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Abstract: A novel approach to build a Takagi-Sugeno (T-S) fuzzy model of an unknown nonlinear
system from experimental data is presented in the paper. The neuro-fuzzy models or, more specifically,
fuzzy basis function networks (FBFNs) are trained from input–output data to approximate the
nonlinear systems for which analytical mathematical models are not available. Then, the T-S fuzzy
models are derived from the direct linearization of the neuro-fuzzy models. The operating points for
linearization are chosen using the evolutionary strategy to minimize the global approximation error
so that the T-S fuzzy models can closely approximate the original unknown nonlinear system with
a reduced number of linearizations. Based on T-S fuzzy models, optimal controllers are designed
and implemented for a nonlinear two-link flexible joint robot, which demonstrates the possibility of
implementing the well-established model-based optimal control method onto unknown nonlinear
dynamic systems.

Keywords: Takagi-Sugeno model; data-driven system identification; neuro-fuzzy model;
optimal control; flexible robot

1. Introduction

The Takagi-Sugeno (T-S) fuzzy model is a powerful and practical engineering tool for
modeling and control of complex nonlinear systems. It proves to be a universal function
approximator that can approximate any smooth nonlinear functions to any degree of
accuracy [1,2] and is less sensitive to the curse of dimensionality than other fuzzy models [3].
The concept of T-S fuzzy model is similar to the piecewise linear approximation approaches
in nonlinear control, which linearizes a system at a set of selected operating points and
designs a local linear feedback controller for each linear model. However, since the overall
control action is switching among the local linear controllers according to system states and
thus there is only one local controller active at a certain time in such approaches, it can only
ensure the stability and performance of the control system at the neighborhood of selected
operating points [4], In contrast, the T-S fuzzy model approximates the entire nonlinear
system by fuzzy inference among local linear models so that the overall control action
can be generated by aggregation of local linear control laws [5]. Therefore, it empowers
a paradigm of designing controllers for local linear models while analyzing stability for
the global nonlinear system [6]. The T-S fuzzy-model-based control that blends feedback
controllers from local models is referred to as Parallel Distributed Compensation (PDC)
scheme, in which the stability of the overall control system is assessed through Lyapunov
stability analysis, especially by the Linear Matrix Inequality (LMI) technique [7–12].

To take advantage of T-S fuzzy-model-based control, the identification of T-S fuzzy
model has attracted great research interest. There are two kinds of methods for establishing
T-S fuzzy models. One is linearizing the original system at a series of operating points
when an analytical model of the system is available. The other is the consecutive structure
and parameter identification from the data generated by the unknown system [6], which is
more of interest to us. The structure identification refers to the selection of locations of fuzzy
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rules based on clustering [13,14]. With the determined antecedent structural parameters,
the T-S fuzzy model transforms into a set of linear models, of which the parameters are
obtained by the recursive least square method [15,16], genetic algorithm [17] or particle
swarm optimization [18]. The objective of data-driven approaches is to minimize the
global prediction error of a T-S fuzzy model. However, they may result in constituent
linear models significantly different from the local linearization of nonlinear systems,
though they may offer good global performance [19]. Hence, the T-S models obtained by
these methods might not be satisfactory for the controller design in the Parallel Distributed
Compensation (PDC) scheme, since the local compensators need to be designed based on
local linear models.

The authors in [2] studied various identification algorithms and concluded that the
constrained and regularized identification method can improve the interpretability of
constituent local models as local linearization, and the locally weighted least square tech-
nique may facilitate the compromise between the local and global accuracy of T-S models.
However, the effectiveness and practicality of this method were demonstrated only by
very simple examples. When considering more complicated higher-order and multivariate
problems, the issues related to interpretability and identifiability will be more pronounced
and difficult to address.

