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Abstract: Video streaming application such as Youtube is one of the most popular mobile applications.
To adjust the quality of video for available network bandwidth, a streaming server provides multiple
representations of video of which bit rate has different bandwidth requirements. A streaming client
utilizes an adaptive bit rate (ABR) scheme to select a proper representation that the network can
support. However, in mobile environments, incorrect decisions of an ABR scheme often cause
playback stalls that significantly degrade the quality of user experience, which can easily happen due
to network dynamics. In this work, we propose a control theory (Linear Quadratic Optimization)-
based ABR scheme to enhance the quality of experience in mobile video streaming. Our simulation
study shows that our proposed ABR scheme successfully mitigates and shortens playback stalls while
preserving the similar quality of streaming video compared to the state-of-the-art ABR schemes.

Keywords: dynamic adaptive streaming over HTTP; adaptive bit rate scheme; control theory

1. Introduction

Video streaming constitutes a large fraction of current Internet traffic. In particular,
video streaming accounts for more than 65% of world-wide mobile downstream traffic [1].
Commercial streaming services such as YouTube and Netflix are implemented based on
Dynamic Adaptive Streaming over HTTP (DASH) to enable conventional HTTP Web
servers to provide high-quality streaming of media content according to available network
bandwidth [2]. Since network bandwidth in the Internet varies extremely over time, DASH
video players utilize Adaptive Bit Rate (ABR) techniques [3–7] to adjust video chunk
requests that ask the encoding rate of a video chunk. Based on the available throughput
estimated at the application layer, the ABR schemes seek to select the encoding rates that
the network can support while maintaining reasonable video quality.

The throughput estimation at the application layer tends to be inaccurate, thus, rate
adaptation approaches solely based on the estimated throughput can cause undesired
behaviors, resulting in high variability, low-quality streaming, and frequent rebufferings [8].
In particular, the throughput estimation at mobile devices is more challenging since the
available network bandwidth in the mobile environments often changes dynamically. To
resolve this problem, we propose a discrete feedback control design using the playback
buffer level as a signal, in which the controller targets the buffer level to maintain a reference
level. By applying the buffer level-based rate control, our proposed scheme becomes robust
to incorrectly estimated throughputs. However, it is inappropriate to simply apply the
control theory to mobile video streaming, e.g., solving complex control equations can
incur infeasible computation overhead in mobile devices, which are usually constrained
by low-power CPU and limited power supply. To reduce the overhead of the controller in
mobile devices, we introduce several heuristics such as a pre-computed control gain table
after formulating the optimization problem. Through a simulation study, we demonstrate
that our proposed scheme successfully satisfies our design goal.
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The remainder of this paper is organized as follows. Related work is reviewed in
Section 2. Section 3 provides the background context for our work. We present our approach
in Section 4. Section 6 evaluates the performance of our controller with simulations. Future
work is discussed in Section 7 and we conclude in Section 8.

2. Related Work

Several pieces of research have been done to address issues in video streaming under
dynamic network conditions, such as incorrect bandwidth estimation, smoothness in
streaming quality, and fairness across users.

Tian et al. [6] propose a feedback controller to drive the playback buffer length to a
set-point, using adjustment factors to control bit rate according to network bandwidth and
balance responsiveness and smoothness. While their controller utilizes the buffer status to
determine the bit rate, the final decision strongly depends on bandwidth prediction.

Tian et al. [9] extend the approach in [6] to address large bandwidth variations and
energy efficiency in cellular/WiFi networks. The proposed scheme chooses lower bit rates
than an estimated throughput as a larger throughput variance becomes larger.

De Cicco et al. [10] also introduce a feedback control based on a Proportional-Integral
(PI) controller using the playback buffer level as a feedback signal to the controller without
adjusting control gains for optimal control.

Huang et al. [3] propose a bit rate adaptation mechanism based only on playback
buffer status. The basic idea behind their approach is that buffer length increases if a
requested video rate is lower than the available bandwidth, and decreases otherwise.

