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Abstract: Software-Defined Network (SDN), which is recommended as a new generation of the
network, a substitute for TCP/IP network, has the characteristics of separation of data plane and
control plane. Although the separation of the control plane brings a high degree of freedom and
simple operation and maintenance, it also increases the cost of north–south communication. There
are many additional modules for SDN to modify and enhance the basic functions of SDN. This paper
proposes a message queue-based northbound communication mechanism, which pre-categorizes
messages from the data plane and accurately pushes them to the apps potentially interested. This
mechanism improves the efficiency of northbound communication and apps’ execution. Furthermore,
it supports both OpenFlow and the protocol-independent southbound interface, and it has strong
compatibility. Experiments have proved that this mechanism can reduce the control-response latency
by up to 41% when compared with the normal controller northbound communication system, and it
also improves the network situation of the data plane, such as real-time bandwidth.

Keywords: SDN; northbound interface; message distribution mechanism; message queue

1. Introduction

Today’s Internet services are becoming increasingly complex, and all kinds of apps
are growing in size, which brings a great challenge to the physical networks. Different
functional apps work independently while maintaining a certain degree of coupling,
such as traffic engineering, failure detection and recovery, and security component. All
of these make the network inefficient and difficult to manage for ISP (internet service
provider). For this situation, Software-Defined Network (SDN) [1] came into being and
caught people’s attention after a short time. SDN is an advanced network paradigm and
its two most important features are decoupling of control and forwarding and using a
logically centralized controller to collect global information and formulate strategies [2,3].
The former can be realized by means of a generic interface between the switches and
controller, which is also called southbound interface. OpenFlow is the most commonly
used one [1,4]. Furthermore, the decoupling is the key to the desired flexibility and making
the network easier to introduce and add new abstractions and functions [5]; meanwhile, it
simplifies network maintenance and management. The latter emphasizes that the controller
is logical concentration rather than physical concentration. In other words, it is not wise to
claim physical concentration for such a huge network size because of the need to guarantee
network’s performance and scalability [6].

In the SDN environment, all kinds of abstractions are realized through apps and the
northbound interface (Hereinafter referred to as NBI) that is the communication channel of
apps and the controller. The controller pushes the message to the apps, which is collected
from the network and southbound interface. After that, the apps develop a strategy and
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inform the forwarding plane via the controller. Different apps need different information
to complete the strategy and, with the increasing need of users, a number of apps have to
run at the same time, resulting in a large number of communication costs [7]. Unlike the
southbound, which already has a widely accepted proposal (OpenFlow, POF [8], and so
on), there is no clear NBI standard [9]. Although many useful NBI exist in academia, such
as ad-hoc APIs and RESTful APIs [10], their capabilities and usage can be much different
because of the controller’s features and apps demands. Many researches [2,5,9,10] argue
that it may be a little bit early to define a standard proposal for NBI, as the apps are still
being working out.

However, before there is a general standard or rule, it is necessary to develop a
highly efficient and universal communication mechanism to ensure the performance of
the controller. Some state-of-the-art controllers are not the same during communication
with the apps, such as centralized controllers represented by NOX [11], Beacon [12] and
Ryu [13]. Most of these controllers use an event mechanism based on OpenFlow messages
to notify apps, for example, Ryu’s app_manager (A major component of the Ryu program)
will notify the registered apps one by one after parsing the received OpenFlow messages.
This mechanism works well when the controller is running a few apps, but, as the number
of apps increases, the performance of the controller drops significantly. Both the excellent
performance Beacon coded by Java and the convenient POX (NOX’s python version) coded
by Python have the same problem, as well as the distributed controller ONOS [14].

