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Abstract: With the prevalence of mobile e-commerce, fraudulent transactions conducted by robots
are becoming increasingly common in mobile payments, which is severely undermining market
fairness and resulting in financial losses. It has become a difficult problem for mobile applications
to identify robotic automation accurately and efficiently from a massive number of transactions.
The current research does not propose any effective method or engineering implementation. In
this article, an extension to boost algorithms is presented that permits the incorporation of prior
human knowledge as a means of compensating for a training data shortage and improving prediction
results. Prior human knowledge is accumulated from historical fraud transactions or transferred from
different domains in the form of expert rules and blacklists. The knowledge is applied to extract risk
features from transaction data, risk features together with normal features are input into the boosting
algorithm to perform training, and therefore we incorporate boosting algorithm with prior human
knowledge to improve the performance of the model. For the first time we verified the effectiveness
of the method via a widely deployed mobile APP with 150+ million users, and by taking experiments
on a certain dataset, the extended boosting model shows an accuracy increase from 0.9825 to 0.9871
and a recall rate increase from 0.888 to 0.948. We also investigated feature differences between robots
and normal users and we discovered the behavior patterns of robotic automation that include less
spatial motion detected by device sensors (1/10 of normal user pattern), higher IP group-clustering
ratio (60% in robots vs. 15% in normal users), higher jailbroken device rate (92.47% vs. 4.64%), more
irregular device names and fewer IP address changes. The quantitative analysis result is helpful
for APP developers and service providers to understand and prevent fraudulent transactions from
robotic automation.This article proposed an optimized boosting model, which has better use in
the field of robotic automation detection of mobile phones. By combining prior knowledge and
feature importance analysis, the model is more robust when the actual dataset is unbalanced or with
few-short samples. The model is also more explainable as feature analysis is available which can be
used for generating disposal rules in the actual fake mobile user blocking systems.

Keywords: boosting; fraud detection; machine learning; mobile payment; prior knowledge;
robotic automation

1. Introduction

Mobile e-commerce has developed rapidly in recent years, and the number of mobile
transactions in China reached 101 billion accounting for 347 trillion yuan in 2019, increasing
by 67.57% and 25.13%, respectively [1]. The marketing costs also increase synchronously in
mobile ecommerce. Taking Taobao 11.11 and UnionPay 6.2 promotions as representatives,
large enterprises spend billions of dollars each year in mobile marketing. Additionally,
financial fraud has become more and more common in the context of mobile payments.
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Large numbers of mobile robots emerge with manipulated smartphones and even profes-
sional devices [2,3]. Robots simulate operational behaviors of normal customers to grab
the marketing resources with high-speed scripts, which greatly affect the market fairness
and seriously weaken the actual effect of commercial promotion. Some of the professional
devices used by the underground industry are shown in Figure 1 .

Figure 1. Professional Devices Used by the Underground Industrys.

Traditional machine learning models face some problems in fraud detection of mobile
payment. On one hand, the machine learning models are facing a shortage of qualified train-
ing data as fraud transaction samples are inadequate. On the other hand, although massive
human knowledge is accumulated in daily enterprise system operation, most machine
learning models do not allow for the direct incorporation of prior knowledge. It becomes
a difficult problem in the contexts of technology and engineering for mobile payment
applications to distinguish robotic automation from normal user operations.

In this paper, we propose an extension to boosting algorithms that combine human
knowledge with training data in fraud detection of mobile payment transactions. We
collect raw data of payment transactions from mobile terminals with a widely deployed
APP under user authorization, extract different features from the raw data, label 31,500
payment transactions in 14 days as datasets, and then train and test the extended model
with the datasets. Based on our test, the extended model shows better performance than
standard boosting model, and the experiment acquires an accuracy rate of 98.7% and a
recall rate of 94.8% in prediction.

