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Abstract: In this paper, we assess the pressure between the overdenture located in the mandible and
supported by a bar retained on two implants and the prosthodontic area. For testing, a model of an
edentulous mandible was created using a mold by FRASACO with two implants and a “rider” bar
inserted. A complete mandibular denture with polypropylene matrices was made. Three types of
matrices of various stiffness were applied. The mandible and overdenture geometry was mapped
using a digital image obtained with a Steinbichler Comet L3D 3D scanner. Finite element method
calculations were performed in the Abaqus FEA software. The results demonstrate that the maximum
contact pressure is observed when the loads are associated with canines. A critical case for the lower
posterior is chewing performed by the molars. The pressure zone is the largest for POM-1 with
Young’s modulus of 1.5 GPa and is reduced by 5.0% and 7.8% for POM-2 (E = 2.5 GPa) and POM-3
(E = 3.5 GPa), respectively. The stress distribution under the prosthesis mostly depends on the region
loaded onto it. The applied load produces a slight contact pressure between the denture and the
prosthodontic area in the anterior zone. A change in polypropylene matrix stiffness does not affect
contact pressures.

Keywords: bar; implant; contact pressure; matrix; mandible; finite element analysis

1. Introduction

Overdentures are used in rehabilitating the edentulous mandible. They are an eco-
nomic compromise available to a wide range of patients [1,2]. Their relatively affordable
price and simple clinical management, together with substantial improvements to retention
and stability, make them an attractive and realistic treatment option, both for the patient
and the dentist. However, the multitude of available types of overdentures [3–6] with
respect to the number and locations of implants, as well as kinds of attachments (bars
of various size, ball or “locator” attachments, telescopes), make a rational choice of the
components difficult [7,8]. Despite the abundant literature, restoration design is often
based on clinical tradition without considering theoretical foundations. Such negligence
accompanied by performance failures or the lack of follow-up care may lead to unexpected
and uncontrolled prosthesis rotation. The clinical implications of the above phenomena
may not only include deviations in precision attachment mechanics and a change at the
level of peri-implant tissues but may also lead to atrophy of the denture-bearing area
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distally to the implants. According to Julius Wolff’s law, atrophy is caused by excessive
pressure on the prosthesis, referred to as “contact pressure” in the research terminology
of mechanics [9]. In the method applied in this study, the authors use the above term to
describe the areas of strain and relief in a model of the edentulous mandible restored with
the overdenture supported by two implants and a bar. A situation was assumed where the
edentulous maxilla was fitted with the complete denture.

In this paper, we assess the pressure between the overdenture located in the mandible
supported by a bar retained on two implants and the prosthodontic area. Furthermore,
the contact pressure distribution relative to the stiffness of polypropylene matrices was
also studied.

2. Materials and Method

For testing, a model of an edentulous mandible was created using a mold (by FRASACO)
with two implants inserted. The model was made of acrylic material (Probase Cold acrylic,
Ivoclar Vivadent). The implants were placed parallel to each other in the area of the canines.
Two-piece Osteoplant Hex implants were applied, each 14 mm long and 4 mm in diam-
eter [10,11]. These cylindrical–conical implants may be used for any bone, mainly in the
procedure of delayed implantation. They have an asymmetrical thread with no sharp edges
with a lead of 0.7 mm. This transfers strains onto the adjacent bone in an optimal manner.
Their shape enables stable implant anchoring, even with a minimal amount of bony tissue.
The implants are made of biocompatible titanium (cp Ti Grade IV); they are connected to
prosthetic abutments with a hexagonal connection.

The next stage of the research process included preparing a prosthetic restoration. The
selected material was a “rider” bar (PRECI-HORIX, CEKA). The bar was placed centrally
in the alveolar part of the mandible, 1 mm above the top of the gingiva. The retentive
element was cast using 4ALL metal. Finally, the prosthetic abutments were fixed in the
surgical part of the implants using a screw made of a titanium–aluminum–vanadium alloy.