In response to this problem, we modify the northbound communication of several
exiting controllers, further distribute the events based not only on OpenFlow message
types, but also on apps’ interest, and push the events to each app using the messages of
interest instead of all messages, which greatly improve multi-apps controller’s performance
on responsiveness. The main contributions are as follows:

• we abstract the message processing of the NBI into a mathematical model, provide
an analysis in a qualitative way, and compare the performance changes of several
controllers in the case of multi-app running (Section 3);

• ee propose an enhanced message distribution mechanism, named EMD, which adds
the message queue to the NBI as an enhancement function of SDN to improve the
performance of northbound communication (Section 4.1);

• we propose a protocol-independent method for message feature extraction and clas-
sification to enhance the compatibility of apps, and additionally add the network
invariants checker for high availability and robustness (Sections 4.2 and 4.3); and,

• we evaluate the model from three aspects: north–south communication efficiency
(Section 5.1), data plane performance (Section 5.2), and compatibility (Section 5.3)
through experiments, and point out the app’s scope of the model (Section 5.4).

2. Related Works

As a result of the lack of clear standards, the existing optimizations for controllers
and apps mainly focus on stability, safety, and scalability. Zhou et al. [15] indicate that
the global network-wide optimizations are designed to address deficiencies in the SDN
ecosystem and provide general optimizations for SDN apps. They call these optimizations
SDN Enhancements that are totally different from SDN apps, being roughly classified as
conflict-resolver, TCAM-optimizer, invariant checker, and fault-tolerant provider. We focus
on SDN Enhancement for controllers and apps in this paper, so others for SDN switches
and southbound interface are not in our consideration.

Part of SDN Enhancements aims to resolve the conflict between apps, such as resource
allocation and strategy conflict. Ferguson et al. [16] propose the concept of participatory
networking referred to as PANE, in which the network provides a configuration API to
apps and its users. In terms of conflict resolution, PANE represents a policy tree using
Hierarchical Flow Tables [17] and three types of conflict-resolution operators to merge
the conflict policy and generate the final action. Statesman [18] uses last-writer-wins and
priority-based locking for resolving the conflict of each app’s strategy meanwhile rejecting
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partial conflicting variables that are uncontrollable in the target state. GitFlow [19] runs a
repository server to maintain the authoritative copy of the flow configuration state and
track additional metadata for each evolving snapshot of the flow state, which resolves
conflict while updating incrementally.

In the face of uncertainty of multiple apps running, some SDN Enhancements need to
ensure the minimum stability and security of program operation. Statesman [18] proposes
two network invariants—connectivity and network capacity—and the checker in the
statesman system will check whether the target state meets the requirements of invariants
before updating the state to the data plane. VeriFlow [20] generates a forwarding graph
for each equivalence class, which is much similar to the definition of flow and checks the
forwarding graphs’ reachability, no-loop, and so on. In order to improve failure tolerance,
LegoSDN [21] prototype proposes that it is better to sacrifice the availability of the flow that
is dependent on a single switch than to sacrifice the connectivity of other flows dependent
on the entire network. When it is unacceptable for some invariant, LegoSDN will use a
host of policy checker to ensure that the network maintains a set of “NO-Compromise”
invariants, just like VeriFlow [20] or the module in [22].

In addition to the above SDN Enhancements for conflict resolution and network
invariants, FatTire [23] designs a new language for writing fault-tolerant SDN programs
that provide paths as basic programming construct and applies to switches that support
OpenFlow to achieve rapid fault recovery. Many existing SDN enhancements sacrifice
the performance of SDN apps in order to ensure versatility. It is pointed out by [15]
that this effect may reduce app performance by as much as 28%. At the same time,
many enhancements do not consider the impact of the number of apps on functions and
performance, which further reduces the performance during a large-scale deployment.

3. Motivation
3.1. Overview of Controller’s NBI

Most of the existing controllers use event processing mechanisms that are based
on OpenFlow messages. In conjunction with Figure 1, after the controller receives the
OpenFlow message from the southbound data plane, it triggers the corresponding event
handler based on the message type after completing the preliminary analysis. At this time,
all of the apps that have completed the registration will receive this message, and then the
app can choose to either process the message or ignore it according to its own needs.

Figure 1. The Common SDN Architecture.

It can be seen that messages are pushed to all apps indiscriminately. When the number
of apps is large, frequent triggers, and callbacks will seriously affect the overall performance
of the controller.
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3.2. Problem Description

A complete packet in-out (sometimes using flow-mod) process starts from sending a
message by the switch. We focus on northbound communication, so we divide it into the
following five stages:

1. the southbound interface of the controller receives the data packet; and the core
module completes the preliminary analysis;

2. push to all apps that have registered the message type;
3. apps complete the logic processing;
4. encapsulate the strategy and send it to the controller core module; and,
5. the controller calls the southbound interface to issue a policy message.

