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Abstract: To study the damage and destruction behavior of small coal pillars in coal mine roadway
driving along gobs under long-term in-situ stress and multiple engineering disturbances, an uncon-
fined compression experiment under a discontinuous cyclic load was designed, with the holding time
as a variable. An electro-hydraulic servo rock testing machine was used to impose a discontinuous
cyclic load on the coal sample and perform a final uniaxial compressive strength test. The changes in
pore number and diameter in the coal under stress were monitored by nuclear magnetic resonance
analysis. An increase in holding time in the discontinuous cyclic loading resulted in a significant
increase in the number and diameter of pores in the coal sample; the coal porosity continued to
increase, and the proportion of pores in the coal changed. The proportion of micropores decreased
gradually, whereas the proportion of mesopores and macropores (cracks) increased. The degree of
internal specimen damage increased with an increase of holding time, which resulted in a gradual
decrease in final uniaxial compressive strength. Therefore, under the action of a long-term stress, to
improve the bearing capacity of the coal pillar while avoiding gas and water influx into the working
face in the goaf, the coal pillar should be reinforced with multi-layer and multi-grain grouting.

Keywords: coal damage; discontinuous cyclic loading; nuclear magnetic resonance; pore structure

1. Introduction

As a typical mining layout form that saves coal resources, improves the resource
recovery rate, and simplifies mining and excavation replacement, gob (after the coal is
mined, the original working face position is called the gob)-side entry (GSE) has been used
extensively in Chinese coal mining roadways [1,2]. The development of the surrounding
rock joints and fissures of the GSE is affected by factors such as multiple mining at the
working face, advanced support pressure and other factors, and is often accompanied by
engineering disasters, such as the collapse of slabs of coal pillars on the side of the goaf [3,4].
The small coal pillar is an important part of the surrounding rock of GSE, and its stability
affects the roadway stability directly.

Extensive research has been conducted on coal damage and destruction and related
mechanical properties. To reproduce the force process of coal pillars in underground
engineering, cyclic loading is usually used to test the long-term mechanical properties
of coal. Eberhardt et al. [5] analyzed the mechanical characteristics of fracture damage
during the uniaxial cyclic loading and unloading of rocks and studied the propagation
conditions and fracture criteria of microcracks through experimental results. Zhou et al. [6]
conducted uniaxial cyclic loading and unloading tests on sandstone and proposed that
the macroscopic fatigue failure mode of rock under uniaxial cyclic loading and unloading
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conditions depends on the fracture propagation form of internal microcracks. The impact
of mechanical performance is more obvious. Xiao et al. [7] carried out uniaxial loading
and unloading tests on coal samples, proposed that the plastic properties of each cycle
are the dissipation energy of new cracks, and fitted the elastic energy index correction
formula. Ge et al. [8] proposed that the main factors that affect the rock fatigue life are
the upper limit stress and amplitude of the cyclic load. Geranmayeh et al. [9] studied
the deformation and strength response of sandstone and granodiorite under multi-stage
uniaxial cyclic compression loads. It is believed that the different deformation and failure
modes of these two rocks under cyclic loading are mainly due to the difference in their mi-
crostructures. Zhou et al. [10] conducted a permeability test on the sawtooth fractured rock
subjected to periodic axial loads. The results show that the increase in axial displacement
roughly contributed to the permeability reduction, and excessive amplitude of cyclic load
posed a limited boost to the permeability enhancement. However, few people discuss the
applicability of the cyclic load loading method.

The difference in mine development layout yields a certain time interval between
multiple mining disturbances, so the coal pillar is not in an ideal continuous cycle loading
and unloading state. Different from general sedimentary rock, multi-level fissures in coal
develop visibly [11,12]. The long-term continuous force expands the internal fissures of
the coal fully, and its mechanical properties and pore characteristics are changed [13],
which affects the bearing capacity strength of the coal pillar. Therefore, the influence of the
continuous load-holding time interval in discontinuous cyclic loading on coal damage was
the focus of this work.

