The third step is to randomly execute an
HTTP command (e.g., GET, POST, PATCH and DELETE) in the specified service. We have
chosen the two most demanding services (approximately 75,000 consultations per session)
for both platforms (medical data management (service E) and intervention management
(service G)). Services H and I are excluded because of their incompatibility in SPIDEP-SOA;
they are in the experimental phase of being integrated with SPIDEP-MSA. The fourth step
is to monitor and record all the queries made in each test.

5.2. Evaluations and Results

To evaluate these experiments in SPIDEP, a total of 800,000 queries were sent for a
period of 80 min (approximately 200,000 queries every 20 min). It should be noted that
these values are obtained from the experiments performed between the two variants of
SPIDEP, for more details please refer to Table 3. Another factor to consider is that 50 users
are simulated requesting a set of random data simultaneously. Now, the response times of
the instances are acceptable and are sufficient for this number of users; however, it must be
kept in mind that this quality degrades as the number of users increases, if not foreseen
with an adequate scalability of the infrastructure vs the demand [21].

The results were collected through a tabular output report generated after each load
test, corresponding to its environment, as shown in Table 3. For the tables, the following
labels are used: SPIDEP-SOA-K8s-T1 is a K8 environment that hosts all the services of
the SPIDEP-SOA platform, this test will run multiple HTTP queries to a single service
(service E); SPIDEP-MSA-K8s-T1 is a K8s environment that hosts all the services of the
SPIDEP-MSA platform, this test will run multiple HTTP queries to a single service (service
E); SPIDEP-SOA-K8s-T2 is a K8 environment that hosts all the services of the SPIDEP-
SOA platform, this test will run multiple HTTP queries to two services simultaneously
(services E and G); and SPIDEP-MSA-K8s-T2 is a K8 environment that hosts all the services
of the SPIDEP-MSA platform, this test will run multiple HTTP queries to two services
simultaneously (services E and G).

The report contains several important values divided into four labels reflecting the
type of environment executed, including the type of HTTP method executed, the number
of samples, average response time, number of requests that are processed (i.e., hits per
seconds), 90th percentile, 95th percentile, 99th percentile, number and percentage of failed
requests, the average latency time and the data consumption transferred between the user
and the service.

Additionally, several stress simulation tests in the infrastructure that host both variants
of SPIDEP were performed, whose functions are to detect any problems that may arise in
the platform. Reviewing CPU performance, memory, network I/O and connections (e.g.,
engine health to BlazeMeter) indicates whether the SPIDEP infrastructure itself is capable
of supporting the demand-related bottlenecks or errors that appear [21,53], as shown in
Figures 4–7, with one figure for each environment.
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Table 3. General results of the simultaneous queries made to the RESTful methods of the SPIDEP application, under the SOA and MSA architectural styles, invoking single and dual
services (i.e., medical data management (service E) and intervention management (service G).

Labels HTTP Methods Samples
Avg.

Response
Time *

Avg. Hits/s 90% Line * 95% Line * 99% Line *
Error Count

and
Percentage

Avg.
LATENCY *

Avg. Bytes
(Kbytes/s)

SPIDEP-
SOA-K8s-T1

GET 25,245 395.2 21.04 607 631 711 0 (0%) 395.19 12.25
POST 25,237 401.26 21.03 615 639 719 0 (0%) 401.25 4.87

PATCH 25,226 388.84 21.02 603 627 707 0 (0%) 388.83 4.87
DELETE 25,217 390.3 21.01 603 627 723 0 (0%) 390.29 4.86

SPIDEP-
MSA-K8s-T1

GET 27,838 344.38 23.2 543 579 663 0 (0%) 344.34 22.99
POST 27,830 363.9 23.21 567 599 691 0 (0%) 363.87 9.74

PATCH 27,813 362.23 23.20 571 603 683 0 (0%) 362.19 9.98
DELETE 27,805 358.68 23.19 563 595 683 0 (0%) 358.65 9.98

SPIDEP-
SOA-K8s-T2

Intervention
Management

GET 50,511 390.89 42.09 603 631 715 0 (0%) 390.88 16.2
PATCH 50,346 387.13 41.95 599 627 711 0 (0%) 387.12 9.65

Medical Data
Management

POST 50,487 390.39 42.01 615 639 719 0 (0%) 396.39 9.74
DELETE 50,947 390.12 42.45 603 627 695 0 (0%) 390.11 9.79

SPIDEP-
MSA-K8s-T2

Intervention
Management

GET 102,009 389.72 85.01 599 639 715 0 (0%) 335.65 57.68
PATCH 108,978 364.84 90.82 579 623 699 0 (0%) 364.84 36.35

Medical Data
Management

POST 118,534 335.37 98.78 535 571 639 0 (0%) 384.02 42.51
DELETE 112,221 354.22 93.52 555 595 683 0 (0%) 354.21 36.63

* Time measurements are averages in ms.
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Figure 4. Engine Health Report SPIDEP-SOA-K8s-T1. The colored lines represent various parameters as follows: the blue
line is the bandwidth traffic; the purple line is the memory load generated by the users; the green line is the CPU load
generated by the users; and the red line is the active connections within the test.

