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Abstract: The FEL integral equation is reviewed here and is studied under different contexts, accounting
for diverse physical regimes. We include higher order harmonics and saturation effects, and explain
the origin of scaling relations, widely exploited to describe either FEL dynamics or nonnlinear
harmonic generation.
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1. Introduction

This article describes an important mechanism associated with the physics of the
free electron laser (FEL) regarding the nonlinear harmonic generation. The topic will be
discussed by entering deeply into the mathematical aspects of what is currently referred as
the high gain FEL equation.

A FEL is a laser device employing a beam of relativistic electrons injected into an
undulator magnet, where it undergoes transverse oscillations and emits bremsstrahlung
radiation, inversely proportional to the electrons energy square [1]. The FEL devices can be
operated in the oscillator configuration by storing the emitted radiation in an optical cavity
(whenever appropriate mirrors to confine the “light“ are available). The radiation moves
back and forth inside the resonator and interacts, at each entrance inside the undulator,
with a freshly injected e-beam, thereby becoming amplified. The intracavity intensity grows,
round trip after round trip; it is amplified by the process of stimulated bremsstrahlung
emission and exhibits the same pattern of conventional laser oscillators; it undergoes
exponential growth, and eventually saturation occurs, when the gain is reduced by the
nonlinear contributions to the level of the cavity losses.

In the region of the spectrum where efficient mirrors are not available, cavity-less
operation is an obliged step. In this regime, the gain of the system should be sufficiently
large to bring the device to saturation in one undulator passage. These FEL devices,
nowadays devoted to the production of intense X-ray beams, require long undulators
(hundreds of meters) and high energy (up to tens of GeV)/high brightness electron beams
(namely, beams with high intensity peak current, low energy, angular and transverse
spatial dispersions). The “single pass“ FEL devices may be operated in the amplifier
configuration, when coherent input seeds are available; if not, the system works in the
so-called self-amplified spontaneous emission (SASE) regime. The electrons emit ordinary
synchrotron radiation at the entrance of the undulator, which reinteracts with the electrons,
becomes amplified and eventually reaches saturation.

The paradigmatic steps leading the FEL to the generation of coherent laser-like radiation
are the beam energy modulation, the bunching, the exponential growth and the saturation.

These phases are common to all other free electron devices (such as gyrotrons and
coherent auto-resonance masers), and most of the relevant theoretical and mathematical
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descriptions can be framed within the same context [2]. Many FELs are presently operating
and have operated in the past [3]. They are covering the electromagnetic spectrum from
THz region to X-rays. The last generation of FEL sources (sometimes referred as fourth
generation synchrotron radiation sources) has opened up unprecedent scenarios in different
research fields because of the radiation characteristics, in terms of brightness (ten orders of
magnitude above the ordinary sources) and the shortness of the pulses [4–7].

The growth of the FEL field is ruled, in the small signal regime (namely, the dynamical
conditions, when the field intensity is not large enough to induce nonlinear effects), by an
equation known as the FEL integral equation; it is derived from the linearization of the
pendulum equation, reported below [8–16].

d2

d τ2 ζ = | a | cos (ζ + φ) ,
d

dτ
a = −j〈e−iζ〉,

τ =
z
L

, j = 2πg0, a = | a | eiφ, ν =
d

dτ
ζ

(1)

where z is the longitudinal coordinate; L is the undulator length; g0 is the small signal gain
coefficient; and a and j are Colson’s dimensionless amplitude and current respectively,
ζ, ν the FEL longitudinal phase space variables and the brackets, denote the average of
the phase space distribution. The use of dimensionless variables has several advantages.
They constitute a set of comprehensive quantities such as a and g0, allowing one to merge
all the significant FEL parameters into a single variable, providing quantities of interest
(such as the gain and saturation intensity; see below) crucial in the descriptions and
designs of FEL devices. The relevant small signal limit is achieved through the following
approximations [17,18].

(a) From the first of Equation (1), we obtain the lowest order (in the field strength) expansion
of ζ, namely

ζ ' ζ0 + ν0τ + δζ, δζ =
∫ τ

0
(τ − τ′)Re

(
a(τ′)ei(ζ0+ν0τ′)

)
dτ′ (2)

where ν0 = 2πN ω0−ω
ω0

is the detuning parameter.

(b) Inserting δζ in the second of Equation (1) and averaging on the electron-field phase
ζ0, we get

d
dτ

a =− 2πg0b1e−iν0τ + iπg0

∫ τ

0
(τ − τ′)a(τ′)e−iν0(τ−τ′)dτ′+

+ iπg0b2

∫ τ

0
(τ − τ′)a∗(τ′)e−iν0(τ+τ′)dτ′

(3)

where the averages have been taken by considering the e-beam mono-energetic and
without spatial and angular dispersion, thereby getting

〈κ(ζ0)〉ζ0 =
1

2π

∫ 2π

0
f (ζ0)κ(ζ0)dζ0,

f (ζ0) =
∞

∑
n=−∞

bneinζ0 , bn = 〈e−inζ0〉ζ0 .
(4)

The physical meaning of Equation (3) is transparent; the three terms on the right-hand
side account for three different regimes:

(i) Absence of an initial bunching ( f (ζ0) constant); in this case Equation (3) reduces to

d
dτ

a = iπg0

∫ τ

0
(τ − τ′)a(τ′)e−iν0(τ−τ′)dτ′. (5)
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The underlying physics is that energy modulation and consequent bunching are due
to the input coherent seed a0.

