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Abstract: Face gender recognition has many useful applications in human–robot interactions as it
can improve the overall user experience. Support vector machines (SVM) and convolutional neural
networks (CNNs) have been used successfully in this domain. Researchers have shown an increased
interest in comparing and combining different feature extraction paradigms, including deep-learned
features, hand-crafted features, and the fusion of both features. Related research in face gender
recognition has been mostly restricted to limited comparisons of the deep-learned and fused features
with the CNN model or only deep-learned features with the CNN and SVM models. In this work,
we perform a comprehensive comparative study to analyze the classification performance of two
widely used learning models (i.e., CNN and SVM), when they are combined with seven features
that include hand-crafted, deep-learned, and fused features. The experiments were performed using
two challenging unconstrained datasets, namely, Adience and Labeled Faces in the Wild. Further,
we used T-tests to assess the statistical significance of the differences in performances with respect
to the accuracy, f-score, and area under the curve. Our results proved that SVMs showed best
performance with fused features, whereas CNN showed the best performance with deep-learned
features. CNN outperformed SVM significantly at p < 0.05.

Keywords: deep learning; gender recognition; CNN; SVM; deep-learned features; hand-crafted
features; feature fusion

1. Introduction

Gender recognition is vital in interconnected information societies; it has applications
in many domains such as security surveillance, targeted advertising, and human–robot
interactions. Face gender recognition plays a key role in the latter domain since it allows
robots to adapt their behavior based on the gender of the interacting user, which increase
user acceptance and satisfaction [1]. A wide range of contributions exist in literature
that present a variety of frameworks [2–7], feature descriptors [8–13], classification model
architectures [14–16], and benchmark datasets [17] with state-of-the-art results. Despite the
achieved success, face gender recognition is still considered a challenging and unsolved
problem; therefore, researchers continue to seek a solution [15,18].
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There are numerous reasons for considering face gender recognition an open research
problem. First, face images introduced multiple challenges because of the variations in the
appearance, pose, lighting, background, and noise. Yet, numerous reported successes in the
literature are achieved with easy constrained datasets, such as facial recognition technology
(FERET) [19–22] and UND [20]. These datasets contain the frontal face images that were
captured under controlled conditions of facial expressions, illumination, and background.
Therefore, they do not reflect real-world situations [23]. Second, some proposed approaches
(e.g., [22,24,25]) target a specific challenge in the face images; therefore, they may not
achieve the same level of performance in real-world scenarios. Third, there does not exist
any unified procedure for the task of gender recognition; therefore, authors follow different
experimental setups, such as the number of folds in cross validation, used benchmark
datasets, and model parameters (e.g., support vector machine (SVM) kernels), which make
the comparison of results inapplicable.

Recently, we witnessed the rise of CNN models as not only a classification model
but also as a feature extraction method in different domains [26–28]. Unlike hand-crafted
features, which are designed beforehand by human experts, deep-learned features are
learned directly from the data by using CNNs. Recent evidence suggests that each feature
extraction paradigm focuses on extracting information from the images that are neglected
by the other paradigms [29]. In the domain of gender recognition using face images, sev-
eral attempts have been made to compare the performance of the two feature extraction
paradigms. For instance, several studies have reported that fusing hand-crafted features
with images can improve the CNN performance [30–32]. Despite the variations in ex-
perimental setups, certain studies have produced contradictory findings. For example,
Wolfshaar et al. [33] compared the performance of deep-learned features with a fine-tuned
network and an SVM. Their results proved that the fine-tuned model outperformed the
SVM when oversampling was applied on the Adience dataset. In [34], the same dataset was
used but the best performance was achieved when deep-learned features were extracted
from a fined-tuned VGG model and fed to an SVM model.

Research on the subject has been mostly restricted to limited comparisons of the
multiple feature extraction paradigms with one model [32,35] or a single paradigm with
multiple models [33,34]. Little attention has been paid to how the different feature ex-
traction paradigms (i.e., hand-crafted, deep-learned, and fused features) would compare
when combined with the different models (CNN and SVM). In this research, we seek to fill
this gap. We perform a comprehensive comparative analysis of different combinations of
features extraction paradigms and models using two challenging unconstrained benchmark
datasets, namely, Adience [17] and Labeled Faces in the Wild (LFW) [36]. Moreover, unlike
most of the existing contributions, we report the accuracy, f-score, and area under the curve
(AUC) for all the experiments and analyze their significance statistically.