Nuclear magnetic resonance (NMR) is a new type of non-destructive testing tech-
nology that utilizes quantum magnetism at the atomic scale [14]. It has been used ex-
tensively in tests and research in the fields of crack identification, pore distribution, rock
meso-structure damage, and rock physical and mechanical characteristics under different
conditions, and has become an important rock physical test analysis method [15,16]. By
analyzing changes in the number of pores with different diameters in coal-rock masses after
microwave treatment by NMR, Li et al. [17] obtained the evolution of the pore diameter
in coal-rock masses after microwave-induced fracturing. Sun et al. [18] used nuclear mag-
netic resonance equipment to study the changes in the pore structure of the granite in the
high-level radioactive waste repository after high-temperature treatment, and described
the relationship between the peak value and area of the T2 curve and the pore structure
of the rock mass. Sun et al. [19] used nuclear magnetic resonance equipment to study
the meso-damage evolution characteristics of granite in cold regions after undergoing
freeze-thaw cycles.

Previous engineering experience has shown that under the action of extended multiple
mining disturbances, internal primary fissures continue to expand and converge, and
eventually induce coal pillar instability and destruction [20,21]. However, few studies exist
on the evolution of pores of different diameters, the degree of crack development, and
strength attenuation in coal for long-term engineering disturbances, and most occur at the
macro level. Therefore, this work proposes an unconfined uniaxial compression experiment
under discontinuous cyclic loading. NMR analysis was used to test the damaged coal
for different holding times, and the pore evolution and internal fissure development of
different damaged coal bodies was obtained. According to the coal failure test, the damage
and strength attenuation mechanism of the coal body were studied.

2. Experimental Work
2.1. Experimental Samples

Fresh coal was from an 810-m depth in a coal mine in Shaanxi, China. Figure 1 provides
an image of the coal sample that was scanned with a scanning electron microscope (SEM),
and the coal sample was enlarged 300 times to show obvious cross-crack development, in
which the gap width varied from 14.5 µm to 33.1 µm. The different areas were enlarged
2000 times and showed obvious micro–nano cracks of ~0.9–1.8 µm. Microcracks exist in
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the coal at the sampling point. To reduce the influence of coal sample discreteness on
the test results, the samples were drilled from the same large coal body. The coal sample
was processed into a 50-mm-diameter cylinder with a 100-mm height. Both ends were
ground flat according to International Society for Rock Mechanics (ISRM) requirements.
Samples with a larger dispersion were eliminated by sonic testing, and 12 standard samples
were obtained.

Figure 1. Scanning electron microscope (SEM) results of coal sample: (a) magnified 300 times; (b) magnified 2000 times.

2.2. Experimental Platform

To study the characteristics of the coal microstructural deterioration, a laboratory hy-
draulic press–NMR experimental platform was established (see Figure 2), which included:

Figure 2. The experimental platform.

(1) Hydraulic servo testing machine

The compression experiment used a hydraulic servo-controlled material testing ma-
chine C64.106 (MTS) (MTS Industrial Systems Co., Ltd., Shenzhen, China) with a maximum
load capacity of 1000 kN, a test force measurement accuracy of ±0.5%, an adjustable
sampling frequency of 1000 Hz, and a displacement measurement accuracy of ±0.5.

(2) NMR analysis equipment
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The MacroMR12-150H-I low-field NMR core microscopic non-destructive testing and
analysis system (Suzhou Niumag Electronic Technology Co., Ltd., Suzhou, China) was
used to test the internal crack expansion of coal. The NMR instrument has a 0.3 T magnetic
field. All the experiments were performed at a constant temperature of 32.0 ± 0.02 ◦C. The
NMR Carr–Purcell–Meiboom–Gill (CPMG) sampling sequence is shown in Table 1.

Table 1. Parameters of Carr–Purcell–Meiboom–Gill (CPMG) sequence.