(ii) Nonconstant f (ζ0) and emergence of non zero bn coefficients; the field may grow in a
seedless mode, induced by the initial bunching coefficient, as illustrated below.

In order to understand the role of the bunching coefficients during the early stages of
the FEL interaction, we must treat Equation (5) in terms of a naïve expansion in the small
signal gain coefficient, limiting ourselves to the second-order expansion in the small and
neglecting b2; then we find

a(τ) ' a0 + g0a1 + g2
0a2, a0(τ) = 0,

d
dτ

a1 = −2πb1e−iν0τ ,
d

dτ
a2 = iπ

∫ τ

0
(τ − τ′)a1(τ

′)e−iν0(τ−τ′)dτ′
(6)

and the relevant solution is

a(τ)'−2πb1g0

(
sin
( ν0τ

2
)

ν0
2

e−iν0
τ
2− 1

2
πg0

(iν2
0 τ2+4ν0τ−6i)e−iν0τ + 6i + 2ν0τ

ν4
0

)
. (7)

According to the previous equation, the field grows initially because of being triggered
by the bunching coefficient. It provides a kind of coherent spontaneous emission, which
in the second phase is responsible for the onset of the exponential growth regime (see
Figure 1), where we have reported the combined effects of bunching and initial seed.

Figure 1. Square modulus of the dimensionless amplitude vs. the detuning parameter for g0 = 0.5
and different values of τ: (0.5, 0.6, 0.7, 0.8, 0.9, 1). The intensity grows with incresing dimension-
less time.

The previous results have been obtained using a perturbative expansion, which is
not strictly necessary, since the FEL integral equation can be reduced to the ordinary
differential equation reported below.[

D̂3
τ + 2iν0D̂2

τ − ν2
0 D̂τ

]
a(τ) = iπg0

(
a(τ) + b2 a∗(τ)e−2iν0τ

)
, D̂τ =

d
dτ

, (8)

obtained after noting that integrals of type

iπg0

∫ τ

0
(τ − τ′)a(τ′)e−iν0(τ−τ′)dτ′ = iπg0e−iν0τ

∫ τ

0

(∫ τ′

0
a(τ“)eiν0τ′′ dτ′′

)
dτ′ (9)

appearing in Equation (6) are double integrals which can be eliminated by keeping two
successive derivatives [17,18]. It is evident that, for negligible b2 (we have checked that
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the second-order bunching coefficient does not produce any appreciable contribution and
can be safely neglected), Equation (8) reduces to a naïve third-order ordinary differential
equation, leading to the exponential growth also referred as FEL instability, the charac-
teristic of which occurs in any Free Electron device [19–25]. (This type of instability is
common to any free electron device (including gyrotrons and cyclotron auto-resonance
masers (CARM)). This was widely established before the studies developed in the pre-
viously quoted references. Some interesting papers within this respect are listed in the
bibliography.)

It is worth noting that, even though not explicitly contributing to Equation (8), the
bunching coefficient b1 appears in the initial conditions provided by

a(0) = a0, D̂τa |τ=0= −2 π g0 b1, D̂2
τa |τ=0= 2 π i ν0 g0 b1. (10)

We have so far fixed the mathematical formalism to treat the problems associated with
the effect of the bunching on the high gain (and not only) FEL evolution. The paper outline
is reported below.

In Section 2 we discuss solution methods to deal with either the integral and third-
order differential equation.

In Section 3 we deal with the extension of the integral equation to the harmonic
generation and include effects associated with nonlinear regime.

Section 4 is finally devoted to application of the formalism for the design of FEL,
exploiting segmented undulator devices.

2. Algorithmic and Analytical Solutions of the FEL Integral Equation

The equations we have dealt with in the previous section describe the 1D small signal
FEL dynamics, with the assumption of an ideal, sufficiently long beam such that short
pulse effects can be neglected. The last assumption allows one to ignore the possible
detrimental effects to the slippage, which will be considered later in this paper.

Within the present context, they are sufficiently general to develop useful considera-
tions on the role of a pre-bunched e-beam on the FEL dynamics. We have also noted that
Equation (3) can be reduced to a straightforward cubic equation, that analytical solutions
are possible and that interesting information is obtained by the use of a perturbative expan-
sion. The analysis has been so far limited (see Equation (7)) to a second-order expansion in
terms of the small signal gain coefficient. The perturbative solution of Equation (5) can be
obtained by including the higher order terms in g0, which yields the following recursion:

d
dτ

an = iπ
∫ τ

0
(τ − τ′)an−1(τ

′)e−iν0(τ−τ′)dτ′, an(0) = δn,0. (11)

We will go back to perturbative treatments in the forthcoming sections of this arti-
cle; here we consider the use of the other means based allowing either algorithmic and
analytical solutions.