Next, a complete mandibular denture was fabricated (Figure 1). The prosthesis was
made of Probase acrylic material. The artificial teeth (Wiedent) were positioned in a spherical
plane. In its gingival surface, two symmetrically arranged matrix linings were embedded.
Polypropylene matrices were placed in them. For the sake of the study, three types of
matrices of various stiffness were applied (Young’s modulus of 1.5, 2.5, and 3.5 GPa).
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2.1. Geometry Acquisition

A three-dimensional model of the cast (obtained in the previous research step) of
the patient-specific mandible was created in a numerical environment for finite element
method (FEM) input. The system consists of the following elements: the edentulous
mandible, overdenture, and two splinted implants connected with the bar clip system (see
Figure 2).
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Figure 2. Numerical geometry of the system: (a) 3D view and (b) transparent 3D view.

The mandible and overdenture geometry were mapped using a digital image obtained
with the Steinbichler Comet L3D 3D scanner. A stereolithographic image with 3296 × 2472
resolution was obtained, and the spatial distance between the neighboring points was
~25–170 µm, which ensured a very accurate description of the elements’ surfaces (while
the largest dimension of the mandible was a few centimeters). In the subsequent step, as
a result of the preprocessing of data in STL format, the detailed surfaces of the elements
were repaired (i.e., the surface holes were filled) and smoothed. Although the surface was
smoothed, a graphic interpretation of the actual objects was obtained while maintaining
the shape of the occlusal surface, the areas between teeth, and the nonregularities occurring
on teeth crowns (Figure 3d).
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In the edentulous mandible, three biological layers were separated: mucosa, cortical,
and trabecular bone. The assumed cross section reflects the anatomical structure of the
modeled system (Figure 4). Following the literature, the mucosa and the cortical bone were
assumed to be 1.5 mm and 0.8 mm thick, respectively [12,13].
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Figure 4. Cross-section of the mandible with assumed geometry of the layers.

The implants and bar clip system geometry were reproduced by computer-aided de-
sign software (CAD) based on the dimension measurements and product specification data
(Osteoplant–Implant System; CEKA Attachments Preci-Line). In Figure 5, the geometry of
the implant bar is presented.
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2.2. Finite Element Method Model

The particular parts described in the previous section were assembled in order to
obtain the final finite element (FE) model of the overdenture prosthesis. Within the FE
framework, linear 4-node elements [14] were assigned to the housing and linear 8-node
brick elements [15] with reduced integration [16–19] to the prosthesis, bar, implants, clips,
and edentulous mandible. The FE mesh was created to obtain a regular node pattern. The
total number of model elements amounted to approximately 470 thousand, with the total
number of the unknowns around 440 thousand.

In order to ensure realistic motion of the implant construction, a special FE technique
was applied. Kinematic constraints were assigned to contact surfaces between the implants,
bar, and clip matrices; thus, translational and rotational movements between the parts
were excluded. No friction or material damping was assumed. A similar stiff connection
(kinematic constraints) approach was used between the edentulous mandible and implant
pillars; therefore, we considered the possible displacement between the implants and
cortical bone (full implant–bone osteointegration) to be insignificantly small.

In order to avoid numerical difficulties due to mismatched FE meshes of the mandible
and resin prosthesis, additional kinematic constraints were introduced, namely embedded
elements [20]. The translational constraints provided (in physical meaning) well-fitted
surfaces of the upper mandible and lower prosthesis and (in the mechanical sense) full
compatibility of deformation fields.

A realistic condition of contact between the touching bodies was ensured. On the pros-
thesis mandible surface, the stiff (Herz-type) contact with no friction was defined [21,22].
Contact pressure depends on the normal forces between touching bodies; no influence
of tangential forces is included. The separation of contact surfaces is possible due to a
progressive deformation of bodies. The coefficient of tangential friction between the pros-
thesis and mucosa of the mandible is equal to zero under the assumption that saliva is
present. Thus, the saliva lubrication gives an ideal slip between the surfaces, i.e., tangential
pressures are equal to zero. There was no formal contact defined between the bone and the
implant or the implant and the bar. The interactions between those bodies were modeled
by tying them to the displacement (see Abaqus FEA documentation). Those connections
were modeled as infinitely stiff.

In this paper, classical isotropic linear elastic material models were used. Table 1
presents the adopted material parameters (the Young modulus, E; and the Poisson’s ratio,
ν); the values were taken from the literature. In the research, the influence of stiffness
on the bar clips was also investigated; therefore, three different Young moduli were used
(1.5 GPa, 2.5 GPa, and 3.5 GPa) based on the commercially used materials.