We abstract the packet in-out process into a mathematical problem for easy analysis.
Firstly, items 1 and 5 depend on the performance of the controller. The values of these
two items will not change if the controller has been selected, the hardware equipment is
the same, and the data plane environment is always the same. We define it as a constant
determined by objective factors, as:

Trcv = C1(c, net) (1)

Tsnd = C2(c, net) (2)

Secondly, item 2 is related to the processing capacity and queue length of each app.
Without considering other time consuming, the time that it takes is:

Trq =
lr
e

(3)

where lr is the length of the receive queue and e is the efficiency of app processing.
Subsequently, item 4 is similar to item 2, but, if multiple apps share a single-process

core module of the controller, the sending queue will be shared, which is:

Tsq =
∑i li

E
(4)

where li is the length of apps’ send queue and E is the average processing efficiency of
core modules.

Finally, the analysis of item 3 is divided into two parts. One part is the time that
is consumed by the callback function and the trigger event. We assume that these time
consumings of all apps are the same, which is defined as tcomplex; the other part is the
processing consumption of each app. When the strategies of all apps are not conflicting
and effective, the processing time should be calculated until the slowest app completes the
strategy. Accordingly, the total processing time is:

Tp = max
n

τi + n ∗ tcomplex (5)

where τi is the processing time of app i and n is the number of valid apps.
In summary, the packet in-out time is:

T = Trcv + Trq + Tp + Tsq + Tsnd (6)

Additionally, the optimization goal of northbound communication is:

min T (7)

The next part of the article will analyze Equation (7) in a qualitative way.

3.3. Impact between Apps

When the SDN controller has a large number of registered apps, although the time
complexity of a single app is low enough, the overall processing latency will increase due
to various reasons, such as thread switching or event triggering. We now present empirical
data to quantify the impact of Apps’ quantity on SDN controllers. The environment of the
simulation experiment is two virtual machines that are running on a desktop computer
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with a 3.6 Ghz quad core and 16 GB of memory, one of which runs the controller and the
other runs cbench. We choose representative Ryu and ONOS as test controllers and study
three Apps for contrast.

1. simple_switch: an app for simple layer 2 switch, which aims to route the packet. This
app is preset in the Ryu project;

2. Hedera: the traffic-enginnering SDN app. We rewrite this app using Python for
adapting Ryu controller;

3. Reactive Forwarding: A native ONOS app for routing just like simple_switch; and,
4. redundancy: a blank program, which ends after executing 10 times plus-one calculations.

In Figure 2, simple and Hedera, respectively, represent the simple_switch app an-
dlHedera app running by Ryu controller, and only one app is running at one time; RF
represents the Reactive Forwarding app running alone by ONOS; and, sth. + red means
that the given app and the redundancy app are running at the same time.

Figure 2. Latency Test under Various App Combinations And Switch Numbers.

The response latency of simple analog layer 2 switch app on ONOS is approximately
80 µs lower than that on Ryu. In addition, when the number of switches increases, the per-
formance of ONOS does not decreases obviously. We observe that, just adding one blank
registration app still causes Ryu’s response latency to rise up by 31.4% (from 97.028 µs to
127.52 µs when there are 32 switches). ONOS’s situation is slightly better, but it has also
increased by 20.5% on average. It is noted that Figure 2 is just a small test to verify our
conjecture; greater data comparison is seen in Section 5.1.

4. Message Distribution Mechanism

After receiving the message from the data plane, most of the SDN controllers complete
the preliminary analysis and push the message to the registered apps. We believe that it is
not such a simple delivery of the message as apps have their own interest, for example,
the topology discovery app just needs the LLDP or ARP message instead of others in
packet-in messages. Accordingly, we propose an SDN enhancement for the NBI, hoping to
ensure certain network invariants while improving communication efficiency.