Regarding the first, we consider a method outlined in a paper by F. Ciocci et al. [26];
the procedure will be referred to as the Ciocci algorithm (CA). The technique is used via
the following steps:

(i) The solution of the cubic equation can be written as

a(τ) = e−iν0τ
3

∑
j=1

κje
−iδνjτ (12)

where δνj are the roots of the third-degree algebraic equation

δν2(ν0 + δν) = πg0; (13)
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(ii) The amplitudes κj are fixed by the initial conditions, as shown below.

a(0) = α0 =
3

∑
j=1

κj,

d
dτ

a
∣∣∣∣
τ=0

= −iν0α0 − i
3

∑
j=1

κjδνj = −2πg0b1 →

→
3

∑
j=1

κjδνj = α1 = −ν0α0 − 2iπg0b1,

d2

dτ2 a
∣∣∣∣
τ=0

= −ν2
0 α0 − 2iν0

3

∑
j=1

κjδνj −
3

∑
j=1

κj
(
δνj
)2 →

→
3

∑
j=1

κj
(
δνj
)2

= α2 = ν2
0 α0 + 2iπν0g0b1.

(14)

(iii) Equation (12) is cast in the more convenient form

a(τ) = e−iν0τ
∞

∑
m=0

(−i)m

m!
αmτm, αm =

3

∑
j=1

κj
(
δνj
)m. (15)

(iv) The coefficient αm is obtained from Equation (13). It can be written as

ν0
(
δvj
)2

+
(
δνj
)3

= πg0 (16)

which after multiplying by κj and summing on the index j, yields the recursion

α3 = πg0α0 − ν0α2, (17)

and which for the higher order terms (m > 2) is generalized as

αm = πg0αm−3 − ν0αm−1, (18)

The solution of the cubic equation via CA is easily implemented numerically; it is
extremely fast and yields the results contained in Figure 2 reporting the cases of seeded
operation and bunching.
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(a) α0 = 0, b1 = 10−3, g0 = 50.
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(b) α0 = 1, b1 = 0, g0 = 50.

Figure 2. Intensity vs. detuning ν0 and dimensionless time τ.
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The intensity evolution vs. z for a seedless evolution (α(0) = 0, b1 6= 0) and for the
amplifier configuration is reported in Figure 2a,b. The ν0, τ surfaces yield an idea of the
small signal intensity evolution, and further comments will be provided below.

Analytic solutions can be obtained too; they require some algebra, and in particular the
use of Cardano’s method to get the solution of Equation (13). Putting everything together
we find:

(a) The Fang–Torre formula (this Formula appeared in an unpublished manuscript by H.
Fang, and was later derived with minor refinements by A. Torre, and reported in [27])
valid for a0 6= 0, b1 = 0:

a(τ, ν0)=
a0

3(ν0+p+q)
e−

2i
3 ν0τ

{
(−ν0+p+q)e−

i
3 (p+q)τ+2(2ν0 + p + q)e

i
6 (p+q)τ ·

·
[

cosh

(√
3

6
(p− q)τ

)
+ i
√

3ν0

p− q
sinh

(√
3

6
(p− q)τ

)]}
,

p =

[
1
2
(r +
√

d)
] 1

3
, q =

[
1
2
(r−
√

d)
] 1

3
,

r = 27πg0 − 2ν3
0 , d = 27πg0(27πg0 − 4ν3

0).

(19)

The square modulus of a(τ, ν0) yields the intensity growth as a function of the dimen-
sionless time and of the detuning parameter. Regarding Equation (19) we find

| a(τ,ν0) |2=
| a0 |2

9(ν0+s+)2

4(2ν0+s+)2

cosh

(√
3

6
s−τ

)2

+
3ν2

0
s2
−

sinh

(√
3

6
s−τ

)2
+

+(−ν0+s+)2+4(−ν0 + s+)(2ν0 + s+)

[
cos
( s+

2
τ
)

cosh

(√
3

6
s−τ

)
+

−
√

3ν0

s−
sin
( s+

2
τ
)

sinh

(√
3

6
s−τ

)]}
,

s± = p± q.

(20)

We have very loosely described in introductory remarks the SASE regime or seedless
operation. In this case the field grows from a kind of prebunching characterizng the
beam itself [28,29].

(b) The field growing from a bunching coefficient associated with the electron distribution
and the solution of the evolution problem reads:

a(τ, ν0) =
2πg0b1

∆
e−i 2

3 ν0τ
{

µe−
i
3 (p+q)τ+

−
(

χ− cosh

[√
3

6
(p− q)τ

]
+ χ+ sinh

[√
3

6
(p− q)τ

])
e

i
6 (p+q)τ

}
,

∆ =

√
3

9
(p3 − q3), µ = i

√
3

9
[ν0 − (p + q)](p− q),

χ =
1
6

[
ν0 +

1
2
(p + q)− i

√
3

2
(p− q)

][
p + q + i

√
3

3
(p− q)

]
, χ± = χ± χ∗ .

(21)

Before proceeding further, we write Equation (21) in a form more appropriate for high
gain/SASE FEL operation. To that end, we remind the reader that the small signal gain
coefficient and Pierce parameter ρ (see references [8–16]) are linked by the identity

ρ =
3
√

πg0

4πN
, (22)
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where N is the number of undulator periods. The intensity field growth is ruled by the
so-called gain length

Lg =
λu

4π
√

3ρ
, (23)

which is the pivotal quantity controlling the small signal high gain dynamics; its inverse
defines the growth per unit length. With these remarks in mind, we note that:

(i) Quantities such as ν0 and τ should be replaced by

ν0 → ν̃0 =
ν0

4πN
√

3ρ
=

1
2
√

3ρ

ω0 −ω

ω0
, τ → z̃ =

z
Lg

(24)

and it is worth noting that the number of undulator periods does not appear anymore
in the definition of the new dimensionless quantities (see below for further comments);