We performed further analysis on the differences in dominant features between
fraudulent transactions and normal transactions. We discovered some common behavior
patterns of robotic automation, including less spatial motion detected by device sensors,
higher IP group-clustering ratio, higher device jailbroken rate, more irregular device
names and fewer IP address changes. The quantitative analysis result is helpful for APP
developers and service providers to understand and prevent fraud transactions from
robotic automation.

The rest of the paper is organized as follows: We enumerate related works in Section 2,
elaborate on data collection and feature extraction in Section 3, explain machine learning
models in Section 4, and then describe the training process and the experimental results
of our proposed model in Section 5. We further investigate behavior patterns of robots in
Section 6, and finally discuss several open issues in Section 7 and conclude in Section 8.

2. Related Works

In recent years, robot detection has arouse increasing interests in social networks [4–6]
through account information [7], social network relationships [8], text contents [9,10], time
series analysis [11,12], location analysis [13], language sentiment [14,15] and other domains.
Most of the methods focus on network relationships and post analysis, therefore, they are
not applicable to fraud detection in real-time transaction scenarios of mobile payments.

To address the issue of robot detection in mobile payments, researchers and engineers
have adopted a variety of methods, such as verification code [16], biometric identifi-
cation [17–19], and so forth. These methods can be evaluated from the following two
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dimensions: effectiveness and experience, that is, whether/how robotic automation is ac-
curately identified and prevented, and whether/how normal user experience is impacted.
Figure 2 shows a comparative analysis of the current robot detection methods.

Figure 2. Comparison of current major technologies.

2.1. Verification Code Technology

To resist the action of robots, such as web crawlers [20,21], verification code tech-
nology [16] is widely used on important web pages such as Internet login and payment
pages. A typical verification method is the use of a randomly generated numerical and
alphanumeric picture that allows the user to enter numbers and letters according to the
picture information [22]. More complex verification methods include some simple logic
or mathematical operations [23], as well as other operation steps that require human–
computer interaction [24,25]. The verification code can effectively prevent simple robotic
operation. However, with the application of new technologies, such as machine learning
and image recognition [26], most verification codes can be cracked easily. Furthermore,
some underground industries even hire people to input verification codes manually to skip
the safety verification.

2.2. Short Message Verification Technology

Short message service (SMS) is a common service provided by most mobile service
providers. SMS verification codes [27–29] is a user interaction verification technology
commonly used in mobile APPs. The server sends a short message with a verification code
to the mobile terminal, and the user inputs the verification code on the mobile APP. Typical
SMS verification codes are 4–6 digits. However, mobile robots can read short messages,
obtain the verification code, and simulate normal user input on jailbroken terminals.
Therefore, the technology is not effective in identifying and blocking robotic automation.

2.3. Biometric Identification Technology

Biometric identification technology is currently a focus of both research and engi-
neering, and biometrics are widely used in user authentication on smartphones. Typical
biometrics features include fingerprint [17,30,31], voice [18], and face [19,32]. Some auxil-
iary methods are used to prevent picture attacks or record playback attacks, such as liveness
detection [33–35], 3D recognition [36], micro expression recognition [37] and movement
detection such as shaking head or blinking [38,39]. Biometric recognition technology can be
used to prevent robot operation effectively, but it requires user cooperation, which impacts
the experience of normal users.
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2.4. Expert Rule Judgment

Based on expert rule judgment, user behavior is automatically evaluated to iden-
tify abnormal robot behaviors. Judgment decisions are usually made through decision
trees [40,41]. Typical judgment indicator includes user operation time interval, cumulative
operation times per day, and so forth [42], and the expert rule database can be updated
dynamically according to actual needs. However, as the robot can simulate normal user
behaviors perfectly, it can invalidate expert judgment rules.

In conclusion, currently some methods are partially effective but have poor experi-
ence, while others have better experience but are less effective. In this article, both the
effectiveness and the user experience are considered in the detection model.