An alternative method to circumvent these difficulties is presented in this paper.
A neuro-fuzzy model referred to as fuzzy basis function networks (FBFN) is adopted to
approximate the unknown nonlinear systems [20]. The Stone–Weierstrass theorem proves
that this kind of neuro-fuzzy model could approximate any real continuous function on
a compact domain arbitrarily well [21]. Then, the T-S fuzzy model is derived from the
linearization of the neuro-fuzzy model at a series of operating points. Therefore, each local
model is close to the local linearization of the original system and, thus, suitable for local
compensator design. In addition, the positions of operating points for linearization are
optimized by the evolutionary strategy to minimize global approximation error so that
the entire T-S fuzzy model is a good global approximation of the original system. A fuzzy
control scheme can be applied to the consequent T-S fuzzy model in which a local optimal
compensator is designed for each of the local affine models and the overall control action
is derived from the fuzzy inferencing of local control actions. The contribution of this
paper is that it presents a practical way to build T-S fuzzy models with both good local and
global approximations by deriving the direct linearization of FBFN models and introducing
the evolutionary strategy for fuzzy rule location selection. Compared with the existing
methods, the method proposed in this paper is less involved compared with nonlinear
controllers while the performance is not compromised and, thus, it is particularly suitable
for controller design of complex unmodeled nonlinear systems in practice.

This paper is organized as follows: Section 2 presents the structure of the T-S fuzzy
model; Section 3 elaborates the proposed T-S fuzzy model identification approach;
Section 4 explains the design of fuzzy optimal controller; Section 5 demonstrates an exam-
ple of T-S model identification and optimal control of a robotic system; Section 6 concludes
the paper.

2. Takagi-Sugeno Fuzzy Model

T-S fuzzy models represent complicated multi-input-multi-output (MIMO) systems
with fuzzy inference rules and local linear models as follows:

Rk : IF z1 is F1
k, · · · , zvis Fv

k, THEN
.
x = Akx(t) + Bku(t) + dk,

where Rk denotes the kth fuzzy rule, k ∈ {1, 2, · · · , p}, p is the number of fuzzy rules, Fj
k

(j = 1, 2, · · · , v) are the input fuzzy sets, x(t) ∈ Rn is the state variable vector, u(t) ∈ Rm is
the input variable vector, z(t): = [z1, z2, · · · , zv] are a subset of measurable or observable
variables in the state and input vectors that are used for fuzzification, and (Ak, Bk, dk)
are the matrices of the kth local model [6]. If the constant bias vector is not null, dk 6= 0,
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for some fuzzy inference rules, the corresponding local models are affine models instead of
linear models.

By using the product fuzzy inference, singleton output membership functions, and cen-
troid defuzzifier, a T-S fuzzy model in continuous-time state-space form can be organized as:

.
x = A(µ)x(t) + B(µ)u(t) + d(µ), (1)

where A(µ) = ∑
p
k=1 µkAk, B(µ) = ∑

p
k=1 µkBk, d(µ) = ∑

p
k=1 µkdk and µk denotes the

normalized fuzzy membership function µk = ξk(z)/∑
p
k=1 ξk(z) with ξk(z) = ∏v

i=1 Φk
i (zi).

Φk
i (zi) represents the i-th membership function in fuzzy set Fi

k of the k-th fuzzy rule.
Due to the fact that the membership functions are nonlinear (e.g., triangular or Gaussian),
the model in Equation (1), as an aggregation of local linear or affine models, is also a
nonlinear model in nature.

3. Identification of Takagi-Sugeno Fuzzy Model

The T-S fuzzy model is expected to attain a good approximation of not only the local
dynamics of the underlying system to facilitate local compensator design, but also the
global dynamics to guarantee the overall control performance. However, considering them
together is difficult because building constituent local linear models from input-output
data is not always straightforward and the tradeoff between the local and global accuracy
should be carefully addressed [2].

In this paper, a novel approach that utilizes the neuro-fuzzy model to obtain a
T-S fuzzy model is proposed. The neuro-fuzzy models are based on the fusion of fuzzy
inference systems and neural networks. Among diverse neuro-fuzzy models, the one
proposed by Wang and Mendel [20], which is also known as fuzzy basis function network
(FBFN), has gained much attention as it has a similar structure to radial basis function
networks (RBFNs) and thus can adopt the training methods that are already established
for the RBFN. It has been proved that the FBFNs can uniformly approximate any real
continuous nonlinear functions on a compact set to arbitrary accuracy [21].