Parameters Value

Signal frequency 12 MHz
Frequency offset 696,604.31 Hz

Radio-frequency pulse width for 90◦ 13 µs
Radio-frequency pulse width for 180◦ 25.04 µs

Echo time 0.16 ms
Waiting time 3.5 s

Scanning number 4
Number of echoes 3000

(3) Experimental auxiliary equipment

Test auxiliary equipment included a dryer and vacuum-saturated water device. A
desktop DHG-9003 electric heating convection drying oven (CDO) (Shanghai Jinghong
Experimental Equipment Co., Ltd., Shanghai, China) was used to remove internal mois-
ture from the coal sample. The temperature control range of the drying oven was room
temperature +10–200 ◦C. To reduce the temperature damage to the coal sample as much as
possible, the working temperature of the CDO is set to 50 ◦C. A ZYB-II vacuum-saturation
device (VSD) (Shanghai Jinghong Experimental Equipment Co., Ltd., Shanghai, China) was
used to vacuum-saturate the sample. During the vacuum saturation process, the vacuum
pressure value is 0.01 MPa and the air is pumped for 1 h. Then the coal is soaked in water
for 8 h.

2.3. Experimental Method

(1) Initial test. An unconfined uniaxial compression experiment under a discontinuous
cyclic load was designed, as shown in Figure 3. The twelve coal samples were divided into
four groups of three samples each. The measured size and mass of the coal samples are
presented in Table 2. All samples were dried continuously for 8 h at 50 ◦C in the dryer. The
coal sample was treated with saturated water (vacuum pressure of 0.01 MPa, pumping for
1 h), and soaked in water for 8 h. The NMR analyzer was used to collect the initial pore
and crack distribution information of the coal to obtain the initial T2 curve.

Figure 3. Experimental procedures.
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Table 2. Basic information of coal sample.

Holding Time Specimen Height (mm) Diameter (mm) Weight (g)

0 min
A1 99.50 49.64 235.98
A2 99.75 49.76 239.15
A3 99.81 50.01 240.23

5 min
B1 99.54 50.10 231.19
B2 99.43 49.63 233.81
B3 100.02 49.60 237.09

10 min
C1 99.90 49.78 240.71
C2 99.42 50.06 237.81
C3 99.93 49.54 231.90

15 min
D1 99.95 49.66 239.04
D2 99.72 49.64 233.32
D3 100.33 49.97 238.85

(2) Force loading. The coal sample was dried and the rock testing machine was used
to impose different discontinuous cyclic loads on the coal sample to destroy the coal body
structure. The force loading curve is shown in Figure 4. Three cycles were used with a
holding force of 27 kN (60% unconfined uniaxial compressive strength, (UCS)) [22], and
a holding time of 0, 5, 10, and 15 min. The loading method was deformation control at a
loading rate of 0.02 mm/s.

Figure 4. Real force loading curve of discontinuous cyclic load.

(3) Final test. The samples after being subjected to the force was treated with vacuum-
saturated water (the method is same as the initial test), and NMR analysis equipment was
used to collect the final pore and fracture information of the coal sample to obtain the final
T2 curve. The sample was dried, the final uniaxial compression test was performed with a
press until the sample failed, and the uniaxial compression stress–strain curve and final
UCS of the rock under different force loading modes was obtained.
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3. Results and Discussion
3.1. Pore Structure Alterations Characterized by NMR Response

One of the meanings of the low-field NMR T2 distribution in fluid physics is the
pore size distribution of the core. The T2 distribution provides pore-size-distribution
information [23]. In rock pores, the T2 relaxation time of fluid can be expressed as [24,25]:(

1
T2

)
total

=

(
1
T2

)
S
+

(
1
T2

)
D
+

(
1
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)
B

(1)

where:
(
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)
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is the total relaxation time;
(

1
T2

)
S

is the fluid transverse relaxation time

caused by surface relaxation;
(

1
T2

)
D

is the fluid transverse relaxation time caused by

diffusion relaxation under a gradient magnetic field;
(

1
T2

)
B

is the transverse relaxation
time of the fluid in a free state.

An important feature of the rock surface relaxation is related to the specific surface
of the rock. A larger specific surface area of the rock (which refers to the ratio of pore
surface area to pore volume in the rock) yields a smaller T2 relaxation time, and vice versa.
Therefore, the rock surface relaxation can be expressed as [26]:

1
T2

= ρ × S
V

(2)

where ρ is the relaxation rate of the rock surface and S/V is the ratio of the pore surface area
to fluid volume.