3. Data and Features

In this paper, we use raw data collected from mobile terminals through a widely
deployed APP, and then extract the features from the raw data. Some typical data and
features are shown in Table 1.

Table 1. Data and features.

Type Data Features

Static
Features

Device ID Risk factor

Jailbroken 0/1

System Version Version type number

Device type Device type number

Device Name Risk factor

Resolution Resolution type number

MAC No. Risk factor

Slowly-
changing
Features

IP number IP changing numbers the entire day, Number
of devices appeared under this IP, risk factor

Phone number Connected devices, Risk Factor

Email/ID Connected devices, Risk Factor

Battery

Battery Percentage changing features: Max
value, minimum value, average value,
variance value, and so forth during
entire day

Dynamic
Features

Elevation

Device elevation changing features: Max
value, minimum value, average value,
variance value, and so forth during entire
day/transaction period

Acceleration

Device acceleration changing features: Max
value, minimum value, average value,
variance value, and so forth during entire
day/transaction period

Angle Acceleration

Device angle acceleration changing features:
Max value, minimum value, average value,
variance value, and so forth during entire
day/transaction period

GPS data
Device movement features: Movement
distance, average velocity, and so forth
during entire day/transaction period

3.1. Collect Data on Mobile Terminals

In this paper, we use business transaction data from a payment APP that is widely
deployed on more than 150 billion mobile phones. To provide business service and en-
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sure privacy protection, a user agreement is signed between APP users and the service
provider. The raw data is collected on mobile terminals under user authorization, trans-
mitted to the server in encrypted format, and processed by authorized professionals in a
secure environment.

3.1.1. Static Data

Such data are fixed attribute values of mobile terminals, which will never change
during the APP lifecycle. Therefore, they are collected during APP startup. Typical static
data include the following: device ID, operating system version, device model, terminal
name, screen resolution, device jailbroken status, and so forth.

3.1.2. Slowly Changing Data

Such data may change during the APP lifecycle but with a long changing period.
Generally, the data are collected in a certain period and sent to a server upon any change.
Typical slowly changing data include IP address, device power, mobile phone number,
login mailbox, and so forth.

3.1.3. Dynamic Data

Such data are generated dynamically by mobile terminal sensors and change fre-
quently during APP lifecycle, and therefore should be frequently collected and sent to the
server. Typical dynamic data includes Global Positioning System (GPS) data, elevation an-
gle, acceleration, angular acceleration, and so forth. Figure 3 shows a demo of acceleration
data, in which Figure 3a shows data evolution during the entire day, and Figure 3b shows
data change during transaction period.

(a) Acceleration data during the entire day

(b) Acceleration data during the transaction period

Figure 3. Acceleration Raw Data Collected from Mobile Devices.

The above three types of data may differ according to device model and user autho-
rization. For example, if GPS data collection is not authorized on some mobile terminals,
the data will be blank.
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3.2. Extract Normal Features from Raw Data

According to the distribution and change frequency of raw data, the features are
extracted as follows:

3.2.1. Static Discrete Features

Raw data such as the operating system version, device model, screen resolution,
and jailbroken/root state are discrete features, and a numerical value is assigned to each
feature F according to a certain rule. For example, the feature value of device model can be
calculated as in

F( device model ) =


0, iPhone 5
1, iPhone 5S
2, iPhone 6
. . . , other models

. (1)

3.2.2. Changing Discrete Features

For the discrete raw data that may change during APP lifecycle, we count the changing
times of data throughout the entire day as the feature value such as IP address change
count and login mailbox change count.

3.2.3. Continuous Features

For continuous raw data such as battery power, acceleration, angular acceleration, ele-
vation angle, and so forth, we calculate the max/min/mean/standard deviation(SD)/peak
count and bottom count during the entire day, and then normalize the results to range
(−1,1) according to needs, as in

X′i =
Xi − Xavg

Xmax − Xmin
. (2)

Most normal users show daily periodic characteristics in the raw data, so we calculate
and normalize the data during a 24-h period as feature values. Specifically, for dynamic
continuous raw data, we calculate and normalize the data during 5-min transaction periods
as feature values, as shown in Table 2.