Li et al. [5] focus on undesirable streaming behaviors, such as bit rate fluctuation,
when multiple streaming clients compete for bandwidth. They show that these problems
are because clients cannot perceive their fair-share bandwidth due to the discrete nature
of the video bit rates. To resolve these issues, the authors introduce a proactive probing
mechanism for estimating the target average video bit rate.

Yin et al. [7] define a streaming QoE optimization problem and propose a bit rate
selection using the solutions. However, their approach requires pre-computing the required
information for a specific video setting.

Further, there are several approaches to utilize artificial intelligence (AI) algorithms
for video streaming. Mao et al. [11] propose the first ABR scheme that utilizes Deep
Reinforcement Learning (DRL) to select bitrate for the next video chunk. Huang et al. [12]
suggest another RL-based ABR scheme. These approaches require training procedures to
obtain an optimal DRL model in advance. Further, although RL can help a mobile client to
choose the most proper bit rate according to network status, even inferences using a neural
network requires large computation overhead with high energy consumption. This is
inappropriate for mobile devices with low computing power and limited power supply;
even though recent high-end mobile devices introduce an AI accelerator to support AI
algorithms with low energy consumption, mid-range devices, which are popular in the
market, still have a lack of such functionalities. Lee et al. [13] suggest PERCEIVE using
an LSTM (Long Short Term Memory) model to predict throughput according to cellular
channel status. Similar to the previous approaches [11,12], PERCEIVE can have concerns
for computation overhead in mobile devices and it also targets WebRTC, not DASH video
streaming.

3. Background

To stream videos with a bit rate appropriate for the available bandwidth, a DASH
server provides multiple representations of a video content encoded at different bit rates.
Each representation is fragmented into small video chunks that contain several seconds
of video. Based on measured available bandwidth, a DASH client selects a chunk rep-
resentation, i.e., bit rate, and requests it from a DASH server; this is called adaptive bit
rate selection.
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A DASH client player starts a streaming session with an initial buffering phase during
which a player fills its playback buffer to the maximum level (Bmax). When the buffer is
filled with the minimum amount of video during this phase, the player starts playing the
video, and continues to retrieve media chunks until the initial buffering completes. After
completing the initial buffering phase, a player pauses downloading until the buffer level
falls below the maximum buffer level by playback. This leads to an ON-OFF traffic pattern
where the player downloads chunks for a while and then waits until a specific number
of chunks is consumed [14]. If the amount of buffered chunks is less than the minimum
required to play out the video, the player stops playback and fills its buffer until it has
a sufficient amount of video to begin playback again, called the rebuffering phase. Note
that the length of a video chunk is one of the parameters that can affect the duration of the
rebuffering phase; assume a client player starts playback again once the playback buffer
contains at least one video chunk. As the length of a video chunk is longer, the chunk size
becomes larger, resulting in a longer rebuffering duration until one chunk download for
playback completes.

Yin et al. [7] models such a behavior by a DASH client player in terms of buffer status.
Suppose L is the chunk length in seconds. Let Bk be the buffer level measured in seconds
when the client starts downloading the ith chunk with a particular encoding bit rate Rk.
Assume that Dk is the download time for the kth chunk. The length of the OFF period after
the kth chunk download, δk, is defined as:

δk = max(max(Bk − Dk, 0) + L− Bmax, 0) .

The rebuffering duration after the kth chunk download, γk, is:

γk = max(Dk − Bk, 0) .

Then, we can define the next buffer level, Bk+1, as:

Bk+1 = max(max(Bk − Dk, 0) + L− δk, 0) .

4. Approach
4.1. Linear Quadratic Optimization

The optimal control theory seeks to operate a system with the minimum cost. If the
system dynamics are described by a set of linear differential equations and the cost a
quadratic function, the linear quadratic optimization provides the solution for the con-
trol problem. In this section, we propose an ABR selection scheme (LQ) based on the
control theory using a discrete-time linear quadratic regulator, which uses the playback
buffer level as a feedback signal. Based on the control outputs from the linear quadratic
regulator, LQ targets the buffer level to maintain the reference buffer level.