(ii) Quantities involving the product of p, q and τ, written in the new variables, read

pτ =
√

3

 3

√√√√
1 +

√
1− 4ν̃3

0

1− 2ν̃3
0

z̃, qτ =
√

3

 3

√√√√
1−

√
1− 4ν̃3

0

1− 2ν̃3
0

z̃. (25)

It is finally important to stress that the Colson’s dimensionless amplitude in terms of
dimensional quantities reads

a = 2
√

2π

√
I
Is

(26)

where I is the field intensity (power/surface) and Is is the saturation intensity [30–33],
a quantity which, in the theory of lasers, is exploited as a reference quantity to fix the
onset of saturation. Even though its use is more appropriate for FEL operating in the
oscillatory configuration, it can be exploited within the context of cavity-less operation too.
Its dependence on the FEL parameters is specified by (practical units)

Is

[
MW
cm2

]
= 6.9312 · 102

( γ

N

)4
(λu[cm]K fb(ξ))

−2, ξ =
1
4

 K2(
1 + K2

2

)
. (27)

A more appropriate expression for the high gain/SASE regime can be obtained by
expressing the second of Equation (1) in the new dimensionless coordinates, thereby finding

d
dz̃

ã = − 2√
3
〈e−iζ〉,

| ã |= 2
√

2π

√
I
Ĩs

, Ĩs

[
MW
cm2

]
= 6.9312 · 102 (4πγρ)4

[λu[cm]K fb(ξ)]
2 .

(28)

For actual values of the FEL parameters entering in the definition of Ĩs, we obtain for
it reference numbers not dissimilar from the FEL saturated power, as discussed later in
this paper.

The use of the previous variables allows one to cast the intensity evolution in the
dimensional form (valid for ν0 = 0) [17,18]

A(z̃) =
1
9

[
3 + 2 cosh

(
z

Lg

)
+ 4 cos

(√
3

2
z

Lg

)
cosh

(
z

2Lg

)]
,

I(z̃) = I0 A(z̃), I0 =
Ĩs

8π2 | a0 |2 .

(29)
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which has been largely exploited in the past [17,18] to describe the small signal FEL
evolution; early derivations of similar equations trace back to the early eighties of the 20th
century [34].

In Figure 3 we have plotted Equation (29) and the mere exponential behavior, which
allows the conclusion that the region before the onset of the exponential growth, usually
called lethargic region, lasts about two gain lengths, namely,

ZL ' 2.1 Lg. (30)

Figure 3. Comparison between Equation (29) and the pure exponential behavior for Lg = 0.4.

In any FEL device the small signal gain is a crucial parameter; it is naively defined as
the relative intensity variation:

G =
| ã(z̃, ν̃0) |2 − | ã0 |2

| ã0 |2
. (31)

In the case of low gain, its maximum value is proportional to the small signal gain
coefficient through the well known identity [17,18]

G∗ = 0.85 g0. (32)

Such a quantity measures the amplification of the input seed at the end of the undula-
tor. We can, however, extend the concept by considering the same gain measurement at
different points inside the undulator, as shown in Figure 4, after a number of periods

Nz =
z

λu
. (33)

We can therefore write G∗ in terms of ρ, z as (see Equation (32))

G∗ =
0.85

π

(
z̃√
3

)3
. (34)

The low gain regime relies on the assumption that the laser amplitude remains constant
during the transit inside the undulator. The approximation breaks when higher order terms
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in g0 are to be taken into account to specify the maximum gain at a given point in z. These
corrections, derived in [35], can be written as

G∗ =
| ã(z̃, ν̃∗0 ) |2 − | ã0 |2

| ã0 |2
'

' 0.85
π

(
z̃√
3

)3
+

0.19
π2

(
z̃√
3

)6
+

4.23 · 10−3

π3

(
z̃√
3

)9
+ o(ρ12)

(35)

whose meaning is better explained in Figure 4, where we have also reported the departure
of the gain line shape from the anti-symmetric curve, characterizing the early FEL experi-
ments [36,37].

Figure 4. Power density (a.u.) vs. z and gain function “measured“ at different points inside the undulator.
Above the last point, where the dotted curve starts, the small signal gain is not properly defined because
the small signal approximation does not strictly apply. The curves have been derived for the parameters
ρ0 = 6.8 · 10−4 and λu = 5 cm. The small signal gain coefficient goes from 5.35 · 10−3 to 5.35.

In this section we have provided a fairly general analysis describing the solution of
the FEL high gain small signal equation.

In the forthcoming section we discuss how the technique we have discussed so far
can be extended to the treatment of FEL induced higher order harmonics.

3. High Gain FEL Equations and Harmonic Generation

In this section we discuss the mechanism of harmonic generation in FEL devices,
which is a process “naturally“ associated with the evolution of the fundemental harmonic.
The importance of these further contributions in developing tools extending the capabilities
of FELs was soon recognized in the community, but the practical implementations took
some time.

The pendulum equations, including the higher order harmonics, can be written as
(differently from the index n in the perturbative terms discussed in Equation (11); in this
case n is just the order of the harmonic) [38]

d2

dτ2 ζ =
∞

∑
n=0
| an | cos(ψn), ψn = nζ + φn,

d
dτ

an = −jn〈e−inζ〉, jn = 2πg0,n

(36)
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where an =| an | eiφn is the dimensionless amplitude of the n-th order harmonics and g0,n
is the n-th harmonic small signal gain parameter to be specified later [39].

d
dτ

an = −2πg0bne−iνnτ + iπngn

∫ τ

0
(τ − τ′)an(τ

′)e−iνn(τ−τ′)dτ′,

νn = 2πN
nω0 −ω

nω0
.