The essential part of the numerical model description is the definition of the applied
loads and the boundary conditions. Based on the literature and to obtain a realistic outcome
of the modeled biomechanical system, we adopted a representative vertical force. The
value of the force is equal to 200 N [29,30]. Three unsymmetrical positions of the occurrence
of the force were chosen (three load cases). In each case, force is distributed on the surface
of the particular tooth, mimicking occlusion pressure on a single tooth while eating. The
canine, central incisor, and first molar were selected, according to Figure 6. The boundary
conditions are an integral part of the FE model. In the presented paper, the nodes of the
bottom surface of the edentulous mandible were restrained, as shown in Figure 6.

In the final part, finite element method calculations were performed in Abaqus FEA
software (Dassault Systems). Nine linear stress analyses (three load cases, Figure 6, multi-
plied by three bar clip materials, see Table 1) were submitted. The purpose was to estimate
the contact stress field between the resin prosthesis and the soft tissue of the mandible,
as well as the influence of the clip stiffness on contact stresses. For each model, contact
stresses, reduced (effective) stresses, and displacements were analyzed.
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Table 1. Mechanical properties of the materials.

Materials (Parts)
Parameters

References
Young Moduli (GPa) Poisson’s Ratio (–)

acrylic resin (prosthesis) 2.8 0.28 [11]

Ti6Al4V (implants) 103.4 0.35 [11]

stainless steel (bar and
implant pillar) 110.0 0.31 [10,23]

polypropylene (POM
matrices)

1.5
0.45 [11,24,25]2.5

3.5

INOX 316Ti (housing of the
clips) 200.0 0.30 [26]

Mucosa (edentulous
mandible) 0.001 0.45 [9,27,28]

cortical bone (edentulous
mandible) 13.7 0.30 [11]

trabecular bone
(edentulous mandible) 1.37 0.30 [11]
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3. Results and Discussion

The stress concentration in gingiva and nonuniform displacements of the overdenture
are observed during loading. Maximal/minimal values are found near the mounting area
of the implants and in the posterior zone (ramus mandibulae side), which indicates the
point-like support (Figure 7). This also manifests itself in the movement of the prosthesis,
which tends to cradle/swing on the dental beam and torsional modes, especially when
posterior teeth are excited (Figure 8).
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Forcing the canine causes a torsional move of the denture in the direction of the
working side of the mouth. The plane of the mandibular teeth tilts to one side and results
in a gap on the other side. Analogical behavior is observed for molar and incisor bites, but
rotations and, thus, occlusion misalignment are the largest for canine excitation. An increase
in the bite force causes the progressive degradation of occlusion and more concentrated
pressure on the mandible system. In addition, the flexibility of the beam prosthesis joint
is only slightly sensitive to the retention level of the applied matrices. This leads to a
significant concentration of stress at the anterior (alveolar ridge) and posterior mandible
(retromolar pad and linea obliqua) due to biting and chewing (see Figure 8).

The stress distribution under the prosthesis mostly depends on the region loaded
onto it. The biting force applied on the foreteeth causes higher contact pressures on the
front of the mandible tissues, and their rear zone remains almost unloaded. Such response
results from the fact that the force acts along the lines which cross the support location,
and only a little swinging on the beam is possible. This indicates good stabilization for
the incisor load case, and forces are carried directly by the implants. On the other hand,
stress concentration around the implants may cause bone loss (atrophy) in that area. The
maximum contact pressure is noted when loads are associated with canines. The critical
case for the lower posterior is chewing performed by the molars. The pressure is distributed
over a larger area, and hence it reaches lower stress values. Instead, the stress distribution
is still nonuniform, and the existence of a mismatch between the prosthesis and mandible
can be seen (Figure 9). The maximum stress occurs near the retromolar pad. This region
has a significantly different bone structure and higher density [31]; thus, in order to avoid
its atrophy, it is vital to ensure that the prosthesis has been well fitted.
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Figure 10 and Table 2 shows horizontal forces, which are carried from the prosthesis
to the mandible. For the canine and molar load cases, these forces have the same order of
values in both directions (coronal and sagittal), but for the load on the incisor, these forces
are different in terms of directions and values.
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Figure 10. Horizontal forces carried from the prosthesis to the implant system and the dental bar.

Table 2. The values of horizontal forces carried from the prosthesis to the implant system and the
dental bar.