First, from the input-output data, a set of multi-input-single-output FBFNs with
product fuzzy inference, Gaussian membership functions (MFs), and centroid defuzzifier
are trained by the least square algorithm [22] to approximate the nonlinear system whose
analytical mathematical model is not available. Each FBFN can be represented as a fuzzy
system in layered network form (see Figure 1), and is used to approximate the dynamics of
one state variable. For example, the FBFN for the p-th state variable is constructed using
fuzzy rules as:

Rp
l : IF x1 is A1p

l , · · · , xnis Anp
l and u1 is B1p

l , · · · , um is Bmp
l , THEN

.
xp = wl

p,

where l ∈ {1, 2, · · · , Mp}, and Mp is the number of fuzzy rules for the p-th FBFN.
Through fuzzy inference and defuzzification, the FBFN based on the above fuzzy rules can
be written as:

.
xp = fp(x, u) =

Mp
∑

l=1
wp

l
n
∏

i=1
e
− 1

2 (
xi−xl

ip
σl

ip
)

2

m
∏
j=1

e
− 1

2 (
uj−ul

jp
σl

ujp
)

2

Mp
∑

l=1

n
∏

i=1
e
− 1

2 (
xi−xl

ip
σl

ip
)

2

m
∏
j=1

e
− 1

2 (
uj−ul

jp
σl

ujp
)

2 p = 1, 2, · · · , n , (2)

where x: = [x1, x2, · · · , xn] is the state variable vector, u: = [u1, u2, · · · , um] is the input
vector, and wp

l is the weighting factor. The xip
l and σip

l are the centers and widths of
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Gaussian MFs e
− 1

2 (
xi−xl

ip
σl

ip
)

2

in fuzzy set Aip
l, and the uip

l and σuip
l are the centers and widths

of Gaussian MFs e
− 1

2 (
xi−xl

ip
σl

ip
)

2

in fuzzy set Bip
l.
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Next, the T-S fuzzy model is derived from the neuro-fuzzy model by linearizing
Equation (2). Linearization about an operating point (xk, uk) results in

.
x = Ak(x− xk) + Bk(u− uk) + f(xk, uk) + H.O.T, (3)

where H.O.T denotes the higher order terms in the local model, which will be neglected in
the following analysis, f(xk, uk) = [ f1(xk, uk), . . . , fn(xk, uk)]

T , and

Ak =


∂ f1(x,u)

∂x1
· · · ∂ f1(x,u)

∂xn
...

. . .
...

∂ fn(x,u)
∂x1

· · · ∂ fn(x,u)
∂xn


x=xk ,u=uk

, (4)

By taking the partial derivative of Equation (2) with respect to xq, one can get

∂ fp(x, u)
∂xq

=

Mp

∑
l=1

wp
lal

p

Mp

∑
l=1

al
pql

p −
Mp

∑
l=1

al
p

Mp

∑
l=1

wp
lal

pql
p(

Mp

∑
l=1

al
p

)2 , (5)

where

al
p =

n
∏
i=1

e
− 1

2 (
xi(k)−xl

ip
σl

ip
)

2

m
∏
j=1

e
− 1

2 (
uj(k)−ul

jp
σl

ujp
)

2

ql
p =

xq(k)−xl
qp

(σl
qp)

2

(6)
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Similarly,

Bk =


∂ f1(x,u)

∂u1
· · · ∂ f1(x,u)

∂um
...

. . .
...

