
applied  
sciences

Article

A Completion Method for Missing Concrete Dam Deformation
Monitoring Data Pieces

Hao Gu 1,2, Tengfei Wang 3,* , Yantao Zhu 2,4,5, Cheng Wang 6, Dashan Yang 2,4,5 and Lixian Huang 7

����������
�������

Citation: Gu, H.; Wang, T.; Zhu, Y.;

Wang, C.; Yang, D.; Huang, L.

A Completion Method for Missing

Concrete Dam Deformation

Monitoring Data Pieces. Appl. Sci.

2021, 11, 463. https://doi.org/

10.3390/app11010463

Received: 2 December 2020

Accepted: 31 December 2020

Published: 5 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Agricultural Engineering, Hohai University, Nanjing 210098, China; ghao@hhu.edu.cn
2 College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China;

zhuyantao@hhu.edu.cn (Y.Z.); 181302020052@hhu.edu.cn (D.Y.)
3 School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
4 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing

210098, China
5 National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai

University, Nanjing 210098, China
6 Guangzhou Nansha Engineering Company of CCCC Forth Harbor Engineering Co., Ltd., Guangzhou 510230,

China; wcheng1@cccc4.com
7 Materials Science and Engineering Department, University of California, Los Angeles, CA 90095, USA;

lxhuang@ucla.edu
* Correspondence: wangtengfei@whut.edu.cn

Abstract: A concrete dam is an important water-retaining hydraulic structure that stops or restricts
the flow of water or underground streams. It can be regarded as a constantly changing complex
system. The deformation of a concrete dam can reflect its operation behaviors most directly among
all the effect quantities. However, due to the change of the external environment, the failure of
monitoring instruments, and the existence of human errors, the obtained deformation monitoring
data usually miss pieces, and sometimes the missing pieces are so critical that the remaining data
fail to fully reflect the actual deformation patterns. In this paper, the composition, characteristics,
and contamination of the concrete dam deformation monitoring information are analyzed. From
the single-value missing data completion method based on the nonlocal average method, a multi-
value missing data completion method using BP (back propagation) mapping of spatial adjacent
points is proposed to improve the accuracy of analysis and pattern prediction of concrete dam
deformation behaviors. A case study is performed to validate the proposed method.

Keywords: hydraulic structure engineering; concrete dam; deformation monitoring information;
missing data completion; behavior pattern prediction

1. Introduction
1.1. Literature Reviews

A concrete dam can be regarded as a constantly changing complex system whose
diverse and uncertain service behaviors are reflections to its special structure and working
environment [1–5]. In operation status analyses of a concrete dam, the monitoring effect
quantities such as deformation, seepage, stress, and strain can reflect the operation status
patterns. Generally, deformation behaviors can show the operation status of the dam
most directly [6–10]. A typical case is the Vaiont arch dam’s failure in Italy [11,12]. Af-
ter the water storage was completed in 1960, the left front bank landslide of the dam
slowly wriggled, and the measured total displacement reached 429 cm on 7 October 1963.
Affected by the heavy rain on 9 October 1963, the dam broke, causing nearly 3000 deaths.
The monitoring data showed that the displacement rate was 0.14 cm/d before the spring
of 1963. After the continuous heavy rain on 18 September 1963, the displacement rate
increased sharply from about 1 cm/d. The maximum velocity before the crash had reached
80 cm/d. So, it is significant to study the behaviors of a concrete dam.
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The long lifetime of a concrete dam consequently accumulates a huge amount of
deformation monitoring informative data for basic concrete dam deformation behavior
analyses and predictions.

The effectiveness of the dam safety monitoring and evaluation can be reduced by
the missing monitoring data pieces due to monitoring instrument failures or automatic
monitoring instability. The data missing from the key-position monitoring instrument can
impede the dam health monitoring processes. Therefore, it is of practical significance to
study the missing data completion strategies in the case of monitoring instrument failure
to provide a reliable decision basis for the safe dam operation.

The missing data completion has been applied to many fields [13–16]. In the field of
dams, Lv et al. [17] pointed out that the interpolation methods of observation data mainly
include internal physical association interpolation and mathematical interpolation and
introduced the principle and process of linear interpolation. To obtain the homogenized
data required by the model, Li et al. [18] compared the commonly used mathematical
interpolation methods and chose the cubic Hermite piecewise interpolation with smooth
interpolation curves that made full use of the existing data information to build the homog-
enized processing of the data sequence. To deal with the disadvantage of the “Runge Phe-
nomenon” in the interpolation interval of the traditional interpolation function at both
ends, Tu et al. [19] utilized the fractal interpolation in deducing the integrity state through
partial information of the object to the interpolation calculation of missing time series,
while the interpolation results were in line with expectations. Wang et al. [20] found that
the same monitoring items such as a series of points on the deformation have a high degree
of similarity and suggested combining the monitoring information of relevant measur-
ing points. Firstly, the kernel independent component analysis algorithm was used to
extract the independent components of relevant measurement points, and then the opti-
mal characteristic variables were found by using eigenvalue spectrum analysis. Finally,
an interpolation method for dam missing data based on KICA-RVM was established by
using a relevance vector machine. Hu et al. [21] used the deformation information of
the spatial adjacent points to return the deformation value of the target measurement
points and proposed a spatial adjacent points regression interpolation method as well
as a spatial anti-distance weighted interpolation method with good interpolation results.
Other scholars also proposed spatial interpolation methods for dam deformation [22–25]
and built a good foundation for in-depth analyses of dam deformation behaviors.