4.1. Message Queue Model

We notice that the cause of the problem that is described in Section 3.2 is that the NBI
ignores the apps’ demand for messages. Taking the controller that supports OpenFlow as
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an example, most of the controllers can distribute events according to OpenFlow message
types, so each app can register a handler to receive the corresponding event when the app
is implemented. We integrate the message queue into the NBI of the controller to further
divide the types of messages. The app subscribes to topics of interest by the message queue,
then, in addition to general messages, the controller will only send messages under this
topic to the app.

EMD runs in parallel with the core module of the controller in the controller program,
as shown in Figure 3. We do not make too many changes to the core module of the
conventional controller, but just take over the delivery mode of data messages, which is
the most in the NBI through the message queue. The details will be further introduced in
the form of pseudo-code in the follow-up.

Figure 3. The Overall Structure of SDN with EMD Module.

Taking the most important asynchronous message packet-in in OpenFlow as an
example, Algorithm 1 shows the improved northbound message distribution mechanism.
And Table 1 is an explanation of some symbols and nouns in Algorithm 1

Table 1. The symbols of Algorithm 1.

Symbol Description

msg The structure of south-north control message

match The match field of OpenFlow protocol

{xid : multi_app} A dictionary that the key is msg.xid and the value is a bool value indicating whether to send to multiple apps

FOR_ALL A match collection of messages that need to send to all apps

REPLY A match collection of simple messages that can be directly responded to

send_msg_all Function that sends messages to all apps

send_msg_topic Function that sends prefix topic message

The main idea of Algorithm 1 is to use the publish–subscribe model of the message
queue to subdivide the message distribution, which is more like a pre-classifier for the
NBI. The first part (which is from Line 6 to Line 11) is mainly for the processing of general
messages, which is the same as the usual controller; the second part (which is from Line 13
to Line 28) uses the match field, part of the message in OpenFlow protocol, to define the
topic of the message queue. When the Apps are installed and the subscription action is
then completed, the controller is responsible for parsing the message’s match field, and the
message queue is responsible for completing the task of distribution by category (using
match field).
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Algorithm 1 Enhanced Message Distribution Mechanism.

Input: msg
Output: {xid : multi_app}

1: initialization:
2: apps register and add the topics to the list TOPIC.
3: end initialization
4: for each msg in southbound interface do
5: parsing the msg in core module and set the match filed
6: if msg is in [Handshake, Config, Status, or other specific type] then
7: call for correspond event handler
8: continue
9: else if msg is FOR_ALL then

10: send_msg_all(msg)
11: continue
12: else
13: for each match in msg do
14: if match is in REPLY then
15: generate the reply msg named resp_msg
16: packet_out(resp_msg)
17: noti f y_core_module(dpid, match, msg.xid)
18: msg_topic = NULL
19: break
20: else if match is in TOPIC then
21: msg_topic | = match
22: end if
23: end for
24: if msg_topic 6= NULL then
25: send_msg_topic(msg_topic)
26: send_msg(msg)
27: end if
28: add (msg.xid, 1 i f msg_topic ≥ 2 else 0) to {xid : multi_app}
29: end if
30: update the data plane’s topology
31: end for
32: return {xid : multi_app}

We believe that the use of pre-classification can improve the efficiency of northbound
communication, especially when the controller has a large number of apps. Because most
of the controllers that support OpenFlow [11–14] have completed message parsing before
distribution, the extraction of message features will not bring too much burden; on the
other hand, the time complexity of message feature matching is the message level, but it is
still relatively lower when compared to the calling and processing of the apps.

4.2. Protocol Irrelevance

When extracting the message features, OpenFlow’s match field cannot cover all of the
protocols. [24] points out that the number of the matching fields has been increased from 12
in OpenFlow 1.0 to 44 in OpenFlow 1.5, which makes the compatibility of our enhancement
very poor. Taking the idea of protocol independence into account, we incorporate part
of the POF protocol into the EMD, and apps can subscribe to the topic of interest in an
offset-length way instead of the match field.

