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Abstract: Guided waves have immense potential for structural health monitoring applications
in numerous industries including aerospace. It is necessary to evaluate guided wave dispersion
characteristics, i.e., group velocity and phase velocity profiles, for using them effectively. For complex
structures, the profiles can have highly irregular shapes. In this work, a direct method for calculating
the group velocity profiles for complex, composite, and periodic structures using a wave and finite
element scheme is presented. The group velocity calculation technique is easy to implement, highly
computationally efficient, and works with the standard finite element formulation. The major
contribution is summarised in the form of a comprehensive algorithm for calculating the group
velocity profiles. The method is compared with the existing analytical and numerical methods for
calculation of dispersion curves. Finally, an experimental study in a multilayered composite plate is
conducted and the results are found to be in good agreement. The technique is suitable to be used
in all guided wave application areas such as material characterisation, non-destructive testing, and
structural health monitoring.

Keywords: guided waves; structural health monitoring; group velocity; layered structures; disper-
sion curves

1. Introduction

Structural health monitoring (SHM) in the aerospace sector has the potential to reduce
costs and increase reliability [1]. A number of nondestructive inspection techniques are
already applied in the aerospace industry such as radiography [2], acoustic emission [3],
eddy current [4], and ultrasonic inspection [5]. The use of advanced composite structures
has also introduced an added layer of complexity where the failure modes are complex [6]
and damage may occur between layers. Guided waves present a suitable SHM technique
for thin structures [7–9]. They can travel large distances and interact with defects. Hence,
they can be used for detection, localisation, and identification of damage [10,11].

Ultrasonic guided waves are guided by the traction free top and bottom surfaces
of thin plate-like structures. They are generated due to the constructive and destructive
interference and superposition of pressure waves and shear vertical waves undergoing
multiple reflections from the boundaries [12]. Guided waves in plates can be classified into
three broad categories based on their polarisation [13]: (a) symmetric (S) waves polarised
perpendicular to the plane of the plate with the plate surfaces displacing out of phase,
(b) anti-symmetric (A) waves polarised perpendicular to the plane of the plate with the
plate surfaces displacing in phase, and (c) shear horizontal (SH) waves polarised in the
plane of the plate. SH waves can also be symmetric or anti-symmetric with respect to the
mid-plane of the plate. In theory, an infinite number of guided wave modes can propagate
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in a plate. Hence, the conventional notation used to represent them is with a subscript
n, where n = 0, 1, 2, 3 . . . , i.e., Sn and An. For SHn, an even n denotes symmetric and an
odd n denotes anti-symmetric waves. In multilayered structures, the elastic anisotropy
results in quasi-Lamb waves and quasi-SH waves, which are mutually coupled, and the
distinction is not as clear as in isotropic structures. It is still standard practice to adopt the
nomenclature for guided waves in isotropic structures, which is followed here.

Guided wave dispersion curves provide important insight into the wave propagation
in a structure. The group velocity curve shows the value of velocity versus the frequency.
It is, however, important to calculate the change in the propagation direction of the group
velocity versus the phase velocity for anisotropic materials. For isotropic plates with con-
stant thickness, the group and phase velocities do not have angular dependence and the
2D profile is circular. This quickly becomes non-trivial in complex multilayered structures
where the directions of wave propagation and energy propagation are different. The direc-
tional nature of composite structures creates another increase in complexity, where the 2D
profile can take any shape depending on the composite layup. Nevertheless, identifying
these characteristics is important for applications that use guided waves.