Figure 1 presents the control loop diagram to design the basic LQ ABR scheme and
Table 1 presents its terms. Let R̂k be the estimated bit rate for kth chunk by the controller
output uk. Suppose that the set of available m bit rates is V = {v1, v2, . . . , vm} where
v1 < v2 < . . . < vm. The basic LQ ABR scheme works as follows:

ei = Bi − q0 i = 1 . . . k

Sk =
k−1

∑
i=1

ei

uk = −KPek − KISk

R̂k = F
(

min(
1

1(uk > 0)uk
, vm)

)

where q0 is the reference buffer level, Bi is the buffer level measured in second when ith
chunk download starts, ei is the error between the buffer level, Sk is the sum of previous
errors, F(x) = argmaxvi∈V(vi ≤ x), which is a function to quantize a controller output to
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an available chunk bit rate, and 1(condition) is a function to set one if the condition is
satisfied and zero otherwise.

Table 1. Notations.

Term Descriptions

when kth chunk download starts

q0 Reference buffer level in seconds
Bk Buffer level in seconds
ek Error between the buffer level and q0
Sk Sum of previous errors
uk Controller output
C0 Expected mean throughput
R̂k Controller estimated bit rate for kth chunk
KP Proportional gain
KI Integral gain

Figure 1. Control Loop.

In this controller system, we seek to keep ek and Sk close to 0 while maximizing R̂k.

We define a two dimensional state vector xk =

[
ek
Sk

]
that evolves as follows:

xk+1 = Axk + Buk

where A =

[
1 0
1 1

]
, B =

[
L× C0

0

]
, and L is the chunk length measured in seconds.

Then, we formulate a quadratic cost optimization problem for an infinite-horizon
where the goal is to minimize the cost function J, i.e., to keep xk close to 0 using small uk
(large R̂k) as:

min
uk

J =
N

∑
k=1

(xT
k Qxk + ρu2

k) + xT
NQxN

where N is the number of chunks in an entire video, Q is a 2× 2 dimensional symmetric
positive definite state transition matrix, and ρ is a control weight.

Assuming N → ∞, the gain matrix for optimal control, K =
[

KP KI
]
, is given

by [15]:

K = (ρ + BTPB)−1BTPA

where P is the solution of the discrete time algebraic Riccati equation

P = ATPA−ATPB(ρ + BTPB)−1BTPA + Q.
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Finally, the control sequence of uk minimizing the cost can be represented as:

uk = −Kxk

where the obtained K represents the optimal values for KP and KI for the basic LQ ABR
scheme.

Although our controller is based on the feedback control based on the level of playback
buffer, it needs to estimate expected mean throughputs, which can dynamically fluctuate in
the mobile environment. To predict mean throughput, our controller applies Holt-Winters
time-series forecasting algorithm [16], which is known to be more accurate than formula-
based predictors [17], on throughput samples measured while downloading each chunk.

4.2. Extending LQ for Improving QoE in Mobile Streaming

To avoid frequent bit rate fluctuation, which significantly degrades user quality of
experience [18], and to continuously update the control gain parameters with optimal
values while consuming feasible resources in mobile devices, we extend the basic LQ ABR,
called LQE, as follows:

4.2.1. Adjustment Factor in the Error Term ek

To prevent frequent bit rate switching in a short term, we redefine the error term ek as:

ek = Bk − q0 − σ× q0(rk−2 − rk−1)

where rk is the index of bit rate selected for kth chunk (increasing order according to
bit rates), e.g., with six available bit rates the index of the minimum bit rate is one and the
index of the maximum is six.

The intuition behind the adjustment factor is that a negative error drives LQ to select
a lower bit rate and a positive error does LQ to select a higher bit rate. By switching to a
lower bit rate, the error with the next feedback decreases (going to a positive error), thus,
the client can shortly increase the bit rate, resulting in short-term bit rate fluctuation. It
also occurs when LQ selects a higher bit rate. To mitigate the short-term fluctuations, the
adjustment factor makes increases in the error in the negative direction than the actual
error when LQE previously switches to a lower bit rate. Similarly, if the LQE observes a bit
rate increase, the error increases in the positive direction, allowing LQE to continue with
the selected higher bit rate for a longer time.