This paper analyzes the composition, characteristics, and contamination of the concrete
dam deformation monitoring information. A multi-value missing data completion method
using BP mapping of spatial adjacent points is proposed to improve the accuracy on
analysis and pattern prediction of concrete dam deformation behaviors. The proposed
method is validated by a case study.

1.2. Monitoring Data Characteristics

As an open system, a concrete dam has many factors and links that affect its deforma-
tion behaviors. These factors and links are the information sources of the concrete dam
deformation monitoring. It can be seen from the composition of concrete dam deforma-
tion monitoring information in the previous section that the information sources have
the following characteristics.

1.2.1. Multi-Systematic

The composition of a concrete dam is complex, which contains a large number of sub-
systems. The structure composition of a concrete dam includes the dam body, the dam foun-
dation, and the dam near the reservoir area, and each represents a subsystem. Deformation
monitoring can be divided into horizontal displacement monitoring, vertical displacement
monitoring, crack opening monitoring, and each monitoring project can also be regarded
as a subsystem. Different monitoring targets need different monitoring instruments to
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locate at different measuring points. Therefore, the monitoring information of the concrete
dam deformation is multi-systematic.

1.2.2. Multi-Level

Different monitoring targets correspond to different monitoring methods, and in the con-
crete dam deformation monitoring system, the same monitoring project often contains
different monitoring methods. Additionally, multiple measuring points are arranged
in different parts of the dam, and the deformation behavior of the concrete dam is com-
prehensively reflected by measuring point information and different monitoring targets.
Therefore, the monitoring information of the concrete dam deformation is multi-level.

1.2.3. Uncertainty

In the concrete dam deformation monitoring system, uncertainty arises since the in-
teraction among the dam body, the dam foundation, and the monitoring system require
different monitoring methods. The instrument precision variance, instrument performance
degradation, and other factors also increase the uncertainty of the measured monitoring
values [26,27]. In addition, the process of both manual and automatic monitoring can intro-
duce errors and noises, which contributes to another source of uncertainty in monitoring
data. Therefore, the monitoring information of the concrete dam deformation is uncertain.

1.3. Monitoring Data Contamination

From the characteristics of deformation monitoring information, it can be seen that
the acquisition of concrete dam deformation information is affected by multiple factors.
The information contamination is therefore inevitable and diverse, as shown in the follow-
ing aspects:

(1) Deficiency in information types

The deficiency in information types of concrete dam deformation monitoring data
is objective and unavoidable. First of all, as a large engineering structure, a concrete
dam occupies a large space system, the concrete dam deformation changes dynamically,
and the distribution of the deformation changes is heterogeneous. Therefore, it is difficult
to fully describe the deformation behaviors with existing methods and rules. Consequently,
there exists a certain level of deficiency in monitoring information types. Secondly, the con-
crete dam deformation monitoring system monitors the deformation of the dam body
intermittently, which means the system can only obtain sub-samples of some characteristic
periods instead of real-time data for the dam deformation. The above situation also con-
tributes to the deficiency in information types. Additionally, considering the applicability
in engineering aspects, monitoring positions are usually arranged in typical locations to
observe the deformation in a certain area. In this case, the deformation information of other
locations in the same area is missing, which results in the deficiency in information types.

(2) Incompleteness of a specific information type

In the process of monitoring the deformation of a concrete dam, the data collection
from the automatic system is generally intermittent with a constant step size. For example,
the monitoring instrument may perform one measurement every six hours or one measure-
ment every day. However, due to human errors, instrument damage, data loss, and other
factors in a manual monitoring system, the time interval between each monitoring point is
not always the same, which will bring difficulties to the subsequent modeling work.

Particularly, in both automation and manual systems, sometimes because of equip-
ment degradation, some monitoring information will be lost in a long sequence of measure-
ment intervals. For example, a two-year data sequence may lose a continuous one-month
or two-month period of data points due to equipment degradation, and if those measuring
points are located in key positions, the monitoring system will fail to observe the abnormal
deformation of the dam, which makes the dam safety analysis difficult. The long-period
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interruption of monitoring data can hinder the overall deformation analysis and future
deformation prediction.

(3) Errors in monitoring information

It can be seen from the monitoring methods of concrete dam deformation and the en-
vironmental influence factors that the deformation monitoring information cannot avoid
errors. Generally, errors are divided into three groups—systematic errors, gross errors,
and random errors. The expressions are as follows:

ε = εs + εG + εn (1)

where, ε is the total error of observation, εs is the systematic error, εG is the gross error,
and εn is the random error.