There are two main approaches for computing the dispersion properties: (a) analytical
and (b) semi-analytical. The analytical methods consist of solving the governing differ-
ential equations by applying the appropriate boundary condition. They can further be
divided into exact methods based on 3D elasticity theory and semi-exact methods based
on approximate plate theories. The 3D elasticity method was used to calculate the phase
velocity of composite lamina and laminate [14,15]. The exact methods are computationally
intensive due to the transcendental equations used for multilayered composites. Therefore,
approximate plate theories are employed to ensure the solutions are practical [16,17]. Re-
cently, Biot’s general energy expression was applied to derive the group velocity vector
of elastodynamic guided waves [18] in arbitrary layered structures. The semi-analytical
methods use finite element (FE) approaches to model part of the structure and impose
wave solutions in the propagation directions. The most well-known is the semi-analytical
finite element (SAFE) method, where FE is used to model the cross-section, and a complex
exponential function is used to describe the displacement field in the direction of wave
propagation [19]. However, the SAFE method cannot be used to model truly periodic
structures [20] that consist of identical substructures joined to form a continuous structure.
The scaled boundary finite element method (SBFEM) was also applied in a similar semi-
analytical framework for guided wave simulations [21] but only in isotropic structures.
The wave and finite element (WFE) method has been developed over the last decade [22].
It combines FE and periodic structure theory to model wave propagation in periodic struc-
tures. It has been used in a number of research areas like structural identification [23],
damage detection [24], multi-scale wave propagation [20], transient wave propagation [25],
and wave steering in composites [26].

The main issue associated with the existing group velocity calculation methods is
that they require custom formulations, which are difficult to implement, and none of
them are able to handle truly periodic structures. Moreover, the group velocity from WFE
was approximated by the slope of the wavenumber–frequency dispersion curve using
finite differentiation. The principal novelty of the work exhibited in this manuscript is
the calculation of the group velocity curves for two dimensional complex periodic and/or
composite structures using a wave and finite element scheme without involving any finite
differentiation. The approach is therefore free from computational errors, requirement for
convergence checks, and additional computational cost implied by finite differentiation
schemes. The use of periodic structures such as textile composites has become increasingly
common in automotive and aerospace industries [27]. In order to employ guided-wave-
based damage localization and identification, it is necessary to calculate the dispersion
properties of such structures. The WFE scheme based calculation of dispersion curves has
the following advantages:

• It is capable of handling both periodic and layered composite structures.
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• It is relatively easier to implement and does not require custom FE formulation.
• It is computationally efficient and has minimal memory requirements.

The novelty of this work is the form of a comprehensive algorithm to calculate the dis-
persion properties of arbitrary plate-like structures. The paper is organised as follows:
A brief introduction to the WFE method is presented in Section 2, followed by the energy
and power flow considerations necessary for dispersion curve calculation. At the end of
Section 2, the main algorithm is presented. The symbols used in this section are listed in
Table 1. The method is compared with existing dispersion properties calculation techniques
in Section 3, highlighting the main advantages of this approach. The comparison with
experimental results is described in Section 4. This is followed by our conclusions in
Section 6.

Table 1. List of symbols.

Symbol Description

K, C, M Stiffness, damping, and mass matrices
D Dynamic stiffness matrix
ω Angular frequency
q Vector of nodal degrees of freedom
f Vector of internal forces
T Transformation matrix
λ Propagation constant
k Wavenumber
T Transfer matrix
φφφ Modeshape vector
E, P Energy and power
cg, cp Group velocity and phase velocity
θ Propagation direction

2. Dispersion Curve Calculation

The methodology for obtaining the dispersion curves of 2D periodic structures is
presented in this section. The WFE method is used to obtain wave propagation charac-
teristics, wavenumbers, and wave modes of the periodic waveguide. This is followed
by the necessary energy and power flow considerations for calculating the group and
phase velocities of guided wave modes. Finally, the algorithm for calculating the 2D group
velocity profile is provided.

2.1. Wave and Finite Element Scheme

The WFE method has been developed over the last three decades and has been applied
to a wide variety of structural calculations. The reader is referred to classical literature
regarding this methodology [28–30] in order to obtain more information. With regard to two-
dimensional periodic media as shown in Figure 1a, and a close-up example of such a structure
shown in Figure 1b, the first step is to model a single periodic section using standard finite
element software. There is no limitation with regard to the complexity of the cross-section to
be modelled, making the method suitable for modelling layered media.
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Figure 1. Example of a multi-layered 2D periodic structure and discretised FE model of a single
periodic section.