∂ fn(x,u)
∂u1

· · · ∂ fn(x,u)
∂um


x=xk ,u=uk

, (7)

where ∂ fp(x, u)/∂uq has the same expression as Equation (5) except that:

ql
p =

uq(k)− ul
qp(

σl
uqp

)2 (8)

For simplicity, and also by neglecting the higher-order terms, Equation (3) can be
rewritten as

.
x = Akx + Bku + dk, (9)

where
dk = f(xk, uk)−Akxk − Bkuk. (10)

The affine term dk is non-null, i.e., dk 6= 0 in general even if the operating point is an
equilibrium point other than the origin [23]. Including the affine terms will offer a more
accurate local approximation of the system’s dynamics around the operating points.

Then, the operating points used for linearization need to be chosen carefully to achieve
a good global approximation of the original system. Meanwhile, it is desirable to minimize
the number of linearization so that the number of fuzzy rules in the T-S fuzzy model can
be reduced and the fuzzy controller synthesized in the following section will be more
computationally efficient. To reduce the number of linearization points, it is necessary to
know which variables among z = [z1, z2, · · · , zv] in fuzzy inference are the major sources of
nonlinearity. These variables should be assigned more positions while the variables that are
minor sources can be assigned fewer positions. A measure to roughly recognize the source
of nonlinearity by inspecting the variation of linearized A-matrix is presented in Section 5.
If the i-th variable zi is to be assigned pi positions {zi,1, . . . , zi,pi}, then by combination of
the ∑v

i=1 pi positions, there will be p = ∏v
i=1 pi operating points in total, i.e., (xk, uk) (k = 1,

2, · · · , p).
After the number of design positions pi for each zi is selected, their optimal positions

can be searched by the Evolutionary Strategy (ES) [24] inside the operating range to produce
the p optimal operating points to build the T-S fuzzy model:

Find (x1, u1), (x2, u2), · · · ,
(
xp, up

)
produced by

{
zi,j
}

i=1,...v,1,...,pi

to minimize NDEI =
n
∑

i=1

√√√√√√
N
∑

j=1
[

.
xi,TS [k]−

.
xi,M [k]]

N
∑

j=1

[ .
xi,M [k]− .

xi,M

] .

The non-dimensional error index (NDEI) between the responses predicted by the
T-S fuzzy model

.
xi,TS[k] and the measurement data

.
xi,M[k] is a reliable criterion of the

quality of global approximation and can be used as the objective function to be minimized.
The input-output data pairs used for validation of the neuro-fuzzy model can be reused
here so that no extra experiments need to be conducted. N is the number of pairs in the
validation data set, n is the number of state variables and

.
xi,M is the mean value of

.
xi,M[k].

The ES optimization is controlled by three parameters: the maximum number of
generations t, the parent population µ, and the offspring population λ. The optimization
starts with initializing a parent pool with µ individuals. Then, in each generation, a pair
of parents is randomly selected to produce an offspring via recombination and mutation,
as explained in [24], until λ offspring have been generated. Each offspring is used to
build a T-S model at the operating point associated with it and the NDEI of this model is
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recorded. The best µ offspring will form the parent pool for the next generation. If the
optimized set of operating points after t generations doesn’t yield a T-S fuzzy model with
satisfactory global approximation, the number of operating points p will be increased,
and the optimization will be repeated, as illustrated in Figure 2.
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4. Controller Synthesis for the T-S Fuzzy Model

In order to design a global stabilizing controller for the nonlinear system using the
identified T-S fuzzy model, the parallel distributed compensation (PDC) framework is
adopted [25]. Local feedback rule is designed as a compensator for each local model and
a global fuzzy controller is constructed by the aggregation of local compensators using
the same fuzzy inference system in the T-S fuzzy model [6]: Rk: IF z1 is F1

k, · · · , zv is Fv
k,

THEN u = uk, where k ∈ {1, 2, · · · , p}. The fuzzy controller is aggregated as:

u =
p

∑
k=1

µkuk, (11)

where µk is the normalized membership function same as in Equation (1).
Assume that the fuzzy controller is designed to minimize the performance index:

J =
∫ t f

t0

[
(r− x)TQ(r− x) + uTRu

]
dt, (12)

where r is the command input vector to be tracked, x is the state vector, u is the input vector,
t0 is the initial time, tf is the final time and Q and R are symmetric positive definite matrices
to be determined by the designer, then for each local controller, the optimal control action
uk can be derived as [26]:

uk = Kk(r− x) +
(

BT
k Bk

)−1
BT

k dk, (13)

where Kk is given by
Kk = R−1BT

k Pk (14)
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Pk is found by solving the Continuous Algebra Riccati Equation:

AT
k Pk + PkAk − PkBkR−1BT

k Pk = −Q. (15)

The stability condition of an affine T-S fuzzy control system based on a quadratic
Lyapunov function is given in [27]. The equilibrium point (x = xk, u = uk) of the control
system is asymptotically stable in large if there exists a common positive definite matrix
P = PT > 0 and scalars τijq ≥ 0 such that:

Gi,j
TP + PGi,j < 0 for fuzzy rules i, j ∈ {k|µk(0) 6= 0} Gi,j

TP + PGi,j −
n
∑

q=1
τijqTijq Pηi,j −

n
∑

q=1
τijquijq

ηi,j
TP−

n
∑

q=1
τijquijq

T −
n
∑

q=1
τijqvijq

< 0 for other fuzzy rules
(16)

where the Gi,j, ηi,j, Tijq, uijq and vijq are defined as:

Gi,j =
{Ai−BiKj}+{Aj−BjKi}

2

ηi,j =
{di−Biσj}+{dj−Bjσi}

2 σj =
(

BT
j Bj

)−1
BT

j dj

xTTijqx + 2uijq
Tx + vijq ≤ 0

(17)

Equation (16) belongs to bilinear matrix inequalities (BMIs) and can be solved in an
iterative LMI manner. The details of the iterative linear matrix inequality (ILMI) algorithm
can be found in [27]. The stability condition in Equation (16) can be integrated into the ES
optimization procedure shown in Figure 2 as a constraint so that the fuzzy control system
designed based on the optimized operating point set is guaranteed to be stable.

The fuzzy controller is implemented in a full state-feedback manner. If some state
variables are not measurable during operation, then an observer needs to be designed for
each local model and the fuzzy observer is constructed by aggregation of local observers
with a fuzzy inference system. In [28], it has been proved that the separation principle for
linear systems also holds for T-S fuzzy systems, and thus the fuzzy controller and fuzzy
observer can be designed independently.

5. Application Example

In this section, the data-driven T-S fuzzy model identification and control are implemented
on a flexible two-link joint robot to demonstrate the effectiveness of the proposed approach.

Flexible robot manipulators possess various advantages over the rigid ones: they require
less material, allow higher manipulation speed while consume less power, and are safer
to operate due to reduced inertia. However, controlling flexible robot manipulators for
precise positioning could a challenging task because of the high precision required for
positioning, oscillation due to flexibility, highly nonlinear and distributed dynamics of the
system, as well as the difficulty in establishing an accurate model [29]. The picture and the
schematic of the two-link flexible-joint robot manipulator to be dealt with in this paper are
shown in Figure 3.

The robot is described by 8 state variables: θ1, angle of the 1st link; θ2, angle of the 2nd
link; θ3, angle of the 1st motor; θ4, angle of the 2nd motor; and the four angular velocities.
There are two input variables: T1, the torque of the 1st motor and T2, the torque of the 2nd
motor. The state vector and input vector of this system are defined as:

θ =
[

θ1 θ2 θ3 θ4
]T x =

[
θT

.
θ

T
]T

u =
[

T1 T2
]T .
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The nonlinear equation of motion of this robot can be expressed as [30]:

M(θ)
..
θ+ V

(
θ,

.
θ
)
+ C

.
θ+ D

( .
θ
)
+ Kθ = T, (18)

where M(θ) is the inertia matrix, V
(
θ,

.
θ
)

is the vector of Coriolis and centrifugal functions,

C is the viscous damping coefficient matrix, D
( .
θ
)

is the Coulombic friction vector, K is the
stiffness coefficient matrix, and T is the input torque vector. The inertia matrix is given by:

M(θ) =

[
M1(θ) M12

M21 M2

]
M12 = M21

T =

[
0 J4 +

J6
r

0 0

]
M2 =

[
J3 +

J5
r2 0

0 J4 +
J6
r2

]
M1(θ) =

[
p1 +

(
m2a2

2 + J2
)
+ 2(l1m2a2) cos(θ2)

(
m2a2

2 + J2
)
+ (l1m2a2) cos(θ2)(

m2a2
2 + J2

)
+ (l1m2a2) cos(θ2)

(
m2a2

2 + J2
) ] (19)

where mi is the lumped mass of components, Ji is the moment of inertia of components, li
is the length of links, and a1 and a2 denote the offset from the center of gravity of the first
and second link to the first and second joint, respectively. In addition, b1 is the distance
between the second motor and the first joint, and r is the gear ratio of the chain drives.

The vector of the Coriolis and centrifugal functions is

V
(
θ,

.
θ
)
=


−(l1m2a2)

(
2

.
θ1

.
θ2 +

.
θ2

2
)

sin(θ2)

(l1m2a2)
.
θ1

2 sin(θ2)
0
0

, (20)

and the viscous damping matrix can be written as

C =


c1 + c5 − c5

r
c2 + c6 − c6

r
− c5

r c3 +
c5
r2

− c6
r c4 +

c6
r2

, (21)
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where ci is the viscous friction coefficients. The vector of Coulombic friction is given by

D
( .
θ
)
=


d1sign

( .
θ1

)
d2sign

( .
θ2

)
d3sign

( .
θ3

)
d4sign

( .
θ4

)

, (22)

where di is the friction torque at each joint. The matrix of stiffness coefficients is given by

K =


k5 − k5

r
k6 − k6

r
− k5

r
k5
r2

− k6
r

k6
r2

, (23)

where ki denotes the coefficients of the torsional springs at the flexible joints. The torque
vector is

T =
[

0 0 T1 T2
]T . (24)

Table 1 lists the estimated values of the robot’s physical parameters. However,
deriving the mathematical model and obtaining an accurate estimation of each parameter is
quite difficult and time-consuming. The purpose of this paper is to develop a methodology
of T-S model construction and controller design when the analytical mathematical model
detailed above is not available. Hence, the Equations (18)–(24) and the parameters in Table 1
are only used to validate the fuzzy controller via simulation.

Table 1. Estimated Values of the Robot’s Physical Parameters [31].

Parameter Value Parameter Value

p1 0.1402 kgm2/rad c4 1.4975 × 10−3 Nms/rad
m2a2

2 + J2 0.01962 kgm2/rad c5 0.005 Nms/rad
l1m2a2 0.02338 kgm2/rad c6 8.128 × 10−3 Nms/rad

J3 4.1751 × 10−5 kgm2/rad k5 2.848 Nm/rad
J4 7.5429 × 10−4 kgm2/rad k6 2.848 Nm/rad
J5 0.025 kgm2/rad d1 0.01987 Nm
J6 0.025 kgm2/rad d2 0.0323 Nm
c1 0.04 Nms/rad d3 0.0053 Nm
c2 0.02143 Nms/rad d4 0.0271Nm
c3 1.8937 × 10−4 Nms/rad r 5

In experiments, four encoders are mounted to measure the four arm and motor angles,
and the angular velocities and accelerations are obtained from the angular position signals
by the central finite difference method:

.
θi =

θi [k+1]−θi [k]
∆T

..
θi =

θi [k+1]−2θi [k]+θi [k−1]
∆T2 , (25)

where θi[k], k = 1, 2, · · · are the values of discrete angular position measurements and
∆T = 0.001 s is the sampling time. To reduce noises in the velocity and acceleration
signals that mainly originate from the quantization of the position signal, a zero-phase low-
pass Butterworth filter with 150 Hz cutoff frequency was applied to the position signals.
To avoid the transient effect from filtering in both directions when initializing the filter
states, experiments were started with a 0.5 s rest period. This period and the last 0.5 s of
the experiment were removed from the data set.