The rest of the paper is organized as follows. In Section 2, we discuss the related
literature. In Section 3, we describe the methodology, including the feature extraction,
the datasets, the classification models, and performance evaluation. In Section 4, we present
and discuss the results. Finally, Section 5 concludes our work.

2. Literature Review

Gender recognition is a domain where high state-of-the-art accuracy has been achieved
by SVMs and CNNs [21,33,34,37,38]. These results, however, have been attributed to the
characteristics of the dataset used [17,21,22,31]. For example, many of the early efforts
in gender recognition have used constrained datasets that included frontal face images
that were taken under controlled conditions of facial expressions, illumination, and back-
ground [19–21], and hence cannot achieve the same performance with images taken in
the wild by surveillance or robot cameras. Building a gender recognition model based on
face images is similar to other computer vision tasks; the process has three main stages:
selecting the benchmark dataset, feature extraction and selection, and classification. In the
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text below, we highlight the main efforts made in each stage for progress in the field.
Furthermore, we summarize the results of the most relevant works in Table 1.

A dataset is an integral part of gender recognition research. Selecting an appropri-
ate dataset to benchmark the proposed approach is a crucial decision because datasets
introduce different challenges, such as pose variations, illumination variations, and oc-
clusions. Gender recognition datasets can be broadly categorized into constrained and
unconstrained datasets. The former includes frontal face images that were taken under
controlled conditions of facial expressions, illumination, and background. Numerous early
studies have been criticized for benchmarking their works with constrained datasets, such
as FERET [19–22] and UND [20] because they do not reflect real-world situations [23,39].
Therefore, many studies were aimed at the challenges posed by the images taken under
uncontrolled conditions, for example, LFW [20,22] and Adience [17,23,32,40,41] datasets
and datasets with occlusions (e.g., sunglasses and hats), such as AR [20,22], Gallagher [32],
and MORPH [40]. The authors in [17] offered a unique unconstrained and unfiltered dataset.
Torralba and Efros [42] argued that the most popular datasets were biased, and they em-
phasized that using a single dataset for training and testing was not representative of the
variations that exist in the real world. Therefore, to simulate real-life situations, recent
studies [17,21,22,31] have adopted a cross-data approach, where one dataset is trained, and
another dataset is tested. Other contributions [38,41] used a fusion of multiple constrained
and unconstrained datasets for testing purposes. Moreover, some efforts have targeted
a specific type of image, such as low-resolution thumbnail faces [43] and low-frequency
components of the mosaic 8 × 8 images [44].

A fundamental problem was to determine what features in a person’s face can help
determine the person’s gender. A wide range of studies have been devoted to improving
the extraction and selection of features [45–47]. In recent years, there has been an increasing
amount of computer vision literature that distinguishes between hand-crafted features
and deep-learned features [45]. The hand-crafted features are designed beforehand by
human experts, whereas deep-learned features are learned directly from the data using
CNN. Furthermore, some studies reported performance improvements when the two
features were combined [31,32]. One of the early works on the hand-crafted features
is [48], where the authors combined the 3D distances with multiple measurements (such as
the distance between the key points in the face, the ratios, and the angles between the
key points) into a single function. Tamura et al. [44] divided the human face into four
parts to determine which part contributed the most to identifying the gender. The results
revealed that the face shape and cheek bone shape are the most important aspects. Further,
the authors of [49] identified nine facial features that varied and hence could be used to
distinguish males from females, namely, the hairline, eyebrows, eyes, distance between the
eye and eyebrows, nose, lips, chin, cheeks, and face shape.

The hand-crafted features could be extracted from the facial features including the
face shape by using the histogram of oriented gradients (HOGs) [50], texture using the
local binary pattern (LBP) [51], and intensity features using the gray level of each pixel [20].
The geometric features can also be extracted, such as scale invariant feature transform
(SIFT) [52] and Haar-Like features [21]. Jabid et al. [19] presented face images using a novel
texture descriptor local directional pattern (LDP), and Shobeirinejad and Gao [10] proposed
interlaced derivative patterns, which outperformed the LBP and LDP features. A number
of authors have reported performance improvements when different types of hand-crafted
features are fused, such as domain-specific and trainable features [18], trainable shapes,
and color features [53], LBP and local phase quantization features [8], shape and texture
features [54], LBP and radii spatial scales features [20], appearance-based and geometric-
based features [55], appearance and geometry features [12], gradient and Gabor wavelets
features [13], and LBP, SIFT, and color histogram [52]. In contrast, Alexandre [11] showed
that a single feature from different scales could outperform multiple features at a single
scale. In [9], adaptive features were proposed, which resulted in accuracy improvements in
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the SVM model. The research in [31] showed that the hand-crafted features fusion could
improve the SVM performance.