The finite element model of the periodic section is used to obtain the stiffness (K),
mass (M), and damping (C) matrices to set up the dynamic equilibrium as follows:[

K + iωC−ω2M
]
q = f, (1)

where q = { qT
lb qT

rb qT
lt qT

rt qT
b qT

r qT
t qT

l qT
i }T is the vector of nodal degrees of freedom. Each

entry in this vector is formed by concatenating all nodes through the thickness, where (.)T

refers to a transpose. The size of each entry equals the number of nodal degrees of freedom
times the number of concatenated nodes. The vector of internal forces f is ordered in the
same way as q. The coefficient matrix multiplying with q in Equation (1) is commonly
known as the dynamic stiffness matrix D. The dimension of Equation (1) can be reduced by
applying the periodicity condition in the y-direction. For a free wave propagation scenario,
where ky refers to the component of wavenumber in the y-direction, a transformation
matrix T can be specified that reduces the nodal degrees of freedom vector as follows:

q = Tqred, where qred = {qT
lb qT

rb qT
b}T. (2)

The entries of matrix T are determined from the wave propagation constant λy, which,
according to Bloch’s theorem, is given as λy = e−iky ly , where ly is the height of the periodic
section. The complete matrix depends on the ordering of the q vector; an example can
be found in [28]. This projects all degrees of freedom on the nodes lying on the x-axis
of the waveguide by imposing the periodic boundary conditions. A similar dimensional
reduction is performed to obtain the reduced force vector fred. Since there are no forces
on the internal nodes, the internal nodal force vector fb = 0. This helps in simplifying
Equation (1) as follows [31]:[

Dll Dlr
Drl Drr

]{
qlb
qrb

}
=

{
flb
frb

}
, (3)

with the dynamic stiffness matrix being partitioned with respect to the boundary nodes
of the periodic section. Similar to λy, the free wave propagation in a waveguide of length
lx has a characteristic propagation constant λx = e−ikx lx , which relates the displacements
of the nodal degrees of freedom on the left- and right-hand sides by qrb = λxqlb and
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frb = −λxflb. An eigenvalue problem for λx is formulated by substituting the above into
Equation (3), that is,

λx

{
qlb
flb

}
= T

{
qlb
flb

}
, (4)

where

T =

[
−D−1

lr Dll D−1
lr

−Drl + DrrD−1
lr Dll −DrrD−1

lr

]
. (5)

where T is known as the transfer matrix [22]. The propagation constants λx are eigenvalues
of T. They exist in pairs of [λ+

x andλ−x ] for the positive and negative travelling waves,
respectively. A number of formulations may be employed to mitigate this effect as described
in [32]. The wavenumbers kx are directly derived from the computed propagation constants.
The corresponding eigenvector φφφx is also extracted and represents the mode shape of the
considered wave type. The mode shape vector is internally partitioned to represent
displacements and forces such that φφφx = {φφφT

q,x φφφT
f ,x}

T.

2.2. Energy and Power Considerations

The total energy flow and time-averaged power associated with wave propagation
in a structure provide important insight into the properties of wave modes such as group
velocity and the fundamental principle of energy conservation. The time-averaged total
energy of a particular wave mode is the sum of kinetic (Ek) and potential (Ep) energies [31].
The relations in terms of the wave basis are shown below:

Ek = −
1
4

ω2Re
{(

φφφq,x

)H
Mred

(
φφφq,x

)}
, Mred = THMT,

Ep =
1
4

Re
{(

φφφq,x

)H
Kred

(
φφφq,x

)}
, Kred = THKT.