(37)

It is evident that the same considerations developed for the fundamental harmonic
(n = 1), hold in the present case too, the only significant difference being that the n-the
harmonic Pierce is now specified by

ρ∗n = 3
√

n ρn, ρn = ρ

(
fb,n

fb

)2
3
, fb,n = J n−1

2
(nξ)− J n+1

2
(nξ), fb,1 = fb. (38)

The gain length determining the harmonic linear growth is

L∗g,n =
λu

4π
√

3ρ∗n
=

1
3
√

n
Lg,n. (39)

where Lg,n is defined in terms of ρn as

Lg,n =
λu

4π
√

3ρn
(40)

The role of L∗g,n in the harmonic generation is clarified below; it is just a consequence of
the assumption (summarized in Equation (36), where the electron field phase ψn is written
as nζ) that the process is dominated by the bunching induced by the fundamental harmonic.

It is worth noting that the correction term 3
√

n in the definition of the harmonic Pierce
parameter was initially suggested in references [17,18,39] as a consequence of an accurate
analysis of the numerical data from the code PROMETEO [40].

In Figure 5 we have reported the harmonic intensity growth vs. the longitudinal
coordinate; the relevant behavior is the same as for n = 1, reproduced by equations of the
type (29) with L∗g,n in place of Lg.

Figure 5. Harmonic evolution and nonlinear harmonic generation which is triggered after the dashed
line, where the bunching effects become significant.
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However, this is only a part of the story. The harmonic intensities (3, 5) follow a
growth rate characterized by two different regimes. After the lethargic region, the growth
rates is initially specified by the inverse of the harmonic gain length L∗g,n and then by an
abrupt increase of the growth ruled by nL−1

g . This behavior is the signature of a complex
mechanism underlying the harmonic generation emission.

We have so far considered the harmonic linear dynamics, in which within certain
limits (to be discussed in the final section), the evolutions of the associated intensities
are independent. It should be noted that harmonics too can be triggered by a bunching
coefficient, as implicitly contained in Equation (37). As it is well known, the bunching
grows with the intensity itself; the dynamics of each harmonic are the result of intrigued
feedback between induced bunching and higher order-bunching (namely, at higher values
of n). We crudely describe the process by noting that each harmonic, while the intensity
grows, induces further bunching, determining the onset of the sub-harmonics m of the n-th
harmonic—namely, the first harmonic indices higher order harmonics and each of them
determines a further set of harmonics. In terms of bunching coefficients, we have: The
fundamental harmonics (n = 1) contributes to the increase of the bunching of order 1 and
of other higher order bunching coefficients. The same holds for the higher order harmonics;
the third is, e.g., responsible for the bunching of its own harmonics (3, 6, 9, . . . with respect
to the fundamental).

The bunching process is not “free,“ and indeed an energy spread, associated with
gain degradation and saturation mechanisms, is produced. This phenomenology is not
considered within the present context.

The inclusion of nonlinear terms in our analysis occurs by keeping intensity dependent
terms [17,18,41] which allow the following redefinition of the FEL integral equation:

d
dτ

a = −2πg0e−iν0τ
∞

∑
m=−∞

(−i)mb1−m
Jm(| Π |)
| Π |m

(∫ τ

0
(τ − τ′)a(τ′)eiν0τ′dτ′

)m
,∫ τ

0
(τ − τ′)a(τ′)eiν0τ′dτ′ =| Π | eiψ

(41)

where

Jm(| Π |) =
∞

∑
r=0

(−1)r

r!(m + r)!

(
| Π |

2

)m+2r
. (42)

If we consider a perturbative solution of the above equation in terms of the fundamen-
tal intensity, we can write the first three terms as

d
dτ

al = −2πg0b1e−iν0τ + iπg0

∫ τ

0
(τ − τ′)al(τ

′)e−iν0(τ−τ′)dτ′,

d
dτ

anl,2 = −2πg0e−iν0τ b−1

8

(∫ τ

0
(τ − τ′)al(τ

′)eiν0τ′dτ′
)2

,

d
dτ

anl,3 = −2πg0e−iν0τ b−2

233!

(∫ τ

0
(τ − τ′)a0(τ

′)eiν0τ′dτ′
)3

(43)

which have been derived using the limit lim
|Π|→0

Jm(| Π |)
| Π |m =

1
m!2m . The subscripts l and nl

stand for linear and nonnlinear, respectively. The nl-contributions stand for the onset of
the nonnlinear harmonic generation.

Considering a linearly polarized undulator not providing coupling to even on axis
harmonic generation, we obtain from the third Equation (43)
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anl,3 = −2πg0
b−2

233!