Systematic errors can be generated by intrinsic errors of the instrument, wrong mea-
surement practices, environment changes, improper monitoring methods, imprecise the-
ories, or formulary approximations. This type of error usually has a certain regularity.
Researchers can assign a constant, a trend, or a period, to represent a systematic error in an
analytic formula, curve, or number table.

In the process of obtaining, conveying, and processing deformation monitoring infor-
mation, some data that are obviously inconsistent with the facts are sometimes produced.
The errors generated by this type of data are called gross errors. In terms of numerical
values, data whose absolute values are larger than two times the mean square errors can
be regarded as gross errors, which are manifested as abnormal sudden jumps or outliers.
The outliers are not representative enough for dam deformation characterizations, so they
should be opted out from the deformation behavior analysis.

Random errors are errors that are caused by a combination of unrelated random factors.
In the cases of a single measurement, the random errors may show no regularity in a single
measurement, but with enough measurements, this type of error obeys the statistical
laws. The noise is a kind of random error. The deformation monitoring information can
be divided into real data information and noise information. In deformation behavior
analysis and prediction, the existence of noise information will severely affect the accuracy
of behavior analysis and prediction, so it is necessary to extract effective information from
monitoring information.

2. Method
2.1. Completion Strategy for a Single Missing Value
2.1.1. Traditional Interpolation Completion Methods

For non-uniform time series with unequal time intervals, interpolation is usually
used to homogenize them to satisfy the application requirements of building a statistical
model. Frequently used interpolation methods include the piecewise linear interpolation,
the nearest point interpolation, the cubic spline interpolation, and the cubic Hermite
interpolation [18]. The principles of these methods are as follows:

(1) Piecewise linear interpolation

Linear interpolation refers to the interpolation method whose interpolation function
is a first-degree polynomial. The linear interpolation approximates the original function
by using a line passing through two endpoints and estimating the missing data by plug-
ging points located between these two endpoints. The method is simple and convenient.
The piecewise linear interpolation is a simple linear interpolation between each short
interval [xi, xi+1], and the sub-interpolation polynomial on the interval [xi, xi+1] is:

Fi =
x− xi+1

xi − xi+1
f (xi) +

x− xi
xi+1 − xi

f (xi+1) (2)
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The interpolation function on the whole interval [xi, xn] is:

F(x) =
n

∑
i=1

Fili(x) (3)

The definition of li(x) is as follows:

li(x) =


x−xi−1
xi−xi−1

x ∈ [xi−1, xi]
x−xi+1
xi−xi+1

x ∈ [xi, xi+1]

0 x /∈ [xi−1, xi+1]

(4)

(2) Nearest point interpolation

The nearest point interpolation estimates the function of the interpolation point by
using the function of the nearest neighboring data point. This method is simple and
intuitive, but the interpolation results are not so accurate.

Assuming the interpolation point is (xi, yi), then:

yi = ynearestx (5)

(3) Cubic spline interpolation

The cubic spline interpolation, also called Spline interpolation for short, is an inter-
polation method to obtain the value of interpolation points by constructing a cubic spline
interpolation function in the target interval. This method can effectively calculate the value
of interpolation points and improve the smoothness of the interpolation curve. However,
the computational cost of this interpolation is large.

Suppose there are interpolation nodes on the interval [a, b], a = x1 < x2 < · · · < xn =
b, and the corresponding function values are y1, y2, · · · , yn. The cubic spline interpolation
function S(x) satisfies that S(xi) = yi(i = 1, 2, · · · , n), and is not larger than the cubic
polynomial value on the interval [xi, xi+1], and it has a second continuous derivative on
the interval [a, b]. Suppose the cubic polynomial on each subinterval [xi, xi+1] is:

Si(x) = aix3 + bix2 + cix + di, i = 1, 2, · · · , n− 1 (6)

The function S(x) needs to meet:

S(xi) = yi, S(xi − 0) = S(xi + 0), i = 2, 3, · · · n− 1 (7)

S′(xi − 0) = S′(xi + 0), S′′ (xi − 0) = S′′ (xi + 0), i = 2, 3, · · · n− 1 (8)

The expression of S(x) can be obtained from a fixed boundary condition:

S(x) = (xi+1−x)3

6hi
Mi +

(x−xi)
3

6hi
Mi+1 +

(
yi − Mi

6 h2
i

)
xi+1−x

hi
+(

yi+1 −
Mi+1

6 h2
i

)
x−xi

hi

(9)

where hi = xi+1 − xi; Mi = S′′ (xi); Mi+1 = S′′ (xi+1).
By solving Equation (9) to get the parameters in Equation (8), the interpolation function

on the interval [a, b] can be constructed.
2 1

µ2 2 γ2
. . . . . . . . .

µn−1 2 γn−1
µn 2




M1
M2

...
Mn−1

Mn

 =


β1
d2
...

dn−1
βn

 (10)
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where γi = 1− µi, µi =
hi−1

hi−1+hi
, di = 6

(
yi+1−yi

hi
− yi−yi−1

hi−1

)
1

hi−1+hi
, β1 = 6

h1

(
y2−y1

h1
− y′1

)
,

βn = 6
hn−1

(
y′n −

yn−yn−1
hn−1

)
.