Table 2. Features of Acceleration.

Time Period Feature X-axis Y-axis Z-axis Acceleration

Max 29.3 13.5 46.3 121.4

Min −78.3 −83 −8.8 0.1

Avg −7 −10.1 5.6 19.2

SD 16 18.8 10.4 23.1

#Peak 15 14 18 17

Whole Day

#Bottom 21 23 17 20

Max 29.3 6.6 18.1 67.2

Min −29.5 −60.3 −8.8 0.4

Avg −4.8 −15.2 5.8 21.5

SD 12.1 16.5 7 17.1

#Peak 11 5 7 10

Transaction Period

#Bottom 11 12 5 10

3.3. Extract Risk Features by Incorporating Prior Knowledge

Massive human knowledge has been accumulated during daily system operation. This
knowledge includes expert rules and blacklists. Traditional methods of risk identification
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are usually based on expert rules, and hundreds of expert rules are established in financial
payments based on different transaction fields, such as transaction amount, trading address,
device name, IP address, and so forth. A typical rule is that the risk of a transaction is high
for small merchants if the transaction amount is higher than $100. Therefore, we can extract
new risk features by incorporating prior knowledge of the expert rules. For example,
concerning the transaction amount for small merchants, we add a new feature ‘Transaction
Amount’, and calculate the risk value, as in

F( amount a) =


0, a < $100
0.5, $100 ≤ a < $200
1, a ≥ 200

. (3)

On the other hand, blacklists are widely implemented in many engineering projects
to identify and prevent risks effectively. Typical blacklists include lists of mobile phone
numbers, login mailboxes, IP addresses [43], device IDs, and so forth. We can extract new
risk features by incorporating prior knowledge of blacklists. For example, concerning IP
address blacklists, we add a new feature ‘IP Address Risk,’ and set the value to 1 if its IP
address is in the blacklist; otherwise, it is set to 0. Blacklists can not only be accumulated
from historical fraud transaction information, but lists can also be transferred from different
domains; therefore, the training data shortage will be addressed. Based on prior knowledge,
new risk features can be defined and calculated as shown in Algorithm 1.

Algorithm 1 Calculating Risk Value of Feature

Input: Raw data of the feature, RawData;
Prior knowledge of expert rule, RuleList;
Prior knowledge of blacklist, Blacklist

Output: Risk value of the feature, RiskValue
1: Initialize RiskValue with 0
2: for each Rule ∈ RuleList do
3: if Rule is applicable to RawData then
4: if Rule.RiskValue > RiskValue then
5: RiskValue = Rule.RiskValue
6: end if
7: end if
8: end for
9: for each ListItem ∈ Blacklist do

10: if ListItem.RawData = RawData then
11: if ListItem.RiskValue > RiskValue then
12: RiskValue = ListItem.RiskValue
13: break
14: end if
15: end if
16: end for
17: return RiskValue

For example, the risk value of the mobile phone number 199-123-45678 can be calcu-
lated according to the expert rule and blacklist. If the phone number is in a risk number
segment [199-123-XXXX] with risk value 0.5, then the risk value of the phone number is set
to 0.5. If the phone number is already in the blacklist, then the risk value is set to 1. The
classification results of the machine learning model, after manual or automatic verification,
can be fed back to the prior knowledge database as a new expert rule item or new blacklist
item, thus forming a continuous improvement mechanism.

4. Machine Learning Model

Based on the labeled dataset, the classical boosting machine learning model is trained
to classify the financial transactions. Furthermore, the prior knowledge of expert rules
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and blacklists is incorporated into the model as a means of compensating for a shortage of
training data and improving the prediction result. Meanwhile, a feedback mechanism is
introduced to update the expert rule and blacklist database.