Figure 5. Engine Health Report SPIDEP-MSA-K8s-T1. The colored lines represent various parameters as follows: the blue
line is the bandwidth traffic; the purple line is the memory load generated by the users; the green line is the CPU load
generated by the users; and the red line is the active connections within the test.
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Figure 6. Engine Health Report SPIDEP-SOA-K8s-T2. The colored lines represent various parameters as follows: the blue
line is the bandwidth traffic; the purple line is the memory load generated by the users; the green line is the CPU load
generated by the users; and the red line is the active connections within the test.

Figure 7. Engine Health Report SPIDEP-MSA-K8s-T2. The colored lines represent various parameters as follows: the blue
line is the bandwidth traffic; the purple line is the memory load generated by the users; the green line is the CPU load
generated by the users; and the red line is the active connections within the test.
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6. Discussion

The purpose of this study is to evaluate and contrast the performance of computing
resources (i.e., response time, efficient use of infrastructure and network consumption) used
by the different services for each SPIDEP variant, based on the concept of versatile high-
performance (acceptance criteria) and the quantitative values obtained from the various
tests (performance testing). Another purpose is to offer a software solution focused on the
strengths and weaknesses of each variant (SOA and MSA) to provide customized eHealth
functionalities and host functionalities based on AI algorithms (e.g., recommender system
based on deep learning), according to the storage of adequate data for remote medical care
scenarios (telemonitoring) and the demand and the size of the instances of the medical
organizations (e.g., clinics, nursing homes or hospitals).

There are several significant findings from this study. First, it is important to consider
the acceptance criteria such as the average response time of the queries, the 90th percentile,
and their relationship with the percentage of failed requests. Therefore, according to
various investigations [107–110], it was established that the acceptable limit (criterion
A) for the average response times of the queries and the 90th Percentile is 5000 ms (five
seconds) and the acceptable limit (criterion B) for the percentage of failed requests is 5%.
Any test with results beyond the established limits is considered to have unacceptable
performance [21].

Considering the above, from Table 3 we can establish that the tests with 50 concurrent
users are acceptable, since both variants meet the two criteria defined; however, we have
an interesting case in the SPIDEP-SOA-K8s-T2 and SPIDEP-MSA-K8s-T2 environments,
specifically in the parameters of total number of queries, average response time and
network consumption. As shown, in the SPIDEP-SOA-K8s-T2 environment, there is an
average of 50,572 queries made (42.14 avg. hits/s), while SPIDEP-MSA-K8s-T2 has an
average number of 110,435 queries made (92.02 avg. hits/s). This remarkable difference is
due to the following two factors:

• Architectural style: The attributes of MSA focus more on supporting the streamlining
and reduction of microservice deliveries in the shortest possible time (all microservice
must be lightweight, decoupled, isolated and independent of any programming lan-
guage, libraries or databases). Conversely, SOA makes use of the ESB or central entry
point, which are not considered agile enough [33] because the interactions between
the services are interdependent; consequently, the overall performance of the system
is affected for each service invoked simultaneously during a high demand under the
SOA pattern [75]. This pattern cannot be changed since all the services developed
remain loosely coupled and any change requires the rebuilding or reimplementation of
the entire application (coarse-grained services) [62,79–81]; therefore, the MSA variant
is approximately 54.21% more efficient than the SOA variant in terms of total query
numbers and average response times.

• API gateway: It is important to consider that SOA has a centralized governance of ser-
vices, which also affects the deliveries and responses of queries to users [33]. We have
seen how services develop without considering the weak points of this technology,
e.g., not considering the centralization of data (without instances) or not considering a
Cloud infrastructure for the operation of the services. The resulting increased traffic of
the API of HTTP resources degrades the overall performance of the application until
its collapse [111,112]. However, for MSA, applying decentralized and independent
governance requires applying additional security measures unlike SOA (e.g., authen-
ticating the user identity for each message sent and/or received through the signal
mechanisms, the use of custom encryption PBKDF2 or the use of the ticket-based
protocol CAS 3.0). These additional mechanisms are intended to establish a secure
communication channel between the different microservices (internal and external)
of computer attacks (e.g., man-in-the-middle, DoS or other) [104]. Consequently, it
brings with it an increase in the general network traffic between the microservices and
their infrastructure, demonstrating a significant increase in the average transfer of
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data to the users; therefore, the SOA variant is approximately 73.80% more efficient
than the MSA variant in terms of network consumption.

The SPIDEP-SOA-K8s-T1 and SPIDEP-MSA-K8s-T1 environments do not have a
noticeable difference in the results compared to the K8s-T2 environments, but their trend is
similar to the previous environment (approximately 9.31% and approximately 49.05% for
each case) because this T1 environment executes multiple HTTP queries to a single service
(service E), while the T2 environments execute multiple HTTP queries to two services
simultaneously (services E and G).