(4) Cubic Hermite interpolation

The Hermite interpolation method uses a curve to approximate the objective function,
which not only requires that the interpolation curve strictly passes through the data points,
but also needs to satisfy that the derivative value of each order at the data points is
equal to the original function, to build a smooth interpolation curve. The cubic Hermite
interpolation needs to know the function value of two nodes and the first derivative value
to complete the construction. The algorithm is simple, and its interpolation results are close
to real data, so it has been widely used.

Assuming that the two known nodes are
(

xj−1, yj−1
)

and
(
xj, yj

)
, and the correspond-

ing first derivative values are y′ j−1 and y′ j, the interpolation polynomial H3(x) can be
expressed as:

H3(x) = αj−1(x)yj−1 + αj(x)yj + β j−1(x)y′ j−1 + β j(x)y′ j (11)

where αj−1(x), αj(x), β j−1(x), β j(x) are the interpolation basis functions, and their highest
degree cannot exceed 3.

H3(x) meets the conditions:

H3
(
xj−1

)
= yj−1, H3

(
xj
)
= yj (12)

H′3
(
xj−1

)
= y′ j−1, H′3

(
xj
)
= y′ j (13)

Therefore, it can be solved by:

αj−1(x) =

(
1 + 2

x− xj−1

xj − xj−1

)(
x− xj

xj − xj−1

)2

(14)

αj(x) =

(
1− 2

x− xj

xj − xj−1

)(
x− xj−1

xj − xj−1

)2

(15)

β j−1(x) =
(
x− xj−1

)( x− xj

xj − xj−1

)2

, β j(x) =
(
x− xj

)( x− xj−1

xj − xj−1

)2

(16)

Thus, the final expression can be obtained as:

H3(x) =
((

1 + 2
x−xj−1
xj−xj−1

)
yj−1 +

(
x− xj−1

)
y′ j−1

)( x−xj
xj−xj−1

)2
+((

1− 2
x−xj

xj−xj−1

)
yj +

(
x− xj

)
y′ j
)( x−xj−1

xj−xj−1

)2 (17)

The function parameters of the interpolation point can be obtained by substituting
the x-coordinate at the interpolation point into Equation (17).

The rationality of the traditional interpolation method lies in that the approximation
of a small part of missing data does not affect the overall trend and law of deformation time
series. When the non-uniform data information is few, this kind of interpolation method
can be used to cover up and generate deformation time series with equal intervals.

2.1.2. Single-Value Missing Data Completion Based on NLM (Non-local Means) Method

According to the function value or derivative value of the existing data points, the tra-
ditional interpolation method approximates the objective function by constructing a curve
satisfying the basic conditions through certain mathematical methods, which can effec-
tively solve the problem of time series inhomogeneity to a certain extent. However, these
traditional interpolation methods are only based on known data and do not consider
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the physical significance of practical problems. The homogenization of the time series of
non-uniform deformation is a supplement to the deformation information of the concrete
dam at the unknown time point, which needs to take into account the actual deformation
laws of the dam. On the other hand, in the actual deformation time series, the deforma-
tion values at different moments cannot be represented by precise functional expressions,
so the derivative values of the data points cannot be obtained, and in this case, the tradi-
tional interpolation method is not applicable to solve the above problems.

In view of the situation that the time series have a long span and an uneven distribu-
tion, this paper adopts the non-local means method (NLM algorithm) [28] using non-local
knowledge of deformation information and the self-similarity of information laws at differ-
ent moments in the deformation sequence to estimate the deformation value at the missing
time periods. On this basis, a complete deformation sequence having the strongest correla-
tion with the deformation trend of the target is introduced as the calculation basis. The aim
of this method is to characterize the missing information by considering the self-correlation
between the deformation values at different moments of the deformation sequence and
the correlation between the measurement points corresponding to the position of the target.

The main idea of the NLM algorithm is to obtain a new image by weighting and
averaging the gray values of all pixels in the original image regarding the weight coefficients
of similarity. In this paper, it is applied to the homogenization of concrete dam deformation
time series to solve the single-value missing problem.

Assuming that the measured value of A deformation measurement point of the dam
body is uneven, in order to estimate single missing data, the following steps are performed.

First, from the perspective of the whole deformation time series of the measuring
points, find the measuring point B with the strongest correlation with the deformation
trend of measuring point A and complete sequence. Measuring point B can be found from
many measuring points on the same monitoring perpendicular line of point A. In this paper,
the Pearson correlation test is adopted to calculate the correlations among deformation
data of measurement points. Pearson correlation coefficient is a statistical parameter used
to quantitatively measure the correlation between variables, and its calculation formula is:

r =
N∑ δ1iδ2i −∑ δ1i∑ δ2i√

N∑ δ2
1i − (∑ δ1i)

2
√

N∑ δ2
2i − (∑ δ2i)

2
(18)

where δ1i and δ2i represent the deformation value of measuring points A and B at the same
time, and N represents the total number of sequences.