A growing body of literature has investigated deep-learned features and investigated
how gender recognition accuracy differs when compared and combined with hand-crafted
features. Nanni et al. [29] proposed a generic computer vision system that extracted,
compared, and combined hand-crafted features with deep-learned features to train an SVM
model using several datasets from different domains. The authors showed that a fusion of
both hand-crafted and deep-learned features provided the best performance with SVM.
Ozbulak et al. [34] explored transfer learning using generic and domain-specific models to
extract deep-learned features to train different CNN and SVM models. Their results proved
that the use of deep-learned features extracted using domain-specific models could improve
the accuracy of all the models. In [56], the authors proposed the joint features learning
deep neural networks, which could learn from the joint high-level and low-level features.
The proposed architecture outperformed CNNs, SVM with face pixels, and SVM with LBP
features. In [35], the authors compared hand-crafted and deep-learned features by training
a CNN model for pedestrian gender recognition. Their results showed that hand-crafted
and deep-learned features performed comparably on small-sized homogenous datasets,
but the latter performed significantly better on heterogeneous data. In [57], the authors
showed that feeding deep-learned features into an SVM rather than Softmax in VGGNet-16
provided better results. The fusion of deep-learned and hand-crafted features achieved
better results than using only deep-learned features with ensemble learning [58].

SVM is a widely used model in the gender recognition domain [9,17,19–21,25,43,47,54,59,60].
Lately, deep learning is being used in many computer vision applications [61–64]. Therefore,
studies have proposed varying architectures and experimental setups for CNNs to improve
gender recognition [5,14,16,21,23,24,30,40,44,49,62,65–80]. Other authors have used ensem-
ble learning [58] and K-nearest neighbor (KNN) [63] methods. The studies [21,32–34,37,38]
are most similar to our study, wherein the main aim is to compare the performances of
different features and machine learning models for the task of gender recognition. The
studies [33] and [34] investigated the use of deep-learned features with the CNN and SVM
models; they report contradictory findings. While the result in [33] proved that the fine-
tuned model outperformed SVM, when oversampling was applied, the best performance
was achieved in [34] when the deep-learned features were extracted from a fine-tuned VGG
model and fed into an SVM model. Hosseini et al. [32] showed that feeding hand-crafted
features to CNN can improve their performance. The SVM performances with hand-crafted
features and CNNs with deep-learned features are explored in [21,37,38,81]; CNNs with
deep-learned features achieved the best results.

Studies in the field of gender recognition have only focused on comparing the two
feature extraction paradigms with one model [32], a single paradigm with multiple mod-
els [33,34], or limited feature extraction methods and models [21,37,38,81]. Because of
the variations in the experimental setups, the results from different studies cannot be
compared. Therefore, it is not clear yet how the different feature extraction paradigms
(i.e., hand-crafted, deep-learned, and fused features) would perform when combined with
different models (including CNN and SVM); this concern is addressed in this research.
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Table 1. Related works with their reported results.

Ref. Feature Descriptor Classifier Dataset Result (Accuracy)

[21]

Image pixels Support vector machine (SVM)
FERET 78.65%

WWW 76.71%

Image pixels Neural network (NN)
FERET 86.98%

WWW 66.94%

Local binary patterns (LBP) SVM
FERET 81.40%

WWW 76.01%

[30]

Deep neural network (DNN) DNN
LFW 92.60%

Gallagher 84.28%

Deep convolutional neural network (DCNN) DCNN
LFW 94.09%

Gallagher 86.04%

Local-DNN Local-DNN
LFW 96.25%

Gallagher 90.58%

[31]

Histogram of oriented gradients (HOG)

SVM GROUPS

88.23%

Principal component analysis (PCA) 77.91%

LBP 86.74%

Local oriented statistics information booster (LOSIB) 86.65%

Local salient patterns (LSP) 85.58%

HOG + LBP + LOSIB 94.28%

CNN + HOG + LBP + LOSIB 97.23%

[32]