Regarding the second finding, the four engine health reports of the K8s-T1/T2 en-
vironments meet the infrastructure performance (CPU and RAM) under a demand of
50 concurrent users (connections), since the CPU values are lower than 80% (8% to ap-
proximately 30%) and the memory levels are lower than 70% (10% to approximately
15%) [113,114]; however, the network I/O value of the SPIDEP-MSA-K8s-T1/T2 envi-
ronments shows a significant consumption in the bandwidth traffic between the services
and the Dockers instances in comparison with the SPIDEP-SOA-K8s-T1/T2 environments.
This high consumption is because the MSA variant requires managing more specialized
coordination to redirect queries from external platforms to internal microservices (or vice
versa) within the Cloud environment [115]. In addition, it must actively route and validate
user requests through the API gateway to the respective instances of the microservices [74].

In the third finding, to determine if the SPIDEP variants meet the software attribute
(i.e., versatile high-performance), we have analyzed and contrasted the results obtained
from the various stress tests of each platform. Considering the above, the MSA variant is
the most appropriate for our needs, since it optimally meets the following three important
aspects: (i) Scalability—MSA can be scaled individually when running a heavy workload
by replicating the microservices on several containers and not replicating those that are
underutilized (i.e., maximize the performance with minimal cost); therefore, microservices
can handle the increase in demand without latency being significantly degraded, but
this requires consuming a significant bandwidth to mitigate the latency [110,114,116];
(ii) Versatility—MSA allows adding and integrating new functionalities to the platform
without affecting the availability of the other microservices. Therefore, each team has
the autonomy to decide which is the best technology for the development of the service,
according to the needs identified [7]; and (iii) Performance—a platform geared towards
high demand requires that all its computing resources be distributed in the Cloud, which
allows a shorter response time for the services; however, the platform becomes more
demanding with the computational load of the instances.

7. Conclusions and Future Work

In this article, we have presented all the steps involved in the design, implementation
and deployment of the SPIDEP platform and its RC variants based on the SOA and MSA
architectural patterns; the platform is focused on remote telemonitoring of the elderly.
Therefore, our purpose is to offer a replicable framework to support the early diagnosis
of infectious diseases and their derivatives by using recent ICT developments through
artificial intelligence algorithms (e.g., deep learning and machine learning-based inference
systems), with the added value of reducing logistical costs for medical institutions.

Therefore, it was necessary to evaluate which of the SPIDEP variants are best suited
for our versatile high-performance concept, considering the strengths and weaknesses
of each architecture and how they behave in a high demand scenario. As a result, we
have analyzed and contrasted the performance of each variant vs. the metrics obtained
from the various performance tests (i.e., response time, efficient use of infrastructure
and network consumption), which found that MSA is a better performer in terms of
the performance quality attribute (approximately 54.21%). In the same manner, when
processing multiple requests for various services, the response time was lower compared to
SOA (approximately 7.34%), but the bandwidth consumption in MSA was more significant
than SOA (approximately 73.80%).
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Based on the ideas presented, we feel that the implementation of SOA and MSA
depends on the capabilities and needs of organizations (e.g., performance, flexibility,
availability, interoperability or other characteristics in return for known and unknown
consequences) [33,63]. Therefore, within the eHealth context and based on the results
obtained, we observe that MSA is capable of meeting the majority of needs in support of
medical decision making and is adaptable to different types of clinical systems (e.g., EHR,
IoHT or telemonitoring systems) and various infrastructure solutions (e.g., nursing homes,
hospitals and public health management) [16,62,117]; however, this brings with it many
challenges [51,74,94,99,105].

The SOA and MSA architectural patterns can be considered complementary allies for
an interenterprise or interbusiness architecture that confers a suite of different services,
rather than being competitors [33,118,119], i.e., combining the SOA and MSA attributes
within an environment. Therefore, we plan to work on a proposal for an intergenerational
ecosystem for SOA-MSA, with the aim of developing a basis for the integration and in-
terconnection of the different eHealth applications involved in medical organizations in
conjunction with microservices adapted to machine learning-based inference systems to
perform specialized tasks in decision support in the prevention, monitoring and treatment
of various conditions. Additionally, we are exploring the possibility of extending our frame-
work to other eHealth areas (e.g., a patient monitoring system for hemodialysis) [120,121],
early prediction of COVID-19 [122–125] or prediction of heart and kidney risks in diabetic
patients [126–128]).

Another possible area for future research would be the adaptation of this proposal
to other sectors of industry 4.0 (e.g., smart buildings or tourism) [8,129–132]; however,
additional research is needed to obtain sufficient results to demonstrate the robustness of
the architecture in terms of the adaptations of the attributes for these sectors. Our findings
will be published in the near future.
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