In Figure 4, we take DNS protocol data packets as an example to briefly introduce
the protocol-irrelevant classification methods (ignoring the handshake and configuration
phases). First, after the controller receives the message from the southbound data plane, it
does not actively complete the analysis, but it directly pushes the message into the EMD
enhancement; second, the EMD matches the topic list of the registered apps with the data of
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length LENGTH offset by OFFSET from the head of the message according to the MASK,
and records the set of having been matched apps; finally, the message is published to the
apps of interest through the message queue.

Figure 4. Distribution Mechanism by Protocol-irrelevant Way.

The protocol-independent approach not only solves the problem of insufficient fields
and poor scalability, but it also provides more flexible implementation methods for complex
strategies of apps. However, there are still two tiny problems, one is that the controller
needs to support protocol-independent interface (such as POF), and the other is that apps
need to parse the required fields of the data packet by themselves. We will improve the
second point in the future to reduce the app’s parsing for common fields.

4.3. Network Invariants Checker

When the app plane lacks global information, it is prone to competition and conflict.
This is an obvious problem in the SDN architecture. Mutual perception between apps will
bring great development difficulties, and mutual transparency will bring conflicts between
apps [25]. For the network, in addition to degrading network performance, conflicts
between apps can paralyze the entire network. Routing loops and black holes are the most
common serious problems.

Take Figure 5 as an example to briefly introduce the causes of routing loops and black
holes. The host under the A switch sends the data packet to the host under the F switch.
The pre-routing is A → B → D → F. Because of the X app’s strategy, which plans to
use the link D → C → E → F, so it sends the flow-mod message to switch D and adds
the flow table of routing strategy, leading to overwrites the previous policy (may not be
issued to the C/E/F switch at the same time). When the data packet arrives at C, the Y
app considers the path C → B→ D → F to be reasonable and continues to send the flow
table to switch C to cover the policy. At this time, the data packet will be routed to switch
B. This is an example of a routing loop because of the inter-app conflict. The black holes
generally occur when some links fail down, or a node is dormant due to the energy-saving
or the placed app, and the data packets that are routed to that node by other apps will
cause a black hole phenomenon.
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Figure 5. An Example of Routing Loop.

The location of our EMD enhancement has a natural advantage and it can guarantee
the basic functions of the network, because it can receive all of the apps’ response messages
and get the global view of the data plane. We set two network invariants, namely no-
loop and no-blackhole. When these two functions are enabled, our module will follow
Algorithm 2 to check the control messages that are issued by each app to ensure that there
are no routing loops and black holes in the network.

Algorithm 2 Network Invariants Checker.

Input: pkt_out, f low_mod
Output: none

1: initialization:
2: set the dictionary strut FLAG = {xid : {′mutil_app′ : bool, ′dealt′ : list}}, FT = [ ].
3: end initialization
4: for each pkt_out in the NBI do
5: if FLAG[pkt_out.xid][′mutil_app′] is not TRUE then
6: pass the pkt_out to the core module
7: else if pkt_out.dpid or pkt_out.output.dpid is in FLAG[pkt_out.xid][′dealt′] then
8: drop the pkt_out
9: else

10: if check_alive(pkt_out.output.dpid) is TRUE then
11: pass the pkt_out to the core module
12: put the pkt_out.dpid into FLAG[pkt_out.xid][′dealt′]
13: else
14: update the network topo to apps
15: end if
16: end if
17: end for
18: for each f low_mod in the NBI do
19: deepcopy(exp_ f t, FT[ f low_mod.dst])
20: change exp_ f t according to f low_mod.actions
21: if check_loop(exp_ f t) is TRUE then
22: drop the f low_mod
23: else
24: pass the f low_mod to the core module
25: update the FT[ f low_mod.dst] using exp_ f t
26: end if
27: end for

The FT in Algorithm 2 is a forwarding tree that takes the destination node as the root
node, then check_alive() and check_loop() are functions to check whether the node is alive
and check whether there is a loop in the forwarding tree, respectively. Taking Figure 5 as an
example, the forwarding tree of node F that is based on the shortest-path-first is Figure 6a.
X app modifies the forwarding tree by changing f low_mod at node D, shown as Figure 6b,
and there is no routing loop at this time. After Y app modifies the f low_mod at point C,
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the forwarding tree is modified to Figure 6c. At this time, a loop has been formed, so we
delete this f low_mod to prevent routing loops.