Gabor response CNN
Adience 89.20%

Webface 91.00%

Fused Gabor response CNN
Adience 90.10%

Webface 92.10%

[33]
Convolutional neural network (CNN) CNN Adience 87.20%

CNN SVM Adience 81.40%

[34]
CNN SVM Adience 92.00%

CNN CNN Adience 91.90%

[37]

LBP SVM FaceScrub 75.32%

HOG SVM FaceScrub 80.58%

CNN CNN FaceScrub 94.76%

[38]

CNN CNN
Adience 96.10%

FERET 97.90%

PCA SVM
Adience 77.40%

FERET 90.20%

Image pixels SVM
Adience 77.30%

FERET 87.10%

HOG SVM
Adience 75.80%

FERET 85.60%

Double tree complex wavelet transform (DTCWT) SVM
Adience 68.50%

FERET 90.70%

[41] CNN CNN Adience 84.00%

[81] CNN CNN
LFW 98.90%

GROUPS 96.10%
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3. Methodology

We adopted an experimental methodology to compare the performances of two
classification methods and seven feature extraction methods in the domain of gender
recognition with respect to three performance measures. In addition, we performed a
statistical analysis of the obtained results using T-tests to assess the statistical significance
of the differences in performance.

3.1. Features Extraction

We applied seven features extraction methods, which can be divided into three main
categories: hand-crafted features, deep-learned features, and fused features.

3.1.1. Hand-Crafted Features

Hand-crafted features can be categorized into global features, pixel-based features,
and appearance-based features. A feature extraction method was selected from each
category based on the previous usage by the community in the gender recognition domain.
All the methods are well-known and widely used in many domains. We briefly explain
each method below.

Local Binary Pattern (LBP): This is a simple yet effective pixel-based texture descrip-
tor that was originally proposed by Ojala et al. [51] LBP is one of the most commonly
used hand-crafted feature extraction methods in gender recognition [31,34,69,71,82–84].
The original descriptor assigns a binary digit for each pixel in a 3 × 3 neighborhood by
comparing their pixel intensity values with the central pixel, which acts as a threshold.
One digit is assigned to the pixel if its value is greater than or equal to the central pixel;
otherwise, the pixel value is zero. The binary value for the central pixel is then computed by
concatenating the eight binary digits of the neighboring pixels in a clockwise direction. LBP
was later improved by using flexible neighborhood sizes [85]. The descriptor has two main
parameters, which are the parameters of the circular neighborhood (P, R). This parameter
determines the neighborhood size, where P is the number of sampling points in a circle of
radius R. In our experiments, we used P = 24 and R = 3. The resulting LBP features are of
size 26.

Histogram of Oriented Gradient (HOG): This is an appearance-based descriptor that
extracts the gradients and orientations of edges in an image to describe the structure
or shape of the object. It was promoted by Dalal and Triggs in 2005 [50] and has been
applied successfully for face gender recognition [71]. The HOG features are extracted
as follows. First, we compute the gradient of each pixel in both the x and y directions.
Second, using the gradients, we calculate the magnitude and direction of each pixel. Third,
we divide the image into small cells, and we compute the histogram of the gradients for
each cell. Next, multiple cells are combined to form a block, and normalization is applied.
Lastly, the normalized histograms of the blocks are combined to form the HOG features.
Multiple parameters can be tuned to improve the accuracy of this descriptor including
the cell size, the overlap between cells, block normalization, and types of blocks (either
rectangular R-HOG blocks or circular C-HOG blocks). The following values were used in
our experiments with R-HOG blocks: cell size = (8, 8), block size = (16, 16), and number of
orientation pins = 9. The resulting features are of size 1764.

Principal Component Analysis (PCA): This is a global feature extraction method
that uses linear transformation to map the features space into lower dimensions while
maximizing their variance. PCA can be applied to images’ raw pixel values or to other
hand-crafted features, resulting in second-order uncorrelated features. To extract the PCA
features, the dataset must be standardized. Then, we identify the relationships between
the features by computing a covariance matrix for the dataset. Next, we perform eigen
decomposition to obtain the eigenvalues and eigenvectors of the matrix. The principle
components of the dataset are the eigenvectors with the greatest eigenvalues. The user
may decide to keep all or only a subset of the principle components. Lastly, the selected
principle components are transposed and multiplied to the transpose of the original dataset,
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which yields the PCA features. In this work, PCA has been applied on the images’ raw
pixel values, where the first two components were used.