4.1. Boosting Machine Learning Model

First, according to actual business needs, we try to build a classification model with
high interpretability and strong robustness. On the other hand, by analyzing the transaction
data, it is easy to establish simple base models, and the base models can be integrated by
the boosting method to form a high-accuracy integration model. Therefore, the boosting
machine learning model is a preferred choice.

Figure 4 shows the flow chart of the boosting model. Data features are extracted from
the raw data of payment transactions and are then fed into the boosting model for training
and testing. In this paper, the representative boosting algorithms, such as Adaptive Boost
(AdaBoost) [44,45], Gradient Boosting Decision Tree (GBDT) [46,47] and Extreme Gradient
Boosting (XGBoost) [48,49], are selected and compared, and Square Difference Loss is
selected as the loss function for all models, as in

L(y, F(x)) =
n

∑
i=0

(yi − F(xi))
2. (4)

Figure 4. Boosting Machine Learning Model.

4.2. Extension to the Boosting Model by Incorporating Prior Knowledge

In its standard form, the boosting model does not allow for the direct incorporation of
prior knowledge. In this article, an extension to boosting algorithms is presented, which
permits the incorporation of prior human knowledge as a means of compensating for
training data shortage and improving the prediction result. For example, the typical GBDT
model is an iterative decision tree algorithm, which consists of multiple decision trees,
and no prior knowledge can be incorporated into this model as input or feedbacks.

Figure 5 shows the flow chart of the extended boosting model. The following are
3 major modifications to the boosting model:

First, during daily system operations, business experts analyze payment transactions
and establish a database of prior human knowledge, including expert rules [50] and black-
lists. The knowledge can be accumulated from historical fraud transactions or transferred
from different domains [51].

Second, prior human knowledge is applied to extract risk features, as shown in
Section 3.3. Risk features together with normal features are input into the boosting model
to perform training and testing.

Third, the classification results are verified manually or automatically and are then
fed back to prior knowledge database as new expert rule items and blacklist items, thus
forming a continuous knowledge accumulation mechanism.

In conclusion, prior human knowledge is incorporated into the boosting model,
and we expect the extended model will be smarter in classification and more accurate
in prediction. As typical boosting algorithms such as AdaBoost, GBDT and XGBoost are
specified, the extended boosting model is entitled extended AdaBoost, extended GBDT or
extended XGBoost.
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Figure 5. Extension to Boosting Machine Learning Model.

5. Model Training and Testing
5.1. Label the Dataset

The user operations on a mobile terminal will eventually generate a transaction to the
server. We collected a dataset of payment transactions for 14 days, including operation data
from the terminal side and transaction data from the server side. Business experts analyzed
the data and labeled 1500 transactions by robotic automation as positive tag samples and
30,000 transactions by normal users as negative tag samples.

The labeled samples are divided into 3 datasets, each with 500 positive samples
and 10,000 negative samples. The first dataset is for training, the second is for testing,
and the third is used by business expert to build prior knowledge database of expert rules
and blacklists.

5.2. Train and Test Boosting Model

We trained and tested typical boosting models AdaBoost, GBDT and XGBoost, respec-
tively, with the training dataset and the testing dataset. The experimental results are shown
in Table 3 and Figure 6.

Table 3. Experimental results of the models.

Algorithms Accuracy Recall AUC

Adaboost 0.9745 0.706 0.9834

XGBoost 0.9816 0.866 0.9906

GBDT 0.9825 0.888 0.9904

The test result shows that the prediction accuracy rates are all over 90%. In comparison,
XGBoost and GBDT achieve a recall rate of 80%+, exceeding AdaBoost. GBDT shows the
best performance with prediction accuracy 98.25% and recall rate 88.8%.
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Figure 6. Comparison of ROC curve of different models.