4.2.2. Counter-Based Switching Logic

In addition to the adjustment factor, we introduce a bit rate switching logic using a
counter mechanism to more aggressively prevent short-term bit rate fluctuations. Since the
LQ output is a continuous value, immediate switching based on the quantized value
from the LQ output can incur oscillations at boundaries. The counter-based switching
logic avoids such oscillations by introducing some hysteresis to the LQ ABR. To this end,
LQE selects a bit rate Rk higher than Rk−1 only if the estimated bit rates from the all
controller outputs in previous m consecutive chunks (R̂i∈[k−m,k]) indicate to increase bit
rate, that is, ∀i ∈ [k − m, k], R̂i > Ri ⇒ Rk = R̂k. LQE uses the same counter-based
switching for the case of switching-down bit rate.

4.2.3. Control Gain Table

The optimal control gains KP and KI depend on the chunk length L, the mean through-
put C0, and the control weight ρ. To enable LQ to continuously use optimal values for the
parameters, LQE dynamically updates KP and KI according to chunk length and measured
average bandwidth. However, solving the Riccati equation in a mobile device requires
significant computational overhead. Therefore, we pre-compute KP and KI according to
different chunk lengths and average bandwidths. The control gain table for a particular
ρ represents this data as a two-dimensional array, indexed by the chunk length and the
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measured average throughput, where each entry includes corresponding optimal values
for KP and KI .

Table 2 shows entries in the control gain table for ρ = 104 indexed by every 0.5 Mbps.
Note that the final output of the LQE is 106

uk
since we pre-compute this table according to

bandwidth in Mbps. Figure 2 shows the flowchart of the LQE ABR logic to determine
an appropriate bit rate for chunk downloading, where Mu and Md are variables to count
consecutive rate up/down selections, which is used for the counter-based switching logic
described in Section 4.2.2.

Table 2. Control Gain Table (ρ = 104).

L (s) C0 (Mbps) (KP, KI)

5
0.5 0.0297, 0.0010
1.0 0.0219, 0.0009
1.5 0.0185, 0.0009

... ... ...

Initial Conditions

k = 1

C = 3Mbps

Update Kp & Ki

Contoller Output

ek = Bk − q0 − σq0(rk−1 − rk)

Sk =
k−1∑

i=1

ei

uk = −KP × ek −KI × Sk

R̂k = F
(
min( 106

1(uk>0)uk
, Rmax)

)

R̂k 6= Rk−1
Mu = 0
Md = 0

R̂k > Rk−1

Mu = Mu + 1
Md = 0

Mu = 0
Md = Md + 1

Mu < m

Md ≥ m

Mu = 0

Md = 0

Rk = R̂k

Rk = Rk−1

Rk = Rk−1

Update C k = k + 1

no

yes

no

yes

no

yes

no

yes

Figure 2. LQE Adaptive Bit Rate Selection.

4.2.4. Download Abandonment

A sudden bandwidth drop in the mobile environments can cause buffer depletion
while a player retrieves a chunk with a selected bit rate. To resolve this problem, if LQE
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detects the possibility of buffer depletion while downloading a chunk, LQE abandons the
current chunk download and chooses a new bit rate that can finish downloading before a
buffer depletion, i.e., a download abandonment is triggered if the buffer level falls below a
threshold while the expected remaining download time is longer than the buffer length.
For the threshold in our implementation, we use 2

3 Bk where BK is the playback buffer level
at the beginning of k-th chunk download.

5. Determining LQE Parameters

In this section, we explore the effect of LQE parameters, which are knobs to control the
behavior of a client player according to different user demands. To this end, we examine
LQE with trace-driven simulations with several parameter settings (See Section 6 for the
simulation setup).

Figure 3a shows the CDFs of the number of bit rate changes in the 3570 scenarios
according to different σ and m while we set q0 & σ to 70s and 104, respectively. In these
simulations, we use one for m, i.e., disable the count-based switching logic in LQE, so
that we investigate the effect of the adjustment factor for reducing the number of bit rate
changes. As shown in Figure 3a, the number of bit rate changes decreases until σ = 0.05
and starts to increase after σ becomes larger than 0.05. In the experiments, we observe
that σ does not notably affect streaming quality such as the total rebuffering duration.
Therefore, we select σ = 0.05, which yields the fewest number of bit rate changes without
increasing the rebuffering duration.
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(a) Effect of σ (m = 1)
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(b) Effect of m (σ = 0.05)

Figure 3. Effect of σ and m (LQE).