To obtain the neuro-fuzzy model of the robot, the motors were excited by sine sweep
torques. A combination of a 5-s 1 Hz sine wave and a subsequent 5-s sine sweep signal
with an initial frequency of 1 Hz and a final frequency of 5 Hz was used to excite the
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shoulder motor and elbow motor, as shown in Figure 4. Then, 2000 training data are evenly
drawn from the collected input-output pairs and used to train the neuro-fuzzy model.
500 testing data that are different from the training data are used to test the accuracy of the
neuro-fuzzy model and the subsequent T-S fuzzy models. The T-S fuzzy models in this
paper are all constructed with triangular membership functions due to their simplicity.
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Figure 4. Sine sweep signals to motors.

To determine the proper number of operating points for linearization, the grade of the
nonlinearity of each state variable is evaluated as follows: first, the system is linearized at
the equilibrium point x = 0, where the result is Ax=0. Then by randomly changing one state
variable xi in the operating range and fix all the other state variables, a series of matrices Axi
are obtained. They are compared to Ax=0 in terms of the 2-norm of difference. The results
are summarized in Table 2. The idea is that if the state variable xi is linear or affine in the
system, then identical A matrices should be obtained at different positions of xi. Otherwise,
xi should be regarded as nonlinear. From Table 2, it can be seen that the variables θ2,

.
θ1 and

.
θ2 are sources of nonlinearity around the origin, among which θ2 is the most significant
one. The other variables can be treated as linear.

Table 2. Inspection of the source of nonlinearity.

xi θ1 θ2 θ3 θ4 θ1dot θ2dot θ3dot θ4dot

mean‖Axi −Ax=0‖ 0 85.89 0 0 3.67 9.13 0 0

Two sets of operating points are selected for comparison: the first set consists of
27 points based on the combination of uniformly chosen positions θ2 = [−0.7, 0, 0.7] (rad),
.
θ1 = [−1.0, 0, 1.0] (rad/s) and

.
θ2 = [−1.0, 0, 1.0] (rad/s); the second set consists of only

12 points, the positions are chosen by the ES optimization: θ2 = [−0.9575, −0.0181, 0.9479]
(rad),

.
θ1 = [−0.9034, 0.5891] (rad/s) and

.
θ2 = [−1.5, 1.5] (rad/s). θ2 is assigned three positions

while the other two are assigned only two positions as θ2 is the most significant source of
nonlinearity according to Table 2.

In Figure 5, it can be seen that the outputs predicted by the T-S fuzzy models are very
close to the testing experimental data. The NDEIs of the neuro-fuzzy model and the two T-S
fuzzy models, which are used as the criteria of global approximation, are listed in Table 3.
It can be seen that the T-S fuzzy models derived from the neuro-fuzzy model can provide
an accurate approximation of the original nonlinear system. The 12 points T-S fuzzy model
with optimized operating points gives an even better approximation than the 27 points one
with uniformly distributed operating points.
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Table 3. NDEIs of the neuro-fuzzy model and T-S fuzzy models.

Neuro-Fuzzy Model
T-S Fuzzy Model with
Uniformly Distributed

27 Points

T-S Fuzzy Model with
Optimized 12 Points

NDEI 0.0267 0.0697 0.0477

To test the controller performance, the reference commands to be tracked are given by

rθ1 = rθ2 =


0.4t2 t ≤ 0.4
0.064 + 0.32(t− 0.4) 0.4 < t ≤ 1.875
0.6− 0.4(t− 2.275)2 1.875 < t ≤ 2.275
0.6 t > 2.275

. (26)

Because the gear ratio is 5, the command inputs for θ3 and θ4 are given by

rθ3 = 5rθ1 rθ4 = 5rθ2 . (27)

The command inputs for the angular velocities are

r .
θ1

= r .
θ2

=


0.8t t ≤ 0.4
0.32 0.4 < t ≤ 1.875

−0.8(t− 2.275) 1.875 < t ≤ 2.275
0 t > 2.275

r .
θ3

= 5r .
θ1

r .
θ4

= 5r .
θ2

(28)

The performance index is defined as:

J =
∫ 4

0


10, 000

[(
θ1 − rθ1

)2
+
(
θ2 − rθ2

)2
]
+
[(

θ3 − rθ3

)2
+
(
θ4 − rθ4

)2
]

+1000
[( .