(6)

Here, (.)H denotes a Hermitian conjugate and φφφq,x is the displacement mode shape for a
particular wave mode. For an element length ∆l in the propagation direction, the total
time-averaged energy per unit length is given as:

Ē =
Ek + Ep

∆l
. (7)

The time-averaged power (P) associated with a propagating wave is obtained as fol-
lows [30]:

P =
ω

2
Im
{(

φφφ f ,x

)H(
φφφq,x

)}
. (8)

The group velocity cg for a guided wave is defined as the speed at which energy propagates
in a particular wave. It has a number of implications for setting up a guided wave
simulation, such as the maximum element size in the wave propagation direction and the
maximum time step increment allowed. Normally, there should be at least 10 elements per
wavelength and the wave should not propagate more than one element distance in a single
time step [25]. The knowledge of cg as a function of frequency for a wave mode helps with
fixing these parameters a priori with sufficient degree of confidence. It is obtained from the
ratio of power and energy as follows:

cg,x =
P
Ē

. (9)

where cg,x denotes the x-component of group velocity of a particular wave mode. Notably,
group velocity is only defined for a propagating wave as evanescent modes do not transfer
any energy.
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2.3. Velocity Dispersion Curves

The main contribution of this paper is Algorithm 1, which is presented in this section,
for obtaining group velocity dispersion curves for periodic structures without finite dif-
ferentiation using a WFE scheme. The algorithm starts following the basic steps of WFE
method, where a periodic section of the structure is modelled in FE software and the K, M,
and C matrices are extracted. They are used to calculate the transfer matrix T and obtain
its eigenvalues and eigenvectors.

Algorithm 1: Group and phase velocity calculation

1 Model periodic section in FE and extract K, M, and C
2 Specify angular frequency ω
3 Initialise arrays kx, ky,θθθ, andcg,x, cg,y
4 while θ < θmax do
5 Calculate the transformation matrix T and transfer matrix T
6 Perform eigenvalue analysis (Equation (4))
7 Sort modes and select a mode of interest with wavenumber kx and mode

shape φφφx
8 Calculate θ for the mode of interest
9 if ky 6= 0 and (θn − θn−1) > ∆θ then

10 Reduce step size ∆ky
11 Go to line 5
12 else
13 Append kx, ky, θ to kx, ky,θθθ respectively
14 Update ky ← ky + ∆ky

end
15 Calculate cg,x using Equations (6)–(9) and append to cg,x

end
16 Append 0 to kx
17 foreach kx in kx do
18 Perform steps 5 to 14, but this time with φφφy as unknowns
19 Calculate cg,y using Equations (6)–(9) and append to cg,y

end
20 Calculate group velocity cg(θ) and phase velocity cp(θ) using Equation (10)

In the while loop starting on line 4, the reduction is performed as shown in Equation (2).
The variable ky is initially assigned zero for a point in the kx − ky plane lying on the positive
x−axis (θ = 0°). The value of ky is updated in subsequent iterations of the while loop by a
suitable step size ∆ky, such that the polar angle between two consecutive points is less than
a desired angular resolution ∆θ. At each step, θ is calculated for a particular wave mode by
the wavenumbers of that mode using the relation θ = tan−1(ky/kx). Note that sorting and
identifying a single mode may be difficult especially if a number of propagating modes
exist at the excitation frequency. Normally, a modal assurance criterion (MAC) [33] is used
to identify modes that can be used here, or a more advanced technique such as the partial
wave method presented in [34]. Since a single mode is used for calculating θ, the algorithm
can only be used to extract one mode at a time. The same algorithm can easily be extended
to filter multiple modes but that is not presented here. The mode shape vector φφφx is then
used to calculate the x−component of group velocity cg,x(θ). The loop runs until θ ≥ θmax,
where θmax is slightly below 90°. This essentially means that we are looking for part of the
dispersion curve that lies in the first quadrant (i.e., between 0° and 90°). The reason for
stopping before reaching 90° is the asymptotic behaviour of the tangent function at that
angle, which makes it numerically difficult to compute. The exact value at 90° is computed
later in the algorithm to bypass this issue.