∫ τ

0
e−iν0τ′h3(ν0, τ′)dτ′ ,

h3(ν0, τ) =

(∫ τ

0
(τ − τ′)a0(τ

′)eiν0τ′dτ′
)3

.
(44)

Keeping the fast growing root only and assuming ν0 = 0, we find a further con-
tribution to the harmonic intensity depending on the power of the fundamental and
characterized (as already anticipated) by the gain length

L(nlhg)
g =

Lg

n
(45)

where nlhg stands for nonnlinear-harmonic generation.
The conclusion of this discussion is that there are two distinct contributions to the

higher order harmonic emission. The first is a kind of lasing on harmonic; this concept
was originally introduced in [42] by Colson et al., where the possibility of exploiting this
mechanism to sustain higher order harmonics lasing in the oscillator configuration has
been discussed. The second provides the well-known nonlinear harmonic generation
mechanism; it goes beyond the linear analysis; its characterizing features and scaling
relations are further discussed in the final section of this paper.

We have commented on the importance of the harmonic generation mechanism, which
has opened the possibility of extending the relevant performances in terms of tunability
range and not only.

We want to mention an important application of the harmonic generation in FEL which
has determined a significant improvement of the relevant performances. It has already been
underscored that running the FEL in the amplifier configuration is feasible if a coherent
seed at certain wavelengths is available. This happens with FEL harmonics too, which can
be triggered using the seeds from harmonic generation in gas (see references [43,44] for an
adequate description). In these devices, the beam of laser (a Ti:sapphire laser, for example),
is focused into a xenon gas cell, where high harmonic generation occurs. The output
seed beam is then spatially and temporally overlapped to the electron beam moving in an
undulator with the period chosen to match the seed frequency. The FEL harmonics then
grow according to the mechanisms we have just outlined. The successful implementation
of this concept has allowed the possibility of extending the FEL tunability of more than
an order of magnitude (for more details, see [43] and references therein). A further idea,
concerning the use of segmented undulators, after the beam self induced prebunching, is
discussed in the forthcoming section.

4. Inhomogeneous Broadening Partial Amplitudes and High Gain FEL Equation

The high gain integral equation becomes slightly more complicated if the effect of
non ideal e-beam qualities is included. The averages in Equation (2) need to be extended
to the beam distribution (energy, spatial, angular, etc.). With these premises and limiting
ourselves to the effect of the energy spread only, we find [45]

d
dτ

a = iπg0

∫ τ

0
a(τ − τ′)τ′e−iν0τ′− 1

2 (πµετ′)2
dτ′, µε = 4Nσε (46)

obtained after taking the average of a Gaussian relative energy distribution with r.m.s. σε.
The solution of Equation (46) cannot be obtained in analytical terms; however, the

method of partial amplitude expansion pioneered by A. Segreto in references [46,47] yields
a fairly useful analytical mean allowing the solution of, e.g., Equation (46) in the form (we
use the ν̃0, z̃ variables, more appropriate for the forthcoming discussion)
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ã(z̃, ν̃0) = ã0

(
1 +

∞

∑
k=1

ik
(

z̃√
3

)3k
gk(z̃, ν̃0, µ̃ε)

)
,

gk(z̃, ν̃0, µ̃ε) =
Mkγk

Σk
exp

[
− (µ̃ε z̃)2(βk + iξk(ν̃0z̃)) + 12(iλk(ν̃0z̃) + (ν̃0z̃)2)

24Σ2
k

]
,

Mk =
1

(3k)!
, γk = (3k + 1)

√
3k + 2

2k(k + 1)
, Σk =

√
γ2

k +
1

12
(µ̃ε z̃)2,

βk = 2
4k + 1
k + 1

, λk = 2(3k + 1)
3k + 2
k + 1

, ξk = 2
(2k + 1)(k− 1)
(k + 1)(3k + 1)

.

(47)

The previous equation can be profitably used to get information of a practical nature.
The low gain expansion (k = 1) yields for the intensity growth

| ã(z̃, ν̃0) |2 ' | ã0 |2
[

1 + 2
M1

3
√

3Σ1
z̃3 · exp

(
−

β1µ̃2
ε + ν̃2

0
24Σ2

1
z̃2

)
sin

(
ν̃0
(
12λ1 + ξ1(µ̃ε z̃)2)

24Σ2
1

z̃

)]
(48)

which provides an idea of the interplay between inhomogeneous broadening and the other
mechanisms contributing to the laser evolution. In Figure 6 we have reported the analogues
of Figure 2b for different values of the inhomogeneous broadening parameter. The plot
yields quite a good description of how the intensity growth is diluted by the presence of a
non zero energy spread.

Other effects due to angular and spatial distribution of the electron beam can be
introduced too. From the conceptual point of view, they do not imply any problem, but for
the introduction of a further convolution term in Equation (46). The induced detrimental
effects are expressed through appropriate µ-parameters, analogous to those associated
with the energy spread. They are listed in [18].

It is important to stress that, from the practical point of view, the effect of non perfect
electron beam qualities produces an increase of the gain length, which can be parameterized
as [17,18]

Lg(µ̃ε) =

(
1 + 0.185

√
3

2
µ̃2

ε

)
Lg (49)

The interest in the method of partial amplitudes stems also for the fact that it can be gen-
eralized to more complicated situations, involving, e.g., the pulse propagation contributions.
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Figure 6. Intensity vs. z̃, ν̃ for inhomogeneous parameters µ̃ε = 1, g0 = 100, a0 = 1.
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In the following we make the assumption that the electron bunch is sampled into a
series of slices with a longitudinal size of the order of a coherence length [48–50]:

λc =
λ

4π
√

3ρ
. (50)

During the interaction the radiation is mismatched with respect to the electron bunch
reference by a quantity depending on the slippage length. The computation of this aspect of
the problem requires a certain amount of computation which, for the homogeneous case (no
energy spread) has been accomplished in [51] and for the present case is summarized below.