(a) The OSPF’s FT of F (b) FT Changed by X (c) FT Changed by Y

Figure 6. The Migration of The Forwarding Tree of Figure 5.

We only check the network invariants for pkt_out and f low_mod. The reason is that
the proportion of these two is the largest in the controller-switch message and it will have
a direct impact on the forwarding strategy. Processing these two messages can obtain the
greatest stability, and meet the low latency requirements at a certain level.

5. Simulation and Evaluation
5.1. Latency and Throughput

In this section, we show more detailed experimental data to verify the effectiveness of
the EMD module, in which the experimental environment is similar to Section 3.2. The test
software is cbench running on a virtual machine, and the tested one is a Ryu controller on
another. The data of the latency experiment are the average of three random experiments
that complete thirty consecutive packets in-out at least; the throughput experiment lasts
more than 5 min. and is repeated three times.

The example label shown in Figure 7 is basically the same as the previous one; simple
and Hedera represent the simple_switch app and Hereda app running alone; +red means
that there is also a redundant app running at the same time, +3red means three redundant
apps; and, +EMD means the controller runs with the EMD module in this experiment.
Each cluster of bars represents a set of experiments, using cbench to simulate 1/4/16/64
switches for experiments.

The redundant app only registers with the controller and listens to the event of the
packet-in message; after receiving the event notification, it does not analyze the data packet,
but it simply performs ten plus-one operations in a loop, and then ends. We use this
method to simulate the certain apps, which may be more computationally expensive when
processing uninteresting messages. It can be seen that, when comparing clusters 1/2/3
or clusters 6/7/8, the latency will increase significantly with the increase of redundant
apps, increased up to 93.1% at most (from 99.02 µs to 191.2 µs by simple_switch when the
number of switches is 16). This is what we do not want to see; in many cases, the controller
is required to have high performance, even when multiple apps are running in parallel [26].
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Figure 7. Latency & Throughput Test of Ryu under Various App Combinations.

When we add redundant apps, we make the controller run using a EMD module at
the same time, which is the 4/5/9/10 cluster bar in Figure 7. It can be concluded that
EMD can eliminate the performance degradation that is caused by multi-app parallelism
to a certain extent. Take the comparative experiments of sim, sim + 3red, and sim + 3red +
EMD in latency experiment as an example. When Ryu runs the simple_switch app alone,
the average response latency is 103.443 µs, but it rises to 195.135 µs after adding three
redundant apps with an increase of 88.6%; the average response latency after using the
EMD module was only 114.842 µs, an increase of only 11.02%. The latency is reduced by
41.15% when compared with the case of no EMD.

The throughput, also known as the response number per second, also has a corre-
sponding trend. When it is increased to three redundant apps, the performance drops
drastically. Based on the two experiments, whether it is the single packet in-out in the
idle state or the maximum responses under the stress test, EMD has greatly improved as
compared with the original NBI.

5.2. Comprehensive Network Performance

The cbench test method that was used in the previous chapter can only verify the
performance under idle (latency experiment) or full load (throughput experiment) con-
ditions. The actual SDN network is complex and difficult to predict; [27] points out that
there are key values of parameters in which the target function has first-generation breaks.
When considering the comprehensive evaluation and practicality of the SDN network,
more network parameters are needed, such as delay, delay variation (jitter), bandwidth,
and packet loss parameters on a network [28]. Therefore, this section uses mininet to
construct a virtual network to further test the effectiveness of the EMD.