Horizontal Force Canine Incisor Molar

H1
X axis [N] +0.095 −0.037 −0.071

H2
Z axis [N] −0.079 +0.111 −0.097

The evaluation of the prosthetic system is performed for typical types of matrices
with a few different characteristic retention levels. The most commonly used matrices
have Young’s modulus in the range of 2.3–2.8 GPa. The matrix with stiffness equal to
2.5 GPa has a medium retention level, ensuring the average mounting force. Additionally,
two extreme matrices with stiffness out of that range are chosen to indicate their effects
on how the prosthesis works. The variation of matrix retentions shows no significant
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influence, which was expected in simulations. No correlation between retention levels
and prosthesis stability was found. The performed analysis shows an insignificant role
of matrices in carrying loading from the prosthesis, its movement, and, finally, its stress
distribution on the gingiva. Following the use of a stiffer POM-3 matrix, the extreme
changes of measurements were small, i.e., the increment of stress = −0.0163 MPa, and the
increment of displacements = +0.0082 mm (see Figures 11 and 12). These results confirm
that prosthesis load bearing and support are independent of the types of POM material.
However, it is worth mentioning that the thickness of the matrices is very low, and loads
are applied vertically without involving the rotations caused by chewing. The inclusion of
exclusive normal biting forces results in the maximum magnitude of a horizontal force per
mandible equal to Hmax = 0.124 N, which is less than 1% of the applied load for the canine.
The relative changes of the contact area between the mandible and prosthesis caused by
different POM properties are presented in Figure 11. The pressure zone is the biggest
for POM-1 with Young’s modulus of 1.5 GPa and reduced by 5.0% and 7.8% for POM-2
(E = 2.5 GPa) and POM-3 (E = 3.5 GPa), respectively. Such minor differences between areas
of contacting surfaces do not influence the stress field of soft tissues.
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Implantoprostheses owe their good retention to friction forces between the matrix and
the patrix. Dentures with stiff retention (metal-to-metal friction) are less defective and can
be activated periodically. In order to avoid premature retention loss, it is recommended
to make the precision attachment of the bars of metal alloys harder than gold alloys [32].
Still, if the abrasion of a metal surface of the bar occurs resulting from the contact with
a metal matrix, a replacement of the matrix with a polymer one of lower flexibility is
recommended [33]. One of the advantages of polymer matrices is that they are deformable
under strain due to their flexible structure. This allows the limited transfer of forces directed
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towards prosthodontic area tissues, minimizing axial overload [34]. However, excessive
ability to deform under strain may make the denture support in other locations when
more significant strain is applied. The force with which the matrix is retained is of less
considerable importance, as a change in its stiffness does not affect the value of contact
pressures between the denture and its bearing area, which was confirmed in the studies.

Many authors emphasize a significant loss in overdentures retention due to matrices’
wear and the need for their replacement [35]. However, the studies by Ortegon et al.
(2009) show that in many precision systems, an initial drop in overdenture retention is
followed by its stabilization [36]. Bayer’s assessment of polymer matrices retention is
favorable, though he also noted a decline in their retention from 90% initially to 80% after 6
months of wearing. However, in his in vivo studies, Van Kampen did not notice a decreased
retention after three months of wearing overdentures, irrespective of a precision attachment
applied (bars, ball attachments, magnets) [37]. Sabavi et al. (2013) extensively covered the
issue of mandibular implant prosthesis retention [38]. His studies concerned various bar
attachments with single matrices as well as distal cantilever bars and three matrices. Metal
and polymer matrices were used, and vertical and anterior–posterior retention was studied.
The highest retention was observed for a Dolder bar with distal cantilever bars and three
metal matrices; however, a decreased retention was noted in all types of attachments. This
research proved that the level of implant prosthesis retention depended on the number,
type, and distribution of matrices. Doukas et al. (2008) [39] noticed that retention loss is
also related to the location of implants. The greater the distance between implants, the
smaller the retention loss with yellow or red matrices.

4. Conclusions

1. In the anterior zone, the applied load produces a slight contact pressure between the
denture and the prosthodontic area.

2. In the lateral zone, the applied load produces the largest contact pressure between the
denture and the prosthodontic area on the working side around the retromolar pad.

3. This study proved that the most unfavorable forces are those applied to a canine.
4. A change in polypropylene matrix stiffness does not affect the obtained contact

pressure field.
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