If we assume that the pore radius is related positively to the throat radius, Equation
(2) becomes [27]:

1
T2

=
ρ

r
× Fs (3)

where Fs is the geometric factor and r is the aperture. Based on Equations (1)–(3), the lateral
relaxation time is proportional to the pore radius r of the core. Therefore, the T2 distribution
can reflect the pore radius distribution. A longer relaxation time has a larger corresponding
hole radius, and vice versa.

3.2. Quantification of Coal Porosity with NMR Measurements

Figure 5 shows the initial T2 distribution curves of the four groups of coal samples
and the final T2 distribution curves after different discontinuous cyclic loads. According to
the NMR relaxation mechanism, the width of the peak of the T2 distribution curve reflects
the sorting of certain pore types, and the number of peaks reflects the continuity of pores
at various levels [28,29]. A continuous bimodal distribution is usually observed in the T2
curve of the test coal. This distribution indicates that the pore structure of coal is complex.
Pores and cracks of various sizes in coal are pre-existing, and the connectivity between
different pores is better. The first peak on the left of the T2 distribution accounts for a large
proportion of total pores, which indicates that many micropores exist in the coal sample.
An increase in holding time in the discontinuous cycle load increases the amplitude of the
T2 distribution curve of all coal samples gradually. When the holding time was 0 min, the
average maximum amplitude of the first peak of the T2 distribution was 215. When the
holding time increased to 15 min, the average maximum amplitude of the first peak was
320, which is an increase of 48.5%. Therefore, as the holding time increased, the degree of
damage inside the specimen increased gradually. These results are similar to the results of
Wang [30].
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Figure 5. Distribution curve of coal samples under different holding time: (a) 0 min; (b) 5 min; (c) 10 min; (d) 15 min.

The changes in size and number of pores in the rock can be reflected by the T2
distribution area, where the area is correlated positively with the size and number of
the corresponding pores [31]. Figure 6 shows the spectral area changes before and after
all samples were destroyed. As the holding time increased, the spectral area increased
gradually. When the holding time was 0 min, the average spectral area was 5770. When the
holding time was 15 min, the average spectral area increased to 11,000, and the growth rate
was 90.9%. As the holding time increased, the size, number, and porosity of the internal
pores in the coal sample increased gradually.

Yao [32] showed that different relaxation time ranges of T2 distribution curves rep-
resent different pore sizes of rock masses. For coal masses, T2 < 10 ms corresponds to
micropores; T2 from 10 to 100 ms corresponds to mesopores and T2 > 100 ms corresponds
to macropores (cracks), as shown in Figure 7.

According to the above pore classification method, changes in the proportion of
pores of different sizes in the sample under different discontinuous cyclic loads are shown
in Table 3. The averages of the pore proportions of coal samples before and after the
experiment for different holding times reflect the change in absolute ratio of different
pore sizes in the sample with holding time, as shown in Figure 8a–c. As the holding time
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increased, the absolute ratio of micropores decreased from 76.2% (0 min) to 69.5% (15 min),
the absolute ratio of mesopores increased from 17.1% (0 min) to 24.2% (15 min), and the
absolute ratio of large holes increased from 4.78% (0 min) to 6.28% (15 min). As the holding
time increased, the distribution of micropores, mesopores, and macropores (cracks) within
the sample changed. The absolute proportion of micropores decreased constantly, whereas
the absolute proportion of mesopores and macropores (cracks) increased constantly.

Figure 6. Changes in the area of the T2 distribution curve of coal samples.

Figure 7. Relationship between T2 and pore size.
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Table 3. Proportional variations of pore sizes in core (%).

0 min
A-1 A-2 A-3

Before After Before After Before After

Micropores 85.31 77.6 80.29 75.06 79.43 75.84
Mesopores 14.32 18.25 19.05 20.44 19.22 18.47
Macropores

(cracks) 0.37 4.15 0.66 4.5 1.34 5.69

5 min
B-1 B-2 B-3

Before After Before After Before After

Micropores 83.20 75.66 82.32 75.25 85.66 76.37
Mesopores 15.66 18.66 17.29 19.74 13.7 18.94
Macropores

(cracks) 1.14 5.68 0.4 5 0.63 4.69

10 min
C-1 C-2 C-3

Before After Before After Before After

Micropores 86.05 74.11 84.69 72.52 83.41 72.51
Mesopores 13.58 20.88 14.23 21.85 15.72 22.12
Macropores