It can be seen from Equation (18) that the value of Pearson’s correlation coefficient
varies between −1 and 1, and the greater the absolute value of the correlation coefficient,
the stronger the correlation between the two variables. When the correlation coefficient
is closer to 1 or −1, the correlation is stronger, the closer the correlation coefficient to 0,
the weaker the correlation. In addition, when the correlation coefficient is greater than 0,
the two variables are positively correlated.

Secondly, the deformation value in the deformation time series of point B and the in-
terpolation point in the sequence of point A at the same time can be referred to as the hy-
pothesis interpolation point, and the weight of the deformation value of this hypothesis
interpolation point at other points in the sequence of point B may be calculated. In this
paper, the Square of Euclidean Distance (SED) is used to measure the similarity of deforma-
tion values at different times. The formula for calculating the square of Euclidean distance
is:

dij(SED) =
(
δi − δj

)2 (19)

where δi and δj represent the deformation values corresponding to the measuring points at
time i and j.

In general, the smaller the difference is between the deformation values at different
moments δti and δtj , the more similar the deformation is at the two moments, and the larger
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the weight value is given in the calculation. The weight is calculated by the following
formula:

w(i, j) = exp
(
−

dij(SED)

h2

)
(20)

where h is the parameter that controls the increased or decreased speed of the exponential
function and determines the weight.

Finally, calculate the weight of each reference point relative to the assumed interpo-
lation point based on the complete deformation sequence of point B, and assign the de-
formation value to the measuring point A at the corresponding time. Then, the value of
the interpolation point can be calculated by a weighted average. The formula is:

δi =

∑
j∈I

w(i, j)δj

∑
j∈I

w(i, j)
(21)

where I represents the set of moments of the selected entire time series.
Assume the deformation time series of measuring points A and B are shown in Figure 1,

where the sequence of measuring point B is complete, and there is a missing spot in the se-
quence of measuring point A. The dots in the figure represent the corresponding de-
formation values at different times, and the square point represents the missing value
in the sequence of measuring points A, namely the interpolation point to be solved.
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Figure 1. Schematic diagram of single value missing.

Point 1 in Figure 1 is a hypothetical interpolation point. Considering the similarity
between other points and point 1 in the sequence, the deformation values of points 2, 3,
and 4 are the same as that of point 1. According to the definition of Euclidean distance
square, the weight of points 2, 3, and 4 is 1, and the closer the value is to the value of
point 1, the larger the weight value is assigned. Through traversing the whole time series,
the weight value of all points can be obtained. The weight value of each point in the B
sequence is assigned to the corresponding point (points at the same time) in the A sequence,
and the value of the interpolation points can be obtained after weighted averaging.

2.2. Completion Strategy for Multi Missing Values

When more information spots are missing in the deformation time series, the tra-
ditional interpolation method is not able to carry out effective interpolation calculation.
Even though the NLM interpolation algorithm can calculate the value of each missing point,
it needs to calculate the weight of existing points in the reference sequence to the miss-
ing points one by one, and then calculate the weight of each missing point in the target
sequence. Although this method is feasible, the computational workload is large. To solve
the above problem, this paper introduces a multi-value missing processing method and
proposes a multi-value data missing completion method based on spatial adjacent point
BP mapping.
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2.2.1. Nonlinear Regression Analysis

The regression analysis studies the influence the degree of one variable to the other
and estimates or predicts other variables’ changes. However, in practice, the changes of
most variables are not one variable- but multi-variable-dependent. Moreover, the relation
between the explained variables and many explanatory variables, such as the concrete dam
deformation, is non-linear. According to the theory of the statistical model, the concrete
dam deformation is mainly affected by three components—water pressure, temperature,
and time effect. Each component includes more than one influence factor, so it is a mul-
tivariable nonlinear regression problem. The statistical model uses several factors to
fit the deformation trend and obtains the multiple regression equation of deformation.
Therefore, when a continuous multi-value is missing in the deformation time series of a cer-
tain measuring point, with known environmental quantity data, the regression relationship
between the two can be established from known values in the sequence. The expression of
the multivariable nonlinear regression analysis model is:

δt = f (φ1, φ2, · · · , φn) + ε (22)

where f represents the general function between δt and the influence factor, and φi is
the influence factor of concrete dam deformation.

After the equation between the deformation value and its influence factor is estab-
lished, according to the measured data, the coefficients of each factor in the model can
be determined by the least square method, and the multiple regression model is thus
established. The value of missing information can be obtained by substituting the influence
factor data of missing information segments into the above expression.

Given that the statistical model is established based on statistical methods and com-
bined with dam theory, when the monitoring data sequence is long, if the factors in the sta-
tistical model are representative, the model can accurately reflect the deformation trend of
concrete dams. Therefore, the multivariable nonlinear regression analysis model has been
widely recognized in the dam construction field.

2.2.2. Spatial Adjacent Point Regression

When the fitting accuracy of the regression model to the deformation sequence is
low or the environmental variables of the missing segment are unknown, the accuracy of
the above completion method is low. Since the single section of concrete gravity dam and
the whole dam body of concrete arch dam can be regarded as a whole, the deformation is
naturally integrated and coherent, so the deformation in local areas is correlated to a certain
extent. In other words, the missing information of a target measurement point can be
estimated according to the deformation value of its adjacent measurement point.