In the experiment, the tested network is a pod-4 fat-tree network constructed by
mininet, running on a ubuntu18.04 virtual machine with a 4-core processor and 4 GB of
memory; the tested controller is a Ryu controller running on another machine with a 2-core
processor and 4 GB of memory. Furthermore, shortest_path is an app that is based on the
shortest-path-first algorithm of the number of hops, while Hedera is a routing algorithm
that is based on the network status, the other example labels in figure are the same as in
Section 4.1.
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The experiment shown in Figure 8 is a bandwidth test performed on a switch in
a virtual network built by mininet, and the test software is iperf. The blue part is the
bandwidth test between hosts under the same aggregation switch, it can be seen that
the algorithm that is based on the network status can slightly increase the bandwidth
of the network by approximately 5.4% (from 2871.56 Kbps to 3027.63 Kbps). However,
after adding redundant apps, due to the increase in single response time, the network
bandwidth also drops from 3027.63 Kbps to a minimum of 1201.49 Kbps, a decrease of
60.3%. When the EMD is selected, the network bandwidth is 2887.68 Kbps, a drop of only
4.6%, which is even higher than shortest_path app. Similarly, in the orange part, the core
switch test can also draw the same conclusion. The gray part is a random test between
switches. We use stacked bars to make the disparity more obvious.

Figure 8. Bandwidth Test of A Fat-tree Data Center.

Furthermore, we use the tcp mode in iperf to test the time that it takes to transmit 1
MB of data on the network, and the conclusions are very similar (as shown in Figure 9).
At the same time, other network parameters of using EMD also have a little advantage,
such as jitter and packet loss rate. It can be concluded that the EMD is effective for the
improvement of the SDN network’s performance.

Figure 9. Transmission Time Test of A Fat-tree Data Center.

Although EMD can only directly affect the efficiency of northbound communication,
when the impact of each packet in-out accumulates, the impact on the performance of the
data plane also becomes important. It can be concluded that EMD indirectly improves the
performance of the data plane.
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5.3. The Experiment of Protocol-Irrelevant Mode

The protocol-independent acceleration strategy in the EMD module needs the support
of protocol-independent controllers and data plane devices. However, most of the existing
simulation tools only support OpenFlow devices. In terms of controllers, POFOX [29] and
PNPL [30] are quite immature, and the projects have stopped maintenance and updates; in
terms of the data plane, the software-based POF switch prototype [31] has ceased to sup-
port, and commercial hardware switches (e.g., Huawei NE40E and NE5000E) are difficult
for completing experimental verification under a certain scale. As a result, we use an alter-
native plan and still use the virtual network constructed by mininet as the tested network,
in which the node is OpenvSwitch, which supports OpenFlow 1.3. During the experiment,
OpenFlow is used to complete the handshake phase and the topology discovery. When
running normally and getting the southbound message event, the parsing module is not
called, but the feature matching is directly completed by the EMD module.

In addition, in order to ignore the influence of apps’ routing decisions, the experiment
in this section uses a chain network and an end-to-end delay to measure the effectiveness
of protocol-independent strategies, in which independent variable is the path length.

In Figure 10, +i means the controller uses the protocol-irrelevant mode and the others
are the same meanings as before. Because of a chain network, the path-finding algorithm
consumes basically the same time, so the delay difference can be considered to be the
communication cost between the switch and the controller. The left picture in Figure 10 is
the overall picture of the end-to-end delay under various path lengths, it is not so intuitive
enough that we use the simple_switch app’s delay as a benchmark to redraw the growth
rate under the three modes into the right picture. It can be seen that, when the path length
is small, the protocol-independent mode is not significantly effective. However, when the
path is long, this mode can reduce up to 220.192 µs from the Openflow one, a decrease rate
of 5.9% (from 4233.782 µs to 4013.59 µs when the path length is 16 hops).

Figure 10. End-to-End Delay Test under Various Forwarding Path Length.

In addition to the reduction of delay, scalability and flexibility are the main advantages
of protocol-irrelevance. Unfortunately, there is no suitable experiment to visually demon-
strate. However, we believe that protocol-irrelevant methods with certain performance
guarantees will be more favored by developers.

5.4. The Impact of Subscription Rates

In our previous experiments, the default redundant app is not interested in packet-
in packets at all; this extreme assumption makes our EMD have the best performance.
Unfortunately, this is not possible. Ref. [32] points out that, in order to further meet the
requirements of function and performance, SDN networks will have various complex
combinations of apps running in parallel. In addition, no detailed research on the number
and types of SDN apps has been found in the existing literature. Accordingly, in this
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section, we want to evaluate the performance changes of the EMD under different app
subscription rates through simulation.