(cracks) 0.37 5.01 1.08 5.63 0.87 5.36

15 min
D-1 D-2 D-3

Before After Before After Before After

Micropores 82.46 68.9 85.24 69.46 82.43 70.11
Mesopores 16.36 22.86 14.02 24.67 16.48 25.15
Macropores

(cracks) 1.18 8.24 0.74 5.87 1.09 4.74

The difference between the average pore proportion of the coal sample before and after
the force is loaded can reflect the increase and decrease in relative pore proportion for differ-
ent holding times, as shown in Figure 8d. An increase in holding time increased the decrease
in relative proportion of micropores from 5.51% (0 min) to 13.9% (15 min), and the increase
in relative proportion of mesopores increased from 1.52% (0 min) to 8.61% (15 min). The
relative proportion of macropores (cracks) increased from 3.99% (0 min) to 5.28% (15 min).
As the holding time increased, the relative proportion of micropores decreased, and the
relative proportion of mesopores and macropores (cracks) increased.

According to Figures 5–7, as the holding time increased, the maximum signal am-
plitude, total spectral area, and amplitude of pores of various sizes of the sample T2
distribution curve increased to varying degrees. The degree of damage inside the sample
increased gradually. The proportion of micropores (including the absolute proportion
between different samples, and the relative ratio before and after loading of different
samples) decreased as the holding time increased, and the proportion of mesopores and
macropores (cracks) increased. Therefore, many microcracks inside the sample aggregated
into medium and large cracks under the action of three discontinuous cycles of force
loading and a continuous load-holding force, which aggravated the internal damage of the
rock mass.

3.3. Attenuation of Coal Strength under Discontinuous Cyclic Loading

The final uniaxial compression test was performed on all damaged samples that were
subjected to a force loading, and the stress–strain curve is shown in Figure 9. The UCS of
all curves is extracted to Table 4.
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Figure 8. Proportion change characteristics of pores of different sizes: (a) proportion of micropores; (b) proportion of
mesopores; (c) proportion of macropores (cracks); (d) changes in the gap of the proportion of pores before and after
coal failure.

Table 4. Uniaxial compressive strength (UCS) of coal samples under different holding times.

Holding Time (min) Sample UCS (MPa) Average UCS (MPa)

0 min
A-1 17.6

18.7A-2 19
A-3 19.5

5 min
B-1 13.6

14.2B-2 13.8
B-3 15.2

10 min
C-1 12.5

11.9C-2 11.2
C-3 11.9

15 min
D-1 7.69

8.79D-2 10.3
D-3 8.38
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After the sample underwent discontinuous cyclic loading, the load-bearing capacity
of the sample decreased significantly, and the UCS decreased with an increase in holding
time. When the holding time was 0 min, the average UCS was 18.7 MPa, and the strength
attenuation rate was 18.7%. When the holding time was 15 min, the average UCS was
8.79 MPa, and the strength attenuation rate was 61.8%.

The increase in holding time increased the total pore volume in the rock mass, espe-
cially the increase in volume of macropores (cracks) and mesopores, which aggravated
internal damage of the rock mass and gradually reduced the UCS. These results indicate
that the destructive effect of stress on coal was reflected in the size and duration of the force
action. The rock mass produced a mechanical behavior that was similar to metal material
creep. It is embodied in the initiation–expansion-assembly of cracks of various sizes inside
the rock mass. The number and size of microcracks accumulated to a certain extent and
large cracks formed. The accumulation of large cracks eventually caused macroscopic
cracks in the rock mass and macroscopic damage to the coal mass.

Figure 9. Stress–strain curves under different holding time: (a) 0 min; (b) 5 min; (c) 10 min; (d) 15 min.

As shown in Figure 8, with an increase in holding time, the post-peak characteristics
of the stress–strain curve of the sample gradually became apparent, and the post-peak
load-bearing capacity increased gradually. This characteristic can also be reflected in the
failure form of coal. As shown in Figure 10, when the holding time was 0 min, the coal
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showed brittle failure. When the coal was destroyed, it burst instantly with a loud noise.
When the holding time increased gradually, the form of damage eased gradually. Even
when the holding time was 15 min, the coal maintained its basic integrity after it was
destroyed. A longer holding time yielded a more relaxed coal body damage mode. The
holding time had an important influence on the crack initiation-expansion process and
changed the coal failure mode.