According to the aforementioned reference and to the analytical steps outlined in [46,47],
the problem is solved, in relatively easy terms, by replacing the detuning parameter with
the operator

ν̃0 → ˆ̃ν0 = ν̃0 + i
λc

Lg
∂ζ (51)

where ζ is the bunch coordinate. The replacement (51) in the partial amplitudes accounts
for the action of the FEL dynamics on the optical packet, expressed by the simple Gaussian
(to avoid any misunderstanding, we emphasize that ζ now indicates the optical bunch
coordinate and should not be confused with the pendulum coordinate in Equation (1))

a0(ζ) =
1

4
√

2πσ2
ζ

e
−
(

ζ
2σζ

)2

. (52)

The action of the partial amplitudes on the initial packet is specified by

gk(z̃, ˆ̃ν0, µ̃ε)a0(ζ) = gk(ζ, z̃, ν̃0, µ̃ε)e
(

Sk∂ζ+Dk∂2
ζ

)
a0(ζ),

Sk =
λc

2Σ2
k Lg

{[
(πµε z̃)2ξk

12
+ λk z̃

]
− iν̃0

}
, Dk =

1
2Σ2

k

(
z̃λc

Lg

)2
.

(53)

The action of the exponential operator containing the shift (first-order derivative) and
diffusive operators (second-order derivative) on the initial packet is provided by

e
(

Sk∂ζ+Dk∂2
ζ

)
a0(ζ) =

1
4
√

2π

√
σζ

σ2
ζ + Dk

exp

−1
4

(
ζ + ζk − i

ν̃0λc z̃
2ΣkLg

)2

σ2
ζ + Dk

. (54)

A result which allows a few speculations:

(a) The wave packet is shifted back by a quantity

ζk =
1

24Σk

[
(πµε)

2ξn + 12λk

]λc

Lg
. (55)

This means that the optical packet is moving back with respect to the bunch frame
propagating at velocity c, the associated group velocity is

vg,k =

(
1− 1

c
d
dt

ζk

)
c . (56)

The radiation moves slower than c, by the effect of the interaction itself. The gain dilution
due to the energy spread counteracts the velocity slow down with respect to the case of
negligible energy spread.
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The complex refraction index derived from Equation (56) can be written as

ng,k ' 1 +
1
c

d
dt

ζk . (57)

(b) The optical packed undergoes a longitudinal diffusion specified by

σk =
√

Dk =
1√
2Σk

(
z̃λc

Lg

)
(58)

which ensures that in one gain length the additional packet width is essentially a
coherence length. This effect has been studied in the theory of mode-locked FEL
operation within the context of the oscillator theory; the relevant discussion can be
found in [2].

In the forthcoming section we apply the result obtained so far to the slice evolution.

5. Slice Evolution

The concept of slice phase space is a by-product of the SASE FEL physics. It is indeed
associated with the fact that, in these devices, the combination of mechanisms such as gain,
slippage and finite coherence length, determines a local interaction, because the radiation
experiences only a portion of the beam, having the longitudinal extension of a coherence
length (see Figures 7 and 8). The interaction is therefore sensitive to the slice-brightness,
which is characterized by the relevant six dimensional phase space distribution [52–58].

The analysis associated with the transverse phase space and with the relevant electron-
beam transport properties has already been accomplished in a number of papers, which
have clarified a significant deal of the physical and practical issues regarding the evolution
and interplay between slices and FEL power output and performances.

In this section we clarify the effect of longitudinal phase space, by the use of the
formalism we outlined in the previous section. We sample the optical bunch as indicated
in Figure 7 and characterize each slice with a progressive number [59,60].

Figure 7. Slice number sampling and shape, using the e-bunch distribution as the reference frame.
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Figure 8. Bunched envelope, associated slices and superimposed radiation.

Each slice is assumed to be Gaussian with an amount of charge Qs and an associated current

Is =
Qs√
2πτc

, τc '
Lc

c
≡ coherence− time. (59)

A natural assumption is that the amount of charge follows the Gaussian shape of
Figure 8, namely,

Qs = Qs∗ e−(s−s∗)2δ2
, δ =

2πLc

σζ
(60)

with δ−1 being the number of slices inside the bunch and s∗ representing the slice with
largest current. With these assumptions we can write the slice Pierce parameter as

ρs = ρs∗ e−
(s−s∗)2δ2

3 . (61)

As we already stressed, each slice carries its own energy spread, and therefore we get
a corresponding inhomogeneous parameter specified by

µ̃s = µ̃s∗ e−
(s−s∗)2δ2

3 . (62)

The energy spread corresponding to each slice may be completely random and that
with largest current may carry the worst spread.

By taking into account these effects, we obtain the results reported in Figures 9 and 10.
The first refers to the case in which the slice with maximum current coincides with that at
the center of the distribution, and the energy spread of each slice is chosen to be completely
random. The second accounts for a configuration in which the maximum current is
associated with a slice belonging to the rear part of the bunch.

Further comments including the elements for a more accurate computation of the slice
distribution, are discussed in the forthcoming section dedicated to concluding remarks.
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Figure 9. Slice evolution inside the undulator at different Z; the energy spread has been randomly
chosen and the current follows the bunch Gaussian distribution with s∗ = 0, λu = 0.02, ρ0 = 0.001,
µε = 0.0004 and ν = 0. The initial distribution z = 0 of the slices is the same as in Figure 8. The vertical
axis is in log-scale; the insets are plotted in linear scale.

