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Abstract: With increasing public demand for ready-to-eat fresh-cut food products, proper sanita-
tion of food-processing equipment surfaces is essential to mitigate potential contamination of these
products to ensure safe consumption. This study presents a sanitation monitoring technique using
hyperspectral fluorescence images to detect fruit residues on food-processing equipment surfaces.
An algorithm to detect residues on the surfaces of 2B-finished and #4-finished stainless-steel, both
commonly used in food processing equipment, was developed. Honeydew, orange, apple, and
watermelon were selected as representatives since they are mainly used as fresh-cut fruits. Hyper-
spectral fluorescence images were obtained for stainless steel sheets to which droplets of selected
fruit juices at six concentrations were applied and allowed to dry. The most significant wavelengths
for detecting juice at each concentration were selected through ANOVA analysis. Algorithms using a
single waveband and using a ratio of two wavebands were developed for each sample and for all
the samples combined. Results showed that detection accuracies were better for the samples with
higher concentrations. The integrated algorithm had a detection accuracy of 100% and above 95%,
respectively, for the original juice up to the 1:20 diluted samples and for the more dilute 1:50 to 1:100
samples, respectively. The results of this study establish that using hyperspectral imaging, even a
small residual quantity that may exist on the surface of food processing equipment can be detected
and that sanitation monitoring and management is possible.

Keywords: fresh-cut food; hyperspectral fluorescence; stainless steel; organic residue; detection

1. Introduction

Increasing consumption of prepackaged, ready-to-eat fresh-cut foods by people living
in busy urban areas has been accompanied by a growing need to ensure food safety and
stability, in part due to the occurrence of multiple outbreaks of foodborne illnesses [1].
Although any field-harvested produce can include contaminants such as bacteria, worms,
or feces, [2–4], microbial growth can occur more easily after fresh-cut processing and thus,
fresh-cut products are often more perishable and more vulnerable to pathogens [5]. Incom-
plete cleaning and sanitation of equipment used to handle these products, such as pumps,
tanks, and containers, can lead to cross-contamination of food products. Contamination
on the surfaces of food processing equipment is a potential cause of pathogen transmis-
sion to finished products of food-processing procedures [6,7]. Food residue remaining on
equipment surfaces can shield bacteria from sterilization and drying stress [8]. To reduce
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the risk of contamination of agricultural products during such processing, it is necessary to
develop better sanitation monitoring systems [9].

Sanitation monitoring of processing surfaces in food processing facilities is primarily a
manual operation (e.g., visual inspection) conducted by inspectors according to established
guidelines [10]. The conventional sanitary inspection method, namely, microbial contam-
ination inspection, involves identifying a potentially contaminated location, collecting
samples from the surface of this location, culturing the microorganism(s) for a period
of one to three days, and as counting single organisms is very difficult. This microbial
culturing process is tedious, requiring laboratory operations. Nucleic-acid-based methods
are more sensitive than traditional culture-based methods because they enable detection of
the DNA or RNA sequences of specific pathogens; however, they require skilled experts
and expensive equipment and are also tedious [11,12]. These methods can be used to
measure different contamination levels in one area corresponding to the sampling location,
and the number of samples obtained via these methods is limited by the analysis equip-
ment and the analysis period. Therefore, monitoring techniques, which can enable rapid
measurement of the contamination levels without limiting the number of samples and
the sampling locations, are required. A system that can rapidly and accurately detect the
presence of vectors for pathogen growth on the surfaces of food processing equipment is
especially needed to enhance food safety [13].

Various imaging and spectroscopic technologies have been researched for the rapid
detection of contamination in foods and food processing facilities [14,15]. Particularly,
hyperspectral imaging technology, which combines imaging and spectroscopy techniques,
facilitates nondestructive measurement, involving the acquisition of spatial and spectral
information simultaneously for each pixel in a sample image [16]. It can also facilitate
mapping of the differences in the physical, chemical, and biological properties of a target
object into a spatial distribution, and monitoring of the entire surface of the target object in
real time. This technology has been studied in recent years for application in fields such
as food safety inspection, quality identification of agricultural products, and biological
contaminant detection [17], alongside, analysis techniques such as spectral unmixing and
multivariate analysis-based band selection and classification have also been investigated
for obtaining meaningful information from vast hyperspectral data. In the food industry,
non-destructive measurements are applied to evaluate food quality and safety by collecting
and analyzing the characteristics of agricultural products, such as the physical attributes
and chemical content [18–24]. Other hyperspectral imaging applications have addressed
environmental, defense, and biomedical areas, based on deep learning technology [25].