The part of the algorithm discussed so far is used for calculating the x−component of
the group velocity. To compute the actual group velocity cg(θ) of the mode, cg,y(θ) must
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also be calculated. We find that the ground work for the y−component has already been
completed. The first zero is appended to the array kx to compute ky corresponding to 90°.
It is important to understand that kx is zero at this angle. Then, a for loop is executed,
which iterates through each element of kx. This time, the reduction is performed such that
qred = {qT

lb qT
lt qT

l }T. The entries of the transformation matrix are modified based on the
new qred and now depend on the propagation constant λx, as all the degrees of freedom are
being projected on the nodes lying on the y−axis of the waveguide. The wave mode shape
φφφy is the main unknown quantity that needs to be computed. After that, the calculation of
cg,y(θ) follows straightforwardly from Equations (6)–(9). Thereafter, the group and phase
velocity profiles in the first quadrant are given by:

cg(θ) =
√
(cg,x(θ))2 + (cg,y(θ))2, cp(θ) =

ω

k(θ)
where k(θ) =

√
(kx(θ))2 + (ky(θ))2. (10)

The next step is to obtain the velocity profile in the quadrant of 270° to 360°. The same
algorithm is used to calculate the group velocity profile using the prior knowledge that
ky ≤ 0 in this quadrant. Hence, the step size ∆ky becomes negative. The rest of the steps for
calculating the velocity profile remain the same as for the first quadrant. This essentially
leads to the complete 360° profile by realising that the remaining two quadrants are mirror
images (i.e., the profile in quadrant 180° to 270° is a mirror image of the profile in quadrant
0° to 90° and the profile in quadrant 90° to 180° is a mirror image of the profile in quadrant
270° to 360°).

3. Comparison with the Literature

The characteristic dispersion curves are important quantities needed for any guided
wave application. Therefore, numerous methods have been developed over the years to
calculate them. They range from purely analytical methods to purely numerical methods.
In this section, the WFE-based method is compared with the most popular existing tech-
niques for the calculation of dispersion curves, and its main advantages are highlighted. All
the comparisons were performed against results that have been already published. Notably,
none of these methods can be applied to truly periodic structures. The periodic sections
for WFE were modelled with standard eight-node hexahedral elements with three degrees
of freedom per node. They are shown in Figure 2. The layup was modelled by assigning
directional material properties to elements through the thickness.

+45
-45
0
90
90
0

-45
+45

0.2mm 0.2mm

1m
m

(a) 3D elasticity and SAFE

0
90
0
0
90
0

0.2mm 0.2mm

2.
16

m
m

(b) Standard FE

Figure 2. Single periodic section modelled in FE using standard 8-node hexahedral elements.

3.1. 3D Elasticity Theory

In this approach [13], the exact dispersion relations are obtained using 3D elasticity
theory. The transcendental equations are numerically solved for an infinite number of
possible modes. The formulation consists of a robust method to separate symmetric and
anti-symmetric modes in symmetric laminates. The wave curves are then obtained by
performing the finite difference on the exact solutions of two adjacent slowness surfaces.
The results for a 1 mm thick laminate [+45/ − 45/0/90]s are compared with the WFE
scheme in Figure 3, where excellent agreement can be observed. The composite material
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used in this study was AS4/3502 graphite/epoxy with material properties described
in [13]. The material properties were assigned to each layer of the periodic section shown
in Figure 2a. The 3D elasticity model is limited to symmetric laminates, whereas the
WFE-based approach can handle arbitrary layered structures. Moreover, the solution of
transcendental equations is computationally taxing, whereas the developed approach is
highly efficient, requiring minimal computational resources with the solution obtained in a
fraction of a second.

(a) Group velocity (b) Phase velocity

Figure 3. Wave velocity curves at 551 kHz for [+45/− 45/0/90]s laminate obtained using the analytical (- -) and WFE
(–) method.