Given σ = 0.05, we explore the effect of the counter-based switching logic. As shown
in Figure 3b, using m ≥ 2 successfully enables LQE to reduce the number of bit rate changes
together with the adjustment factor: m = 2 reduces the number of bit rate changes by
almost half. However, as m increases, LQE response more slowly to network dynamics,
resulting in a longer rebuffering duration: m = 2 triggers rebufferings in 3% more scenarios
than m = 1 in our simulations. We use the counter threshold of m = 2, which significantly
reduces the number of bit rate changes with the smallest impact on the rebuffering behavior.

Next, we investigate the effect of the control weight ρ on the number of bit rate changes
and streaming quality. Figure 4 shows the CDFs of the number of bit rate changes of LQE
with different values of ρ while we set σ & q0 to 0.05 and 70 s, respectively. We observe that
the number of bit rate changes decreases as ρ becomes larger, while a larger ρ results in
longer total rebuffering durations. We choose ρ = 104 which compromises between the
number of bit rate changes and the total rebuffering duration.

Figure 5 presents the CDFs of average bit rate and total rebuffering duration of LQE
with different values of q0 while σ and ρ are set to 0.01 and 104, respectively. We observe
that the average bit rate and total rebuffering duration become smaller and shorter as q0
increases, showing the trade-off between average bit rate and rebuffering. It is because a
larger q0 is likely to incur more negative error, resulting in lower bit rate selections, which
can shorten the duration of rebuffering. For the rest of the experiments, we choose q0 = 70
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that yields similar average bit rates compared to q0 = 90 while exhibiting moderately short
rebuffering durations.
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Figure 4. Effect of ρ (LQE).
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Figure 5. Effect of q0 (LQE).

6. Trace-Driven Simulations

In this Section, we compare the performance of our streaming controller with following
buffer-based ABRs:

• Tian: Tian et al. [6] use a feedback controller to drive the playback buffer level to a
set-point by scaling predicted throughputs as a function of the buffer level and its
trend. We use the control parameter Kp = 0.1 as described in [6].

• BBA: Huang et al. [3] use a rate adaptation that selects bit rate Rk based on a function
of the playback buffer level. In our evaluation, the reservoir and cushion parameters
for BBA are set to 20s and 70s, respectively.

We conduct trace-driven simulations using a set of 85 public available traces of cellular
bandwidth [19]. Assuming that a mobile device obtains a sum of entries in two different
traces as a bandwidth, we use combinations of the throughput traces to input bandwidth
values for each interface. Note that if a trace is shorter than the simulation running time, we
continue to repeat the trace from the beginning. This results in 3570 scenarios with which
to investigate the performance of the streaming schemes, which is intended to reflect the
bandwidth variability in real networks. In the simulation, we assume that the streaming
server provides six representations of the video, of which length is 1800 s, with resolutions
varying from 144 to 1080 p, of which bit rates are from 0.27 to 8.9 Mbps. Given a bandwidth
scenario, our simulator calculates streaming bit rate, playback buffer, and rebuffering
statuses based on the streaming behavior model [7] described in Section 3.

We use the following performance metrics to evaluate the ABR schemes:

• Average bit rate: This is the average of the bit rate of all downloaded chunks, which is

defined as ∑K
k=1 Rk

K where K is the total number of chunks and Rk is the bit rate of the
kth chunk.
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• Average rebuffering duration: This is defined as the time spent in the rebuffering
phase divided by the number of rebuffering occurrences during the entire playback.

• Number of bit rate changes: We count the number of times the bit rate increases or
decreases during the entire playback, i.e., ∑K

k=2 1(Rk−1 6= Rk).