Hyperspectral fluorescence imaging is a sensitive optical technique that uses selected
light excitation of a sample to induce light emissions from the sample at wavelengths
different from the excitation light of 365 nm [6,22,26]. In studies targeting detection of
bacterial biofilm, feces, organic residues, and insects in agricultural produce for food safety,
non-destructive and non-contact fluorescence imaging using fluorescence regions from 480
to 560 nm and from 670 to 690 nm has been demonstrated to be an effective technique for
rapid detection of contaminants [6,16,26–31].

The aim of this study is to investigate a hyperspectral fluorescence imaging technique
for rapid detection of fruit residues on the surfaces of stainless steel food processing
equipment, which can potentially harbor bacteria if inadequately cleaned. In particular, this
study focuses on fresh fruit residues on 2B-finished and #4-finished stainless steel, which are
commonly used in food processing equipment [32]. Fluorescence imaging characteristics
are investigated for apple, orange, honeydew melon, and watermelon residues on 2B- and
#4-finished stainless steel, and a residue-detection algorithm is developed using optimal
waveband selected for each type of fruit residue.
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2. Materials and Methods
2.1. Sample Preparation

Fresh-cut honeydew melon, orange, apple, and watermelon were purchased from
local markets. Each fruit was blended and pressed to prepare juice to apply as residue to
2B-finished and #4-finished stainless steel sheets (SSS). For each of the four fruits, six juice
concentrations were prepared: first, a stock solution from the initial pressing, followed
by five diluted solutions prepared at ratios of 1:5, 1:10, 1:20, 1:50, and 1:100 with distilled
water. Fifteen 10-uL droplets of each concentration were applied on the surface of each of
the two types of SSS and allowed to dry at ambient room temperature (26 ◦C for 24 h. For
each fruit, 90 droplets (6 sets with 15 droplets) for each of the 6 concentrations were applied
onto each of the two types of SSS, for a total of 540 droplets were used for hyperspectral
fluorescence imaging.

2.2. System and Data Acquisition

The tabletop hyperspectral fluorescence line-scan imaging system used in this study is
shown in Figure 1. The hyperspectral fluorescence imaging system comprises a hyperspec-
tral imaging device, transfer table, and ultraviolet-A (UV-A) light source. To identify food
components such as chlorophyll a, UV-A (365 nm) excitation light, whose fluorescence
emission range is in the blue-to-near-infrared region (up to 730 nm), was used [32]. The
imaging device comprises a 14-bit electron-multiplying charge-coupled-device (EMCCD)
camera (MegaLuca R EMCCD camera, Andor Technology PLC, Belfast, Northern Ireland),
spectrograph (Hyperspec VS imaging spectrograph, Headwall Photonics, Fitchburg, MA,
USA) with a 60-µm slit and a C-mount lens (Schneider-Xenoplan 1.4/23 C-mount lens,
Schneider Optics, Hauppauge, NY, USA). The transfer table includes a step motor (Velmex,
Bloomfield, NY, USA) and linear motion guide. The UV-A light source is composed of two
pairs of four 10-W light-emitting diodes (LEDs; LedEngin, San Jose, CA, USA) that emit
excitation light at 365-nm [26].

Hyperspectral line-scan images of the juice residues on SSS were obtained by moving
the samples by 740 steps at 0.5 nm per step for an exposure time of 0.2 s in a darkened room.
Each line-scan contained 502 × 501 spatial pixels obtained by pairwise binning (averaging)
of the 1004 × 1002 available pixels in the spatial dimension, and 70 wavebands spanning
450–730 nm in the spectral dimension that were obtained by binning at approximately
4 nm intervals. Since the wavelength region after 730 nm is a region that is repeated as the
effect of second order, this region was removed by a filter (Kodak Wratten Gelatin Filter,
No. 8, Kodak, Rochester, NY, USA). Through this acquisition process, hyperspectral image
cubes composed of 502 × 501 × 70 (spatial × spatial × spectral) were collected using the
in-house developed software [10,26].
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2.3. Data Analysis

The collected hyperspectral fluorescence images were calibrated using a dark reference
image, and a flat-field image shows that fluorescence was exhibited uniformly [33].

I(i) = (I_s (i) − D(i))/(I_r(i) − D(i)), (1)

where I is the corrected relative hyperspectral fluorescence image, Is is the sample hyper-
spectral fluorescence image, Ir is the hyperspectral fluorescence image of the fluorescent
reference plate, and D is the hyperspectral image of the dark reference plate, all at the
i-th wavelength.