Assume that there are three monitoring points, A, B, and C, with similar locations and
structures in the local area of a specific concrete dam section. The deformation sequences
of measuring points A and C are complete, and a partial sequence of measuring point B is
missing, as shown in Figure 2.
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Considering the correlation of dam deformation at measuring points A, B, and C,
there is a certain correlation between the deformation value of measuring point B and
the deformation value of measuring points A and C. Therefore, according to the modeling
idea of the statistical model, this paper takes the deformation value of measuring points A
and C as the influence factors, and the deformation value of measuring point B as the target
output to establish the correlation between measuring point B and measuring points A and
C. The expression is:

δB = f (δA, δC) + ε (23)

where f (δA, δC) represents the general function between δB and two influence factors, δA,
δC, and the function relation can be expressed by polynomial as:

δB =
KA

∑
i=1

λAiδ
i
A +

KC

∑
i=1

λCiδ
i
C + βB + ε (24)

where λAi and λCi represent the coefficients of each polynomial of δA and δC respectively,
KA and KC represent the highest order of δA and δC, and βB is the translation term.

If Equation (24) is expanded, let the number of adjacent measurement points in the lo-
cal area of the target measurement point be abstracted as L, then:

δit =
L

∑
j=1

λij f
(
δjt
)
+ βi + ε (25)

where δit and δjt represent the deformation values of the measuring point i and the adjacent
measuring point j at time t respectively, and λij represents the influence coefficient of
each factor.

From the above analysis, with the known deformation information of the target
measurement point and the adjacent measurement points, the least square method can also
estimate the influence coefficients, and the expression of the model is thus established. By
substituting the hypothesis missing information of the adjacent measurement point into
Equation (25), the missing information of the target measurement point can be estimated.

2.2.3. BP Mapping of Spatial Adjacent Points

The spatial adjacent point regression interpolation method establishes the correlation
between the deformation value of the target measurement point and the deformation value
of the adjacent points, which can effectively reveal the relationships among the deformation
values of the spatial adjacent measurement points. However, the measuring points that
are located on the same deformation body, such as the measuring points on the same
section of the concrete gravity dam and concrete arch dam, have integrity, correlations,
mutual influences, and correlations in deformation, so the specific relationships between
the deformation of these measuring points are complex. However, the spatial adjacent
point regression method, which is based on the modeling idea of the statistical model, only
regresses the power series expansion of finite integer terms of variables, so it is difficult to
fully describe the unknown relationships between the deformation of measurement points,
and therefore this regression method has limitations.

It is difficult to represent the complex and unknown relationship between the defor-
mation of spatial measurement points by specific mathematical expressions. But the BP
neural network, with strong nonlinear mapping ability, can delineate the complex informa-
tion relationship behind the data through learning and training of samples. Meanwhile,
the BP neural network also has strong generalization ability, so that the trained network
can effectively process new input samples and give appropriate output results. Therefore,
in order to improve the accuracy of the missing value completion and find the true value of
deformation closest to the missing time, the BP neural network is introduced in this section
to deal with the unknown relationship between the deformation of spatial measurement
points. A corresponding missing value completion method is proposed.
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The BP network is a kind of multi-layer feedforward neural network, which realizes
operation through forward signal propagation and back error propagation. It has three
layers: input layer, hidden layer, and output layer. Each layer is composed of nodes
(namely neurons). The upper and lower nodes are connected by weight, and the nodes of
the same layer are independent of each other. Through the connection weights between
the upper and lower neurons, the network transforms the output of the upper neuron to
the input of the lower neuron, thus realizing the learning calculation of the samples.

Assume that there are n monitoring points that are spatially adjacent and structurally
related at a concrete dam body, such as points of a concrete gravity dam that are on the same
vertical line or points within the same deformation zone of a concrete arch dam (parti-
tion method is not explained in detail in this paper), when the deformation information of
the ith measuring point is missing due to some reasons, the known information of other
m = n − 1 measuring points can be used to estimate the information of point i. The steps
to establish a multi-value data missing completion method based on BP neural network
mapping are as follows:

Suppose that the sample set contains Z pattern pairs between the input vector
and the output vector, randomly select a pattern pair k, while the input pattern vec-
tor is Ak =

(
ak

1, ak
2, · · · , ak

m

)
, and the expected output vector is Yk =

(
yk

1

)
. The input

vector of the middle layer element is S =
(
s1, s2, · · · , sp

)
(p is the number of hidden

layer nodes, the same below), and the output vector is Bk =
(
b1, b2, · · · , bp

)
. The in-

put vector of the output layer element is Lk =
(
l1, l2, · · · , lp

)
, and the output vector

is C = (c). The connection weight between the input layer and the hidden layer is
w
(
w = wij, i = 1, 2, · · · , m; j = 1, 2, · · · , p