3.1.2. Deep-Learned Features

We applied deep transfer learning by using a CNN as a fixed feature extractor (see the
upper part of Figure 1). Similar to the methods used in [34,75,86], we used a pre-trained
VGG-16 on ImageNet [87] and removed the last fully connected layer. We treated the rest
of ConvNet as a fixed feature extractor for our datasets. The input layer accepted images
of the size 224 × 224 and had three channels: red, green, and blue. The input images
went through a series of hidden convolution layers, which used the rectified linear unit
activation function. Some layers were followed by a max-pool layer, which was performed
over non-overlapping max-pool windows of the size 2 × 2 with the stride equal to two.
The dimension of the deep-learned features was 7 × 7 × 512.
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3.1.3. Fused Features

The fusion of deep-learned and hand-crafted features was aimed to provide a holis-
tic description of the images. As mentioned previously, several studies have reported
that fusing specific hand-crafted features with images can improve the performance of
CNNs [30,32]. For this purpose, the extracted deep-learned features were concatenated
with the hand-crafted features, namely LBP, HOG, and PCA, yielding fusion of HOG and
deep-learned, fusion of LBP and deep-learned, and a fusion of PCA and deep-learned
features. The fused features are then fed to the classification model, as shown in Figure 1.

3.2. Dataset

There are mainly two types of benchmark datasets that have been used in literature.
The first type is the constrained dataset, in which images were taken under controlled
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conditions. The second type was unconstrained datasets, where images are taken under
uncontrolled conditions. In this study, we used two challenging and commonly used
unconstrained benchmark datasets, which are briefly described below.

3.2.1. Labeled Faces in the Wild

We used LFW deep funneled images dataset [36]. LFW consists of over 13,000 face
images of real people from both genders collected from the web. The face images are of
varying conditions of image quality, facial expressions, head poses, illuminations, and oc-
clusions. The samples are shown in Figure 2. We used the deep funneled version of the
dataset because it is the best version available in terms of achieved accuracy. In this version,
the face images were aligned using deep learning [36]. Similar to [20] and [39], we used a
subset of the dataset. The original dataset was unbalanced; therefore, we performed under-
sampling of the majority class to create a balanced dataset having a size of 6000 images.
Further, following [86], we performed preprocessing to resize all the images to 224 × 224
to be processed by the VGG-16 model. The dataset was divided into balanced five folds to
perform cross validation.
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3.2.2. Adience

This dataset is one of the most challenging available datasets because it includes
more images and subjects than other available datasets, such as Gallagher and PubFig [17].
It contains more than 26,000 images of over 2000 people uploaded to the Flicker.com public
albums. According to the authors, the faces in the images were first detected using a
Viola and Jones face detector [88], and the facial feature points were then identified by a
modified version of the study in [89]. In this research, we used the whole dataset of the
aligned and cropped face image version, which was already divided into five folds for
cross validation [17].

3.3. Classification Methods
3.3.1. SVM

SVM is a widely used learning model, which is applied for classification and regression.
The basic idea of SVM is to separate the data by finding a hyperplane that maximizes the
margin between the two classes of data. The margin represents the distance between the
data points from each class that lies closest to the hyperplane, known as support vectors.
SVM uses a kernel function to map non-linearly separable data into a higher dimensional
feature space, where it becomes linearly separable. SVM performance can be optimized by
tuning the parameters kernel, C, and gamma. The kernel variations used include linear,
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RBF, and polynomial kernel. The parameter C is used for regularization; if C is set to a
large value, a small margin will be used for optimization and vice versa. Gamma is set
when a Gaussian RBF kernel is used. Features are fed directly to SVM, but in case of the
deep-learned features, they are first flattened from 7 × 7 × 512 to a one-dimension vector
of size 25,088. In this work, we used SVM with an RBF kernel. The values of the parameters
are C = 10 and gamma = 0.001.

3.3.2. CNN

As explained previously, the deep-learned features were extracted using a pre-trained
VGG-16 model. The last maximum pooling layer in the model was connected to a
global average pooling to convert the image features from a 7 × 7 × 512 vector to a
1 × 1 × 512 vector. Then, we trained three dense layers for our dataset with two dropout
layers with 0.5 probability to avoid overfitting. The Softmax function was used on the
last layer to convert the layer output to a vector that represented the probability distribu-
tion of a list of possible outcomes for two classes. In our experiments, CNN was trained
with 2000 epochs, 128 batch sizes, an Adam optimizer, and the binary cross-entropy loss
function.