3.2. Semi-Analytical Finite Element (SAFE) Method

The SAFE method is similar to the WFE scheme, where the finite element method
is used for discretising the cross-section of the waveguide [35]. The SAFE method uses
a harmonic exponential term to describe the wave behaviour in the propagation direc-
tion. The FE discretisation occurs at the cross-section of the waveguide. For plane wave
propagation in a plate, a 1D discretisation across the thickness of the plate is sufficient.
Combining the harmonic assumption and FE discretisation, the particle displacements
are expressed in terms of shape functions. Custom stiffness matrices are assembled using
this representation, which are used to set up an eigenvalue problem for the frequency-
dependent wavenumber calculation [36]. WFE has a major advantage as it is set up using
standard stiffness and mass matrices and no custom formulation is required. Moreover,
SAFE cannot be used to model the dispersion characteristics of periodic structures such
as the one shown in Figure 1b. The SAFE and WFE models are here compared for the 1
mm thick laminate [+45/− 45/0/90]s presented in [35]. The composite laminate in this
case is composed of unidirectional T800/924 graphite/epoxy laminae with the material
properties described in [35]. The WFE model of the periodic section is shown in Figure 2a,
which is again modelled with standard eight-node hexahedral elements. The comparison
results are shown in Figure 4, where a similar trend is observed in both approaches with a
slight difference in the values.
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(a) Group velocity (b) Phase velocity

Figure 4. Dispersion curves along the principal direction 1 of 0◦ lamina for [+45/− 45/0/90]s laminate obtained using the
SAFE (- -) and WFE (–) methods.

3.3. Standard Finite Element

The standard finite element (FE) method for extracting the dispersion curves consists
of performing a series of modal analyses of a representative part of the structure [37,38].
The dispersion relations are obtained by simply changing the length of the representative
portion in order to allow the wavelength to change. The mode shapes and corresponding
natural frequencies can be obtained by solving eigenvalue problems. Then, the dispersion
curves are obtained from the eigensolutions. This method can only be used to extract
propagating modes, whereas the WFE methodology is more general as it can extract
both the propagating and evanescent modes. The two techniques were compared for a
2.16 mm thick laminate [0/90/0]s. The FE model is shown in Figure 5, where a coarse
mesh is shown for visual representation. The laminate is modelled with 2D plane strain
elements with the plane strain in the z-direction. The element length is 0.09 mm in the
propagation direction and four elements per layer through the thickness. The length of
the representative part needs to be changed to obtain the result for different wavelengths.
The comparison of dispersion curves is shown in Figure 6, where a good agreement can
be observed. The WFE periodic section is shown in Figure 2b, which is modelled using
standard eight-node hexahedral elements and the composite material properties for each
layer is taken from [37]. The WFE periodic section has orders of magnitude fewer degrees
of freedom compared with the standard FE approach. Moreover, the standard FE provides
discrete output for each wavelength by changing the length of the representative part,
whereas a single periodic section is used in WFE, which can be used to extract dispersion
curves for a range of frequencies.

2.
16

m
m

L

x

y

Figure 5. Representative part of laminate modelled in FE.
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(a) Group velocity (b) Phase velocity

Figure 6. Dispersion curves along the principal direction 1 of 0◦ lamina for [0/90/0]s laminate obtained using the FE (- -)
and WFE (–) methods.

4. Comparison with Experimental Results

In this section, the group velocity computed from WFE is compared with experi-
mentally determined group velocity values for a 2 mm thick CFRP laminate [+45/0/−
45/90/ + 45/0/− 45/90]s. The composite laminate is composed of unidirectional T800S
carbon fibre/epoxy laminae with the material properties described in Table 2. The dimen-
sion of the plate is 200 by 200 mm.

Table 2. Material properties of the homogenized CFRP layer (subscript f refers to fibre and m refers to matrix) [39].

Young’s Modulus Young’s Modulus Shear Modulus Shear Modulus Fibre Volume Fraction Poisson Ratio Poisson Ratio Density

E f (GPa) Em(GPa) G f (GPa) Gm(GPa) Vf ν f νm ρ(kg/m3)