)
. The connection weight between the hidden

layer and the output layer is v
(
v = vj, j = 1, 2, · · · , p

)
. The output threshold of each unit

in the hidden layer is θ
(
θ = θj, j = 1, 2, · · · , p

)
. The output threshold of the output layer

unit is γ = (γ).
(1) Network parameters are initialized by using random assignment functions to

assign w, v, θ, and γ small random values between (−1,1).
(2) Input vector Ak, connection weight w, and threshold θ are used to calculate the in-

put S of the hidden layer. Calculate the output Bk of the hidden layer through Sigmoid
function with S, namely:

sj =
m
∑

i=1
wijai − θj j = 1, 2, · · · , p (26)

bj = f
(
sj
)

j = 1, 2, · · · , p (27)

f (x) =
1

1 + e−x (28)

(3) The output Bk, connection weight v, and threshold γ of the hidden layer are used to
calculate the input Lk of the output layer element, and then the output vector c of the output
layer element is calculated with Lk, namely:

l =
p

∑
j=1

vjbj − γ (29)

c = f (l) (30)

(4) The expected output vector Yk and the actual network output c are used to calculate
the generalized error dk of the output layer element, namely:

dk =
(

yk − c
)

c(1− c) (31)
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(5) The connection weight v, the generalization error dk of the output layer, and the out-
put Bk of the hidden layer are used to calculate the generalization error ek of each element
of the hidden layer, namely:

ek
j =

(
dkvj

)
bj
(
1− bj

)
(32)

(6) Use the generalized error dk of the output layer element and the output Bk of each
element in the middle layer to correct the connection weight v and threshold γ, that is:

vj(N + 1) = vj(N) + ηdkbj + α
(
vj(N)− vj(N − 1)

)
(33)

γ(N + 1) = γ(N) + ηdk (34)

where η stands for learning efficiency and take η = 0.01 ∼ 0.8. α is the momentum factor
and take α = 0.9.

(7) The connection weight w and threshold θ are modified by the generalized error ek
j

and input mode vector Ak of each element of the hidden layer, namely:

wij(N + 1) = wij(N) + ηek
j ak

i + α
(
wij(N)− wij(N − 1)

)
(35)

θj(N + 1) = θj(N) + ηek
j (36)

(8) Randomly select another learning pattern pair in the training sample set and repeat
steps (3)–(6) until all pattern pairs are trained.

(9) Calculate the global error function E of the network, and its formula is:

E =
Z

∑
k=1

Ek =
Z

∑
k=1

(
yk − c

)2
/2 (37)

If E is less than a preset error value, the network stops learning; otherwise, repeat
steps (3)–(8) for the next round of learning and training of the sample set.

(10) The trained network is saved, while new samples are input, and the output result
of missing information completion is obtained.

Take n = 5 as an example, the input layer is the deformation sequence of four
relevant measurement points, and the output layer is the deformation sequence of the target
measurement points. The network structure is shown in Figure 3.
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3. Case Study

In order to verify the feasibility and effectiveness of the incomplete information
processing and gross error detection methods proposed in this chapter, the deformation
data of a concrete gravity dam is used in this analysis.
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This gravity dam is located at the junction of Yibin County, Sichuan Province, and Shuifu
County, in Yunnan Province. The dam serves various purposes: power generation,
improvement of navigation conditions, flood and sand control, and irrigation. The moun-
tains on both sides of the dam toe incline slightly to the downstream. The bedrock surface
of the dam (riverbed) is slightly inclined upstream, and there are coherent grooves on both
sides. Bedrock lithology and lithofacies change abruptly, thus, the cross-stratification de-
velops. Eleven small faults are found over the riverbed and dam foundation. The planform
of the dam is shown in Figure 4.
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Figure 4. Planform of the dam.

This dam is a concrete gravity dam with a normal water level of 380.0 m and a dead
water level of 370.0 m. The dam water-retaining structures include the sluice section,
the non-overflow dam section, the sand flushing hole dam section, the ship lift dam section,
the powerhouse dam section, and the water release dam section. The dam crest elevation
is 384.0 m (above sea level), with maximum dam height of 162.0 m, and dam crest length
of 909.26 m. The upstream vertical view of the dam is shown in Figure 5.
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Figure 5. Upstream vertical view of the whole dam.

The average annual rainfall of the reservoir is 1000 mm, with the maximum level of
the annual daily rainfall over 90 mm, or the medium annual daily rainfall level in the Sichuan
Province. The upstream water level (recently) is 380 m and has remained high for a long
time. The downstream water level is usually around 270 m.
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In order to monitor the horizontal displacement of the dam, vertical lines are arranged
in each important dam section. In this section, the monitoring data of each measuring
point on the positive vertical line of the dam sluice Section 1 are taken as an example for
analysis (Figure 6). The horizontal displacement process line of the six measuring points
is shown in Figure 7. The frequency of measurement is once a day. It can be found that
the horizontal displacement process line of these measuring points has strong correlation.
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4. Result and Discussion
4.1. Single-Value Missing Data Completion

Take the measuring point PL5-3 in Figure 6 as an example, the strongest correlation
reference sequence with the deformation sequence of the measuring point is searched.
The correlation between the sequence of target measurement points and the sequence of
other measurement points is shown in Table 1.

Table 1. Correlation results of deformation sequences of target measurement points and adjacent
measurement points.