5.3. Train and Test Extended Boosting Model

The first step is to populate the prior knowledge database. In this paper, we extracted
new prior knowledge from the labeled dataset rather than used an existing database of
massive prior knowledge, so the experimental results can be reproduced with lower cost.
Business experts analyzed the dataset of 500 positive samples and 10,000 negative samples,
established expert rule items and blacklist items and then imported the results into the
prior knowledge database.

After the prior knowledge was imported, we trained and tested the extended boosting
model with the same datasets used in Section 5.2 and compared the prediction results.
The experiment results are shown in Table 4.

Table 4. Comparison of the Boosting and Extended Boosting models.

Model Accuracy Recall AUC

Adaboost 0.9745 0.706 0.9834

XGBoost 0.9816 0.866 0.9906

GBDT 0.9825 0.888 0.9904

Adaboost+Rule 0.9743 0.72 0.9863

XGBoost+Rule 0.9852 0.912 0.9982

GBDT+Rule 0.9871 0.948 0.9937

The experimental results show that the prediction results are improved after the
introduction of prior knowledge, especially the recall rate. The accuracy rate increases to
98.71%, and the recall rate increases to 94.8%, which indicates that the extended boosting
model proposed in this paper has a better performance. Specifically, extended GBDT
shows the best prediction accuracy and highest recall rate among all boosting models and
extended boosting models.

The hyperparameters used in the boosting models are as follows: learning rate is 0.1,
the number of boosting stages is 400, the fraction of samples for fitting the individual base
learners is 0.7, the random seed given to each Tree estimator at each boosting iteration
is 160.

6. Behavior Patterns of Robotic Automation

Due to the large quantity of fraudulent transactions conducted by robots, it is critically
important for APP developers and service providers to understand the behavior patterns
of robotic automation, which will be helpful for them to prevent fraudulent transactions.
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Therefore, we performed further analysis on the importance of all features in distin-
guishing robotic automation. The top 5 features in importance ranking of extended GBDT
model are shown in Figure 7. The device motion features (including acceleration, angular
acceleration, elevation angle, etc.) show the highest importance value of 46.3%, and other
features include prior knowledge (20.9%), device IP clustering, device jailbroken rate and
IP change count. These results indicate that device motion features and prior knowledge
features are the most important factors in distinguishing robotic automation.

Figure 7. Importance of different features.

6.1. Device Movement Pattern

The devices manipulated by robots show obvious differences in movement features
(acceleration, angular acceleration, elevation angle) compared with devices operated by
normal users. Robot devices show less or even no change in movement feature data,
while normal devices show much more change. Therefore, different motion patterns are
observed [52].

We further analyze feature data of device movement from the following two aspects:
the short 5-min period during each transaction and the long 24-h period of entire day.

As shown in Figure 8, from aspect of the short 5-min period during each transaction,
more than 56% of robot devices are in static state (acceleration, angular acceleration and
elevation fluctuations are near 0), and approximately 30% devices are in slight-motion
state (acceleration, angular acceleration is less than 1, and the elevation angle is less than
10−4), only 14% devices are in obvious motion state (acceleration, angular acceleration
angle is greater than 1, and elevation angle is greater than 10−4). In comparison, for devices
operated by normal users, only 1% are in static state, 8% are in slight-motion state, and 91%+
are in obvious motion state. Compared with robot devices, normal devices show much
more fluctuation in motion as follows: 14.5 times in acceleration, 70.7 times in angular
acceleration and 13.7 times in elevation angle.

As shown in Figure 9, from the aspect of the long 24-h period of an entire day, normal
devices also show much more motion fluctuation compared with robot devices as follows:
8.6 times in acceleration, 18.4 times in angular acceleration and 5.4 times in elevation angle.
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Figure 8. Movement patterns in transaction period.

Figure 9. Movement patterns in 24 h.