220 4.7 15 1.85 0.4 0.2 0.3 1500

The excitation signal was generated from the TG5011 waveform generator and am-
plified by the Ciprian amplifier. The pulse generator settings were set to a single cycle
sine burst centred at 100 kHz for the first test (Figure 7) and 200 kHz for the second test.
The experimental setup is shown in Figure 8. The output of the amplifier was split using a T-
junction. One output was directed toward the excitation piezoelectric transducer, while the
other was attached to the Picoscope signal acquisition system to act as a trigger. The second
transducer was also connected to the Picoscope, which received the signal with a sampling
frequency of 10 MS/s. All the data were stored in a laptop with the Picoscope 6 program
installed. The waves were excited from the centre of the plate and received on a circular
boundary 50 mm from the central point of excitation, as shown in Figure 8a. The circular
boundary had sensing points in 15° intervals. The group velocity for the fastest wave mode
at this frequency (i.e., S0) was calculated by the time of flight (ToF) method. The ToF of
the S0 wave was determined by measuring the difference between the time the signal was
transmitted and received by the transducer. The ToF and and known distance were used
to calculate the velocity of the wave at that given point. The tests were repeated 10 times
and the average values were computed. The pointwise difference between simulation and
experimental data was calculated and found to be less than 5% for all observation points.
The results are shown in Figure 9. Notably, the experimental approach used in this research
is the simplest method to calculate the group velocity and is limited to the fundamental
S0 mode. More advanced techniques are available that can robustly capture higher-order
modes such as the one presented in [13]. The WFE model is also an idealisation of the
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physical specimen, which might have inherent manufacturing flaws, which is common for
composite structures but is not represented in the FE model. Despite these challenges, the
experimental and numerical results were found to be in good agreement.

(a) Time domain (b) Frequency domain

Figure 7. Single cycle sine burst excitation signal centred at 100 kHz.

(a) Circular boundary of ra-
dius 50 mm in intervals of
15o for receiving the waves
excited from the transducer
at the centre of the compos-
ite plate.

Picoscope

TransducerSpecimen

PC

Transducer

Amplifier

Waveform
Generator

(b) Complete experimental setup

Figure 8. The experimental setup used for determining the group velocity in a composite plate.
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(a) 100 kHz (b) 200 kHz

Figure 9. Group velocity curves for [+45/0/− 45/90/ + 45/0/− 45/90]s laminate from experiments (o) and the WFE
(–) method.

5. Discussion

The proposed WFE-based group velocity calculation technique was described and
compared with existing techniques. The model is computationally efficient and can be
used for plate-like structures of arbitrary complexity. However, the model is limited by
the periodicity assumption in the plane of the plate and hence cannot model variation in
cross-section geometry. Moreover, the material properties must also remain consistent in
the plane. The WFE scheme also depends on the use of a FE modeller and cannot exist
as a standalone platform [40]. The computational efficiency of the model is also reduced
in the case of a highly complex single periodic section, which might warrant a further
model reduction strategy. In case of a large number of degrees of freedom in a single
periodic section, further postprocessing is required to identify and separate propagating
and evanescent modes.

6. Conclusions and Outlook

This work presented a new approach for the direct calculation of group velocity
curves using the WFE scheme. The WFE scheme was used to exploit the periodicity
of the structure to extract the group and phase velocity curves from a representative
periodic section. A comprehensive algorithm for calculating the velocity profiles was also
constructed. Since the technique is based on FE method, it contains all the uncertainty
associated with numerical modelling. This includes the effect of mesh size, element
formulation, and model description. In this regard, all the standard best practices of FE
modelling should be followed. Moreover, the accuracy of the results will only be as accurate
as the model. In case of complex composite structures that have inherent manufacturing
flaws, the results will always have uncertainty due to the model definition of the periodic
section. Nevertheless, all modelling approaches face similar challenges. The method was
compared with existing dispersion curve calculation techniques by comparing the results
for complex multi-layered structures. A number of advantages were highlighted with
respect to the existing techniques, which are summarised here:

• The technique is easy to implement using the standard FE method without the need
for custom formulations.

• It is capable of calculating dispersion properties for arbitrary layered plate-like structures.
• The periodic section is modelled with very few elements, which makes it highly

efficient and computationally cheap.
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• The theory of the WFE method enables the technique to be used for truly periodic
structures, such as textile composites, which cannot be modelled with any existing
technique.

Considering the strengths of this approach, it can be used in all guided wave application
areas such as material characterisation, non-destructive testing, SHM, etc. It is especially
useful in the NDE of aerospace structures, which are fabricated with layered composites
and textile composites. It provides a suitable alternative to existing techniques while
having the potential to hande more complex structures such as textile composites.
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