Figure 10. Failure form of coal samples: (a) 0 min; (b) 5 min; (c) 10 min; (d) 15 min.

3.4. Implications for Engineering Applications

According to the above research results, an increase in holding time in the discontinu-
ous cyclic load increased the degree of damage inside the coal body. For small coal pillars of
the gob-side entry, the expansion of internal fissures reduced the supporting strength of the
coal pillars and reduced their bearing performance significantly under long-term ground
stress. The increase in mesopores and macropores (cracks) inside the coal pillar increased
the coal permeability and reduced the tightness of the coal pillar. The probability of gas
and water in the goaf that flowed into the working face increased significantly. Therefore,
it is necessary to grout the coal pillars to improve the bearing capacity of the coal pillars
and reduce the coal permeability.

The most widely used cement slurry (superfine cement) has a minimum pourable
width of only ~0.1 mm [33]. The microcracks in the coal were relatively developed, and
the average pore diameter and dominant pore diameter of the matrix system were at
the nanometer level. The cement slurry had little effect on the sealing of a micro-matrix
system, and could only close the macrocrack. Silica sol is a nanoscale grouting material
with a particle size of 8–12 nm, a D95 of 62 nm [34], an ultra-low viscosity (the fluidity is
equivalent to water), an ultra-strong permeability (permeable to 0.02 µm gaps) and is the
best permeability grouting material. However, the silica sol strength is low, and the UCS
after curing for 500 days is only 320 kPa (A:B = 4:1) [35].

Therefore, a multi-component and multi-granularity coal pillar grouting reinforcement
method based on “silica sol-cement slurry” was proposed. The construction process is
as follows: (1) Select a suitable position to drill several vertical holes in the coal pillar
before mining. (2) Use the grouting pipeline to inject PO 425 cement slurry to cement the
broken coal and fill the macrocracks. Improve the strength of the broken coal. (3) After
the cement slurry has solidified, use drilling equipment to sweep the hole at the original
drilling position and re-insert the grouting pipeline. (4) Inject silica sol at a low pressure
and keep it at low pressure for an extended time. The silica sol diffuses fully under the
action of a capillary adsorption force to fill the fine cracks in the coal body, which can
improve the coal pillar tightness.
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The method uses cement as the main binding material, improves the overall strength
of the crushed coal body, and can improve the bearing performance of the coal pillar.
Silica sol was used to seal the microcracks in coal and cement, which reduces the coal
permeability, and isolates water and gas infiltration in the goaf. The materials used were
non-toxic and non-heating, and have good application prospects.

4. Conclusions

Coal damage and deterioration under discontinuous cyclic loading was examined
quantitatively and critically. A low-field NMR analysis system was used to monitor
the internal micropore expansion law and strength weakening mechanism of coal under
different discontinuous cyclic loads. The conclusions can be summarized as:

An increase of holding time in the discontinuous cyclic loading increased the ampli-
tude of the T2 distribution curve and the area of the T2 distribution curve gradually. As
the holding time increased, the size, number, and porosity of the internal pores in the coal
sample increased gradually. The proportion of pores in the coal changed. The proportion
of micropores decreased gradually, whereas the proportion of mesopores and macropores
(cracks) increased gradually. The increase of mesopores and macropores (cracks) improved
the coal body permeability.

The increase in holding time aggravated internal damage of the rock mass, resulting in
a gradual decrease in the final UCS. Moreover, a longer holding time yielded a more relaxed
coal body damage mode. With an increase in holding time, the post-peak characteristics
of the stress–strain curve of the sample gradually became apparent, and the post-peak
load-bearing capacity increased gradually.

For the prevention of the failure of small coal pillar, it is necessary to reconstruct the
coal strength and seal the fine cracks through grouting under the action of long-term in-situ
stress. A multi-component and multi-granular coal pillar grouting reinforcement method
based on “silica sol-cement slurry” was proposed, which can improve the load-bearing
performance of coal pillars and reduce the coal permeability.
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