Adjacent Points
PL5 PL5-1 PL5-2 PL5-4 PL5-5

Target Points

PL5-3 0.7952 0.9231 0.9563 0.9895 0.9668

It can be seen from the calculation results in the above table that the deformation
sequence of measuring point PL5-4 has the strongest correlation with the target sequence,
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and the deformation law is the most similar. Therefore, the reference measuring point is
PL5-4.

For the deformation sequence from 31 August 2014 to 18 September 2014, there are
19 deformation data point, as shown in Table 2.

Table 2. Summary table of deformation data of target measurement points and reference measure-
ment points.

Date
Deformation Value/mm

Date
Deformation Value/mm

PL5-3 PL5-4 PL5-3 PL5-4

2014 August 31 6.14 6.85 2014 September 10 7.93 9.41
2014 September 1 6.18 7.09 2014 September 11 7.83 9.22
2014 September 2 6.84 7.75 2014 September 12 8.06 9.31
2014 September 3 6.93 7.95 2014 September 13 8.47 9.82
2014 September 4 7.98 9.20 2014 September 14 7.91 9.18
2014 September 5 8.38 9.63 2014 September 15 8.07 9.42
2014 September 6 8.10 9.62 2014 September 16 8.12 9.49
2014 September 7 8.36 9.66 2014 September 17 8.37 9.70
2014 September 8 7.74 9.21 2014 September 18 8.17 9.36
2014 September 9 7.88 9.13

Suppose that the deformation data of 10 September 2014 is missing, use the interpola-
tion method based on non-local means proposed in this paper and the traditional method
to estimate the missing value, respectively. The results are shown in Table 3.

Table 3. Comparison of the estimated results of each interpolation method.

Missing
True

Value/
mm

Estimates for Each Method/mm

Linear Interpolation Proximity
Interpolation

Spline
Interpolation

Hermite
Interpolation

NLM
Interpolation

Value Error Value Error Value Error Value Error Value Error

7.93 7.8550 0.075 7.8300 0.1 7.9175 0.0125 7.8556 0.0744 7.9316 0.0016

It can be seen from the calculation results of each interpolation method that the esti-
mation result of the proposed single-value missing completion method based on non-local
means is close to the original monitoring values. At the same time, it can be found that
when the missing value is not within the range of two values before and after the miss-
ing value, the traditional interpolation method is difficult to estimate such deformation
value effectively. However, the NLM interpolation method overcomes this limitation by
using self-similarity of deformation sequences and introducing reference sequences, which
increases the accuracy of missing value estimation.

4.2. Multi-Value Missing Data Completion

Similarly, take the deformation sequence of PL5-3 as an example. A one-month missing
segment is constructed manually (from 1 September 2014 to 2 October 2014). The BP neural
network is used to establish the mapping relationship between other measurement points
on the same vertical line and the deformation sequence of target measurement points.
First, the training samples made up of known deformation data of each measurement point
are imported into the BP neural network for learning. Second, the deformation values of
the missing time of other measurement points are constituted and imported into the trained
network to calculate the missing data of target measurement points. The calculation results
of each method are shown in Figure 8, and the completion accuracy is shown in Table 4.
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Table 4. Comparison of completion accuracy of missing values.

Completion
Method

Linear
Interpolation

Nonlinear
Interpolation

Space Adjacent
Points

Interpolation

BP
Interpolation

Determination
coefficient 0.1094 0.6053 0.9518 0.9527

Root Mean
Square error 1.4702 0.8470 0.2753 0.1292

As can be seen from the results in Figure 8 and Table 4, the completion accuracy
of the multi-value missing completion method proposed in this paper based on spatial
adjacent point BP mapping is higher than that of the other three methods. The coefficient of
determination and root-mean-square error all achieve satisfactory results. The interpolation
method of spatial adjacent points also has a good estimation result, but since this method
only uses the deformation information of the upper and lower measurement points for
regression analysis, it cannot fully dig out the relevant information of the deformation of
the target measurement points. The nonlinear regression utilizes the idea of a statistical
model, which can be used for completion under the condition of tiny changes of envi-
ronment quantity. The effect of linear interpolation is poor, so it is difficult to estimate
multi-value missing data.

5. Conclusions

This paper proposed a completion method for the missing deformation monitoring
data of concrete dams. The main points are as follows:

(1) The monitoring data missing of concrete dam deformation was discussed, including
deformation monitoring data characteristics and data contamination types.

(2) A data completion method with high accuracy, good stability, and strong adaptability
validated through a case study was proposed. By reviewing the traditional processing
methods to deal with incomplete information, this paper discussed the principle and
weakness of traditional missing value completion methods in the case of single-value
missing and multi-value missing. For the single-value missing in monitoring data,
the non-local mean method was studied, and the regression interpolation method of
spatial adjacent points was improved to accomplish data completion. For the multi-
value missing data completion, the nonlinear regression and the spatial adjacent point
regression were used, and the BP mapping of spatial adjacent points was proposed to
complete the missing data pieces. The method proposed in this work is simple and
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effective to complete long data sequences and can meet the requirements of safety
monitoring during dam operation.
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