Figure 10. Same as Figure 9—all slices with the same energy spread and the maximum current
associated with the rear part of the bunch (s∗ = 1). Slice evolution vs z and intensity evolution vs. z.
The slices are characterized by the same amount of charge and different values of the energy spread
with λu = 0.015, ρ0 = 0.0011, σε = 0.05, σd = 0.002, δ = 0.01 and I0 = 10−1. The intensity growth
does not refer to a single slice but to the relevant average. The slices have a flat distribution in z, and
each is characterized by an initial seed of 0.1 W. The vertical axis is in log-scale; the insets are plotted
in linear scale.

6. Final Remarks

This paper has treated different topics in the small signal evolution of high gain SASE
devices. We have just touched on the nonlinear effects leading to saturation. It has been
underscored that the relevant pattern is accompanied by mechanisms of higher order
bunching leading to the process of higher order harmonic emission.
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From the phenomenological point of view, saturation can be included by modifying
the small signal power evolution in Equation (29) as

Is(z̃) = I0
A(z̃)

1 +
I0

IF
(A(z̃)− 1)

, IF =
√

2ρPE (63)

where PE is the electron beam power intensity and I0 is the input seed intensity. I0 is usually
specified by the rule of thumb that a value usually 108 below the saturated power density is
chosen. The intensity IF yields the saturated power. The term at the denominator accounts
for the saturation mechanisms, using a kind of logistic model, as displayed in Figure 11.
The last figure needs its own mention: it shows the power growth in the deep saturated
regime. Equation (63) reproduces well the evolution up the maximum and then remains
fixed without following the oscillations (see Figure 12) due to the post saturation dynamics,
characterized by e-beam rotation in phase-space, induced by an exchange of power between
laser field and electrons.

A more complete view is reported in Figure 13. The physical content can be noted as
reported below.

The figure exhibits the first and third harmonics, along with the associated wave packet
evolution (upper and lower panels). We have assumed the growth from a coherent seed,
and no spiking appears before the saturation. With the onset of the power oscillations, the
optical packets start to be characterized by the appearance of side bands, which degrade the
laser pulse itself in correspondence with the minima of the oscillations [61–63]. The effects
of beam qualities can be also included by replacing A(z) with approximants discussed in
the previous section.

Figure 11. Same parameters as in Figure 10 with the inclusion of the saturation. The slices have a flat
distribution in z, and each is characterized by an initial seed of 0.1 W. The vertical axis is in log-scale;
the insets are plotted in linear scale.
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Figure 12. Power growth and oscillation after saturation (no specific parameters of the simulation
have been inserted because we are just interested to the oscillating behavior, characterizing any SASE
FEL operating with constant parameters).

Figure 13. First and third harmonic power growth vs. z, along with the power oscillations and associated
changes in the laser packet distribution.

The pivotal element of the discussion of this paper has been centered around the FEL
high gain equation, which, including the necessary modifications, is able to describe differ-
ent physical situations regarding the FEL phenomenology. The FEL high gain equation has
been derived from the FEL pendulum equation after a suitable linearization. A different
treatment can be, however, exploited: it employs a Hamiltonian picture and the associated
Liouville equation. The by-product of this treatment (see, e.g., [9,10,17,18,49,50,52–60,64])
yields results not dissimilar from those discussed in the previous sections, and the bunching
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coefficient of the n-th harmonic induced by the fundamental behaves like | a |n. Such an
effect is of fundamental importance in the handling of the so-called segmented magnet
configurations [50,65]. FEL adopting this type of solution exploits the growth of the bunch-
ing inside a first section, which is interrupted and connected to a second undulator, tuned
at one of its harmonics. The result is the growth of a coherent signal emerging from the
beam bunching acquired in the first section. Methods based on the joint use of the solution
of the high gain FEL equation, on the study of the relevant Liouville equation and on
the use of massive simulation codes, allow the possibility of deriving useful scaling rela-
tions concerning the onset and saturation of the FEL signal from a suitably pre-bunched
beam [65].

Πn(z) = Π0,n
e

z

L(n)g

1 +
Π0,n

ΠF,n

(
e

z

L(n)g − 1

) , L(n)
g =

Lg

n
,

Π0,n = cn

(
P0

9ρPE

)n
ΠF,n, ΠF,n =

1√
n

(
fb,n

n fb,1

)2
PF

(64)

where the coefficients cn are just numerical characteristics for each harmonic. Equation (64)
yields the growth of the nonlinear part of the n-th harmonic. The relevant gain length is
decreased by a factor corresponding to the order of the harmonics; ΠF,n is the harmonic
saturated power. The number of photons/seconds at the n-th harmonic can accordingly be
calculated as

Ṅn =
ΠF,n

nh̄ω
= EnṄ1, En =

1
n
√

n

(
fb,n

n fb,1

)2
, (65)

where En represents a kind of efficiency displaying how the fundamental harmonic con-
tributes to the higher order harmonics.

We have so far given a general discussion of analytical and numerical methods to
treat the FEL intensity evolution in the high gain/SASE regime. We have just touched
on the problems associated with short pulse effects, which will be treated elsewhere in a
dedicated monography.
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