3.4. Performance Evaluation

Unlike most of the existing efforts in literature, which adopt the classification rate as
the only performance measure, we recognize the importance of looking at the performance
of a classifier from different angles [90]. Therefore, we evaluate the performance of the
classification models with respect to three important metrics, namely, accuracy, F-score, and
AUC. Therefore, investigating the performance with respect to different metrics can help
the community improve the performance of classifiers in this domain. Further, the k-fold
cross-validated paired t-test is applied to assess the statistical significance between two
models A and B according to Equation (1) below.

t =
p
√

k√
∑k

i=1(pi− p)
2

k−1

(1)

where k is the number of folds, pi is the difference between the model performances in
the ith iteration pi = pi

A − pi
B and p computes the average difference between the model

performances p = 1
k ∑k

i=1 pi.

4. Results and Discussion

The experimental results are shown in Tables 2–4 for both Adience and LFW datasets.
The tables show the performance of CNN and SVM models with different types of features.
We trained SVM with seven types of features, namely, HOG, LBP, PCA, deep-learned,
fusion of HOG and deep-learned, fusion of LBP and deep-learned, and fusion of PCA
and deep-learned features. Moreover, we trained CNN with four features, namely, deep-
learned, fusion of HOG and deep-learned, fusion of LBP and deep-learned, and fusion of
PCA and deep-learned features. The parameters of the methods were instantiated based
on the empirical experiments and by following the recommendations from the literature.
All the reported results are the average of five-fold cross validation. T-tests were used to
analyze the relationship between the performances of different combinations of features
and classifiers.

Table 2 is quite revealing in several ways. First, we can observe that, on average, SVM
performs comparably with HOG and LBP features, whereas it has slightly less accuracy
using the PCA features. Yet, when deep-learned features are used, SVM performance with
respect to the accuracy increases by 12.95% as compared with the best performance with
hand-crafted features. However, what is interesting in our result is that the best SVM
performance is achieved when fused features are used because the classifier achieves at
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least 22.40% and 9.45% increase in accuracy as compared with hand-crafted and deep-
learned features, respectively. Our SVM results with deep-learned features outperform
those reported in [33] when SVM with dropout and oversampling is trained on the Adience
dataset.

Table 2. Performance evaluation with respect to accuracy on the Adience and LFW datasets.

Features Classifiers
Datasets

Average over All Datasets
Adience LFW

Hand-Crafted

HOG SVM 65.5% 64.4% 64.95%

LBP SVM 62.5% 67.3% 64.90%

PCA SVM 60.9% 65% 62.95%

Deep-Learned
CNN features SVM 83.3% 72.5% 77.90%

CNN features CNN 89.2% 84% 86.60%

Fusion

HOG-DL
SVM 84.1% 90.6% 87.35%

CNN 81.7% 80.2% 80.95%

LBP-DL
SVM 84.9% 91.3% 88.10%

CNN 71.4% 89.7% 80.55%

PCA-DL
SVM 84.8% 91.1% 87.95%

CNN 54.3% 57.2% 55.75%

Table 3. Performance evaluation with respect to f-score on the Adience and LFW datasets.

Features Classifiers
Datasets

Average over All Datasets
Adience LFW

Hand-Crafted

HOG SVM 66.5% 66.4% 66.45%

LBP SVM 65.0% 67.1% 66.05%

PCA SVM 65.7% 64.5% 65.10%

Deep-Learned
CNN features SVM 82.3% 62.6% 72.45%

CNN features CNN 88.7% 81.4% 85.05%

Fusion

HOG-DL
SVM 85% 90.7% 87.85%

CNN 81.7% 69.6% 75.65%

LBP-DL
SVM 84.8% 91.3% 88.05%

CNN 76.2% 89.5% 82.85%

PCA-DL
SVM 85.7% 91.1% 88.40%

CNN 65.5% 62.2% 63.85%

Next, we considered the CNN model. We observed that the CNN model had the best
performance with deep-learned features. Table 2 shows that the model accuracy is 86.60%
with deep-learned features; however, this accuracy drops by at least 5.65% when fused
features are used. These results contradict earlier findings by [32], which showed that
feeding hand-crafted features to CNN can improve their performance. This difference can
be explained by the fact that only Gabor filters were used in [32] as hand-crafted features.
Furthermore, the CNN accuracy achieved in this research is higher than that reported
in [41], where a CNN model trained on the Adience dataset achieved 84% accuracy.