6.2. IP Address Group-Clustering Pattern

Robotic transactions show strong group-clustering features in IP address, and a large
number of robot devices share the same IP address. The average IP cluster size of robotic
transactions is 13.86. The biggest cluster size is 55. More than 60% of robotic transactions
exhibit group-clustering feature (5+ devices share one IP address). In comparison, the av-
erage IP cluster size of normal user transactions is only 2.58 and only 13% normal user
transactions exhibit group-clustering features, as shown in Figure 10.
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Figure 10. Clustering pattern of IP address.

6.3. Device Jailbroken Rate

The device jailbroken rate of robot transactions is 92.47%, which is significantly higher
than that of normal user transactions 4.64%, as shown in Figure 11.

Figure 11. Jailbroken Device Rate.

6.4. Device Naming Pattern

The device names of 85% of robotic transactions are in irregular or random pattern,
such as ‘sadfkls’, while most device names of normal user transactions are in personalized
pattern such as “xxx’s iphone”. Based on calculation result, the average device name risk
of robotic transactions is 0.47, while that of normal user transactions is only 0.28. Only 9.8%
of robotic transactions are low risk in device name (name risk value is less than 0.4), while
81.9% normal user transactions are low risk in device name. See Figure 12 for more details.

Figure 12. Device Naming Patterns.
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6.5. IP Address Change Pattern

Normal devices change IP address more frequently than robot devices. Average IP
changes in 24 h of robot devices is 2.1 while that of normal devices is 2.77. For robot devices,
34% do not change IP in 24 h, 71%+ change less than 1 time, and only 29% change twice or
more times. For normal devices, 37% don’t change in 24 h, 38% change less than 1 time,
and 62% changes two times or more. Figure 13 shows more details.

Figure 13. Device IP Change Patterns.

7. Discussion and Future Work

The fraud detection method proposed in this paper is based on the extended boosting
machine learning of data features in a transaction period and an entire day. According to
the analysis in the above article, the model will be more accurate and robust if data features
over a longer time period (i.e., one week or one month) can be extracted and used.

In this paper, various features are considered separately in the boosting model. In fact,
complex correlations may exist among different features. For example, during normal
user operation, motion sensor information such as elevation, acceleration and angular
acceleration have close relations with each other in certain pattern. The model will be more
accurate and robust if the correlation patterns of different features are introduced into it.

Each normal user will have his/her personalized operation pattern, and a pattern
recognition model may be established to help improve the user identification. The iden-
tity recognition based on user operation pattern is a further extension of robot-human
recognition and has a wider application prospect.

The comparison of the proposed method with related works mentioned in Section 1
are shown in Table 5.

Table 5. Comparison of the proposed method with related works.

Methods Data Used Detecting Mehthod Characteristic

Verification Code Verification pictures Clicking Interaction Verification codes can be
cracked easily now [26]

Short Message Verification Text information Phone number Identification
Cannot block mobile robots
who can read short
messages [53]

Biometric Identification Face pictures Face Recognition

Can be used to prevent robot
operation effectively, but it
requires user cooperation,
which impacts the experience
of normal users [38,39]

Method in this article Device data when using APPs Machine Learning
Classification

An Insensible blocking
method, and can be upgraded
by analyze the device
behavior of different users
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8. Conclusions

Based on transaction data collected from mobile terminals through a widely deployed
mobile APP, this article proposes an extended boosting model to recognize robot operation
and normal user operation on mobile devices. The extended boosting model is established
by introducing prior knowledge into the boosting model and effectively solved the recogni-
tion problem of the group-clustering and continuity patterns of robot operation. According
to the test results, the accuracy rate reaches 98.7%, and the recall rate reaches 94.8%.

The feature importance is further analyzed based on the model prediction results,
and the results indicate that the features of device movement, prior knowledge, IP cluster
size, device jailbroken rate and IP change count contribute most during model classification.
The pattern differences between robotic automation and normal user operation from the
aspects of device movement pattern, IP clustering pattern, device jailbroken rate, device
naming pattern, IP change pattern are analyzed in detail to help improve the interpretability
of the model.
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