Figure 6 presents Whisker plots showing the minimum, first quartile (Q1), median,
third quartile (Q3), and maximum of average bit rate and average rebuffering duration and
CDF of the number of bit rate changes. As shown in Figure 6a, in terms of median, LQE
yields a higher average bit rate (2.17 Mbps) than Tian (2.02 Mbps) and slightly lower than
BBA (2.37 Mbps) while min/max of LQE is lower than others. It is because LQE is likely to
use lower bit rates when LQE expects low available bandwidth status so that it can more
properly mitigate rebufferings as shown in Figure 6b.

Note that Figure 6b exhibits the Whisker plot of collected samples only in traces
where rebufferings occur. In our simulation, rebufferings did not happen in 93% of traces
with Tian, 88% with BBA, and 91% with LQE. Although LQE experiences rebufferings in
2% more traces than Tian, LQE exhibits the shortest average rebuffering duration than
others as shown Figure 6b. In particular, its maximum of average rebuffering duration
is 5.6 s while others’ are larger than 25 s. In terms of median, LQE yields the shortest
rebuffering duration (1.67 s) followed by BBA (2.07 s) and Tian (2.16 s). This shows that
LQE successfully shortens the duration of rebuffering when it happens by appropriately
choosing bit rates in advance, of which average can be higher than what Tian chooses and
should be slightly lower than what BBA does.

In Figure 6c, we observe that LQE exhibits the largest number of bit rate changes
followed by BBA and Tian. This is because LQE is more adaptively switching bit rates
according to available network bandwidth than the other ABRs. Although BBA changes
bit rates more often than Tian, BBA suffers from longer rebufferings than Tian while LQE
does shorter rebufferings as shown in Figure 6b. This shows that BBA switches bit rate at
incorrect timing for mitigating rebufferings while LQE does at appropriate moments that
can shorten rebuffering duration.
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In sum, by proactively switching bit rates, LQE exhibits up to 22% shorter aver-
age rebuffering duration than the other ABRs while achieving up to 8% lower average
bit rate; this is an inevitable bit rate degradation to successfully mitigate rebufferings in the
experiment scenarios.

Figure 7 exhibits example traces showing how Tian and LQE select bit rates according
to available throughput in a selected scenario. In this figure, we compare two extreme
cases in terms of the number of bit rate changes: Tian with the least number of changes
and LQE with the largest number of changes. As we can expect in Figure 6c, LQE changes
bit rates more adaptively than Tian: for example, LQE switches bit rates more often during
the period between 1100 and 1500 s while Tian tends to stick with one selected bit rate. In
particular, during the periods of 1150–1200 and 1400–1450, Tian preserves the higher bit
rate than the available throughput, which can result in rebufferings, while LQE accordingly
changes bit rates.
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Figure 7. Examples of Bit Rate Changes according to Throughput.

7. Future Work

Although our simulation study proves that LQE successfully fulfills the design goal
while exhibiting better performance compared to the existing ABRs, it is important to
investigate its performance in the real world by using an implementation in an off-the-shelf
mobile device. For the experiments in the real world, we have implemented an Android
DASH client players based on Google Exoplayer [20]. Our implementation includes LQE
as well as the other ABR schemes such as Tian and BBA using the reference V1 of the
ExoPlayer, in which FormatEvaluator class takes charge of adaptive video streaming. We
are currently porting our implementation to the latest version (V2) of the ExoPlayer. In
future work, we will construct a test environment that consists of a testing video streaming
server, our latest DASH client player, and UI to collect feedback from users. We will
examine the performance metrics in real experiments together with the additional quality
of service metrics such as Mean Opinion Score (MOS), which is a measure representing the
overall perceived quality of streaming based on user feedback.
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8. Conclusions

This paper proposes and evaluates LQE, a Linear Quadratic Optimization-based ABR
scheme, which chooses a proper video bit rate to reduce playback stalls due to rebufferings.
We introduce several tweaks to utilize the complex control theory appropriately for mobile
video streaming. Our simulation results show that LQE successfully mitigates rebufferings
by decreasing their duration when they occur compared to the existing buffer-level based
ABR schemes, while still preserving similar video streaming quality.
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