On comparing the SVM and CNN performances with different types of features,
we can see that the CNN model with deep-learned features outperforms the best SVM
result with fused features on the Adience dataset. However, opposite results were obtained
on the LFW dataset. Our T-test shows that the result with the Adience dataset (p = 0.0002) is
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significant whereas the result with LFW (p = 0.093) is insignificant at p < 0.05. These results
suggest that CNN with deep-learned features is superior to SVM using any type of feature.
These results further support the observations from earlier studies [33].

Table 4. Performance evaluation with respect to AUC on the Adience and LFW datasets.

Features Classifiers
Datasets

Average over All Datasets
Adience LFW

Hand-Crafted

HOG SVM 65.6% 64.4% 65.00%

LBP SVM 62.3% 67.3% 64.80%

PCA SVM 60.1% 65.3% 62.70%

Deep-Learned
CNN features SVM 83.2% 72.6% 77.90%

CNN features CNN 89.1% 84% 86.55%

Fusion

HOG-DL
SVM 84.1% 90.6% 87.35%

CNN 82% 80.2% 81.10%

LBP-DL
SVM 84.7% 91.3% 88.00%

CNN 69.3% 89.5% 79.40%

PCA-DL
SVM 84.6% 91.1% 87.85%

CNN 51.4% 57.2% 54.30%

Similar trends can be observed in Tables 3 and 4, where the performances are presented
with respect to the F-score and AUC, respectively. In both the tables, SVM exhibits the
worst average performance with hand-crafted features. The model’s average performance
improves when deep-learned features are used, whereas further improvement is achieved
with fused features. For CNNs, the latter features yield the worst performance as compared
with the performance with deep-learned features. In addition, similar to the observations
in Table 2, the CNN model performs significantly better at p < 0.05 than the best-performing
SVM with fused features with p = 0.002 on the Adience dataset; however, the difference
in performances between the SVM with the fused features and CNN with deep-learned
features on the LFW dataset is insignificant (p = 0.123). Similar observations apply on the
AUC with p = 0.00003 on the Adience dataset and p = 0.098 on the LFW dataset.

5. Conclusions

Face gender recognition plays a key role in robot–human interactions since it allows
robots to adapt their behavior based on the gender of the interacting user, which increases
user acceptance and satisfaction. The main goal of the current study was to comprehen-
sively assess the performance of the most successful machine learning model in gender
recognition, namely CNN and SVM, when combined with seven common feature extraction
methods that included hand-crafted, deep-learned, and fused features. Previous studies
on the subject have been mostly restricted to making limited comparisons of hand-crafted
and deep-learned features with one model [27,46] or deep-learned features with multi-
ple models [16,21]. Furthermore, contradictory findings have been reported about the
best-performing combination in the latter category. For this purpose, we performed a
comparative analysis of the CNN and SVM models when trained using three hand-crafted
features (HOG, LBP, and PCA), deep-learned features (using transfer learning to extract
features from a pre-trained VGG-16 model), and a fusion of both features; this analysis
yielded seven sets of features. We used the most challenging datasets available, namely,
Adience and LFW, and we presented the performance with respect to the accuracy, f-score,
and AUC.

The most significant findings from this study are that (1) SVM performs the best when
trained on a fusion of hand-crafted and deep-learned features, followed by deep-learned
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features. The worst performance is exhibited when trained on hand-crafted features.
(2) CNN performance decreases when the features are fused with hand-crafted features,
including HOG, LBP, and PCA. (3) The CNN model outperforms SVM with all three feature
extraction paradigms. The results of this study prove that although deep-learned features
can enhance the performance of SVM, CNN still exhibits superior performance in the
gender recognition domain. The reported results are possibly influenced by the fact that the
Adience dataset is much larger in size than LFW (26,000 vs. 6000) but is more challenging
dataset since, unlike LFW, it contains images of individuals from eight age groups [17].
A natural progression of this research would be to analyze the performance using other
hand-crafted features, such as SIFT and Gabor filters and with deep-learned features
extracted by CNNs of varying architectures and with fine tuning. Another possible area for
future research would in investigating whether the findings of this research would hold
with cross-data training, where a model is trained on a dataset and tested on a different
dataset.
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