It should be noted that the subscription rate mentioned in this experiment refers to
the proportion of apps that are interested in a certain topic, among all apps. In the case of
multiple topics, the maximum subscription rate of all topics is taken.

rsub = max
∀t∈topic

nt

nreg
(8)

where rsub is the subscription rate; nt is the number of apps subscribed to the t topic; and,
nreg is the total number of registered apps.

For example, among ten apps, No.1 to No.3 are interested in match_1, No.5 to No.8
are interested in match_2, and No.8 to No.10 are interested in match_3. In this case, the sub-
scription rate is 40% instead of 90%. We have completed supplementary experiments,
the performance in the multi-topic scenario is basically equivalent to that in the single-topic
scenario according to the above rules.

This experiment environment is basically the same as Section 4.1. The test software
is cbench using both latency mode and throughput mode, and the controller is Ryu.
The difference is that some redundant apps also subscribe to messages to implement
experimental environments with different subscription rates.

In Figure 11, the bar graph is the throughput test result and another is the latency
test. In the throughput test, we can see that, when the subscription rate is low, the effect
of the EMD is extremely good. The effect gradually decreases as the subscription rate
increases, but it is still better than the normal model before the subscription rate is 70%.
This situation is actually in line with our expectations. When the subscription rate is too
high, the classification process of the EMD becomes useless, even a burden, because the
message needs to be forwarded to almost all apps.

Figure 11. Latency And Throughput Test under Various Subscription Rates.

Similarly, the latency test also obtains almost the same result. When the subscription
rate is about 90% and higher, the single response latency of the EMD is higher than that of
the normal mode. In addition, when comparing the two experiments, it can be seen that,
when the subscription rate is low, as compared with the throughput, the single response
latency deteriorates slightly with the increase of the subscription rate.

Our original intention in designing EMD is to avoid processing uninteresting mes-
sages, so pre-classification is our advantage. When the subscription rate of a topic is too
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high, we can consider directly forwarding it without classifying it, which can obtain the
maximum benefit.

6. Future Works
6.1. Faster Match Mechanism and Algorithm

The advantage of the EMD is to complete message parsing and classification in
advance, so the time complexity of the related classification mechanism and algorithm
directly affects the overall performance. Our existing classification mechanism is based on
the southbound communication protocol OpenFlow and it directly uses the match field
after message parsing by the controller. Although this mechanism is simple and easy to
implement, it cannot control the time complexity of analysis by ourselves. The matching
distribution algorithm is based on the priority of topics, but the historical information of
the controller is not used well. The subsequent matching mechanism can be combined
with the matching algorithm, which is based on popularity and using-space.

6.2. Compatibility

Compatibility has always been one of the main problems of NBI. There is no unified
northbound standard, and some of them do not even have a clear division of the app plane
and the control plane, as mentioned in the previous part. The implementation in this article
is also heavily coupled with the controller, such as Ryu and ONOS. There is no modular
program to adapt to most of the existing controllers (in that case, the difficulty is quite
high). This part is one of our hopes, which to complete the modularization after the NBI
has a unified standard.

6.3. Flexible Mode Switching

The experiment shown in Section 5.4 shows that our mechanism has poor perfor-
mance when the subscription rate of a certain topic is too high. In the future, we will
consider adding a flexible selection mechanism, which switches to normal mode when the
subscription rate of some topics is higher than the threshold for a certain period of time.

7. Conclusions

Although there is no unified NBI standard so far, we still hope to enhance the effi-
ciency of SDN northbound communication on the existing basis. We find that the existing
northbound communication has a rather rough classification of messages, which causes
some apps to frequently process messages that they are not interested in. We use the idea of
message queues for northbound communication to further subdivide the classification of
messages and provide accurate message delivery for apps. We have also optimized the two
different methods of OpenFlow and protocol-independent in southbound communication,
so that our method is highly efficient and compatible at the same time. On this basis, we
correspondingly increased the monitoring of two network invariants according to our
position in SDN, which further improved the stability of the entire system. Finally, our
EMD is designed to further subdivide app demand, and there are still certain shortcomings
when the subscription rate is high. We plan to optimize this aspect in the next step.
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