θ1 − r .
θ1

)2
+
( .

θ2 − r .
θ2

)2
]
+

[( .
θ3 − r .

θ3

)2
+
( .

θ4 − r .
θ4

)2
]
+ 0.1T2

1 + 0.1T2
2

dt (29)
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The fuzzy optimal control systems derived from the T-S fuzzy models with 27 and
12 points were simulated using the mathematical model in MATLAB with initial condition
x = 0. To obtain an assessment of the proposed control algorithm, it is necessary to compare
this paradigm to alternative control techniques. Therefore, a PID controller was also designed:[

T1
T2

]
=

[
0.4e1 + 0.1

.
e1 + 0.1

∫
e1dt

0.4e2 + 0.1
.
e2 +

∫
e2dt

]
, (30)

where e1 and e2 are tracking error of θ1 and θ2. The PID gains were based on [32],
in which a PID controller was designed for this robot manipulator. Figure 6 shows the sim-
ulated responses of the flexible robot system with the fuzzy controllers and PID controller,
while the mean square errors (MSEs) of command tracking are compared in Table 4.
The performances of the fuzzy controllers are evidently better than that of the PID con-
troller. The PID responses exhibit larger overshoot and longer settling time, which leads
to larger MSE. The results of the 12 points T-S fuzzy model are almost the same as the
results of the 27 points one, as the non-significant difference of modeling errors may only
yield trivial effect on the control system. Since the number of linearization is reduced,
the 12 points T-S fuzzy model is more computationally efficient.
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Table 4. MSEs of command tracking with the designed controllers.

T-S Fuzzy Model
with 27 Points

T-S Fuzzy Model
with 12 Points PID

θ1 2.95 × 10−4 2.98 × 10−4 1.20 × 10−3

θ2 7.31 × 10−4 8.06 × 10−4 1.22 × 10−3

θ3 0.0169 0.0170 0.0744
θ4 0.0084 0.0097 0.0268

The fuzzy optimal controllers were then implemented on the robot. The experimen-
tal results are shown in Figure 7. The achieved tracking performances are good and
close to the simulation results, except for some lags and oscillations along the trajectories.
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These oscillations are caused by the flexible joints of the robot, which are very difficult to
completely eliminate.
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6. Conclusions

An explicit procedure of establishing the T-S fuzzy models of unknown nonlinear
systems from experimental data is presented: (1) the local constituent models are obtained
by direct linearization of neuro-fuzzy models trained from data so that they are close
approximations to the local linearization of the original nonlinear systems; (2) The operating
points for linearization are optimized using the evolutionary strategy to achieve good
global approximation with a reduced number of linearization. The controller design based
on T-S fuzzy model has also been discussed. The derived fuzzy optimal controller was
applied to a nonlinear flexible-joint robot system and compared with the alternative control
technique, which demonstrated the effectiveness of the proposed method for controlling
nonlinear dynamic systems whose analytical models are not available. Compared with
the existing T-S model methods, the proposed method could more effectively address
the tradeoff between local and global approximation for complex systems. Moreover,
since the computational methods of the proposed method are based on a set of well-
developed tools (e.g., FBFN training, ES optimization), it can be readily used for data-
driven system identification and controller design in realistic applications. The future work
might include studying the effect of uncertainty in data and the modeling errors of the
neuro-fuzzy and T-S fuzzy models, such that the robustness of the T-S fuzzy control scheme
can be more explicitly addressed.
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