The fluorescence spectra of the pixels composed of fruit juice residues and the SS
surfaces were extracted from the corrected fluorescence hyperspectral images and used to
calculate the average fluorescence spectrum. The spectra were extracted from the region of
interest (ROI) of the juice residue spots on the SSS in the corrected fluorescence image. The
ROI comprises the region from the center to the boundary of the residue, and 15–25 pixels
per droplet were selected in this region.

As shown in Figure 2, algorithms were developed for detecting residues using a single
waveband (SW) and a ratio of two wavebands. Data analysis was performed as follows.
The SW algorithms were developed using the fluorescence intensity of one waveband,
and the two waveband ratio (TWR) algorithms were developed using the ratio of the
fluorescence intensity of two wavebands. The optimal wavebands for identifying the
residues of each fruit and the SSS were determined via one-way analysis of variance
(ANOVA) of the extracted spectra. The spectra extracted from the ROI were divided into
two groups, namely, clean surface and residue, and labelled as 0 and 1, respectively. One-
way ANOVA was performed on all 70 wavebands in the 450–730 nm region to differentiate
between the two groups. The F-value obtained via the ANOVA analysis for an SW and the
ratio of two wavebands was used to select the optimal wavebands [22,30]. A larger F-value
represents a more statistically significant mean separation between the two groups.

Optimal bands were selected using the calibration data set for the six dilution concen-
trations of each fruit residue on two types of SS surfaces. The SW algorithms and TWR
algorithms were developed using the selected optimal band, and these models were veri-
fied using a validation set. The data sets for the calibration and validation were randomly
divided into 80% and 20% of the total data, respectively.

The calibration algorithm determines the threshold value that has the highest residue
detection accuracy in the calibration data set, and the detection accuracy of the validation
model is determined by applying this threshold value to the validation data set. In addition,
a global detection algorithm was developed that can be applied to the residues of all four
types of fruits.

The global residue detection image algorithm was developed by applying the devel-
oped global detection algorithm to the hyperspectral fluorescence images. A two waveband
ratio image (TWRI) algorithm was developed using the ratio image of two wavebands
selected in the TWR algorithm according to Equation (2).

RIa/b =
Ia
Ib

, (2)

where Ia and Ib denote the corrected images at wavebands a and b, respectively.
Imaging algorithms were developed to use an SW and a TWR to detect juice residue

on the SS surfaces. A binary image composed of black of a clean surface with ‘0’ and white
of the residue with ‘1’ was generated by applying the threshold value to the image with
the selected waveband, and the regions in white were identified as residues. The detection
accuracy of the residues refers to the number of positives wherein the residues are correctly
identified. Image processing, data extraction, and analysis were performed using MATLAB
(Version R2016b, MathWorks, Inc., Natick, MA, USA, 2016).
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3. Results and Discussion
3.1. Fluorescence Characteristics of Stainless Steel and Fruits Samples

Generally, 2B-finished stainless-steel has a smooth surface and slight reflection similar
to a mirror, while #4-finished stainless steel has a fine-polishing grit line with uniform
appearance and directionality on its brushed surface [34].

Figure 3 shows the fluorescence spectra of the two types of stainless steel. The 2B
spectrum has a characteristic broad fluorescence peak in the 600–740 nm range, while the
#4 spectrum is relatively flat at all wavelengths across the 450–730 nm range.
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Figure 4 shows, for each fruit, the average spectra for each concentration of juice
residue on the surfaces of 2B-finished SSS. All the samples show a broad fluorescence
peak in the 600–740 nm region similar to that of the 2B-finished stainless steel spectrum in
Figure 3.

The honeydew residue spectra show a tendency for fluorescence peak intensities in the
450–600 nm range to decrease with increasing dilution (decreasing juice concentration); the
most diluted samples (1:100) show nearly the same fluorescence properties as 2B stainless
steel in this region. In the 600–730 nm range, the fluorescence peaks of stainless steel are
the highest, and the 1:5, 1:20, 1:50, and 1:100 dilutions also exhibit fluorescence properties
similar to those of the 2B stainless steel.

Similarly, the orange residue spectra show a decrease in fluorescence peak intensity
with the increasing dilutions for the 450–600 nm range. Again, in the 600–730 nm region,
the peak values of 2B stainless steel are the highest, and there are almost no differences in
the fluorescence peaks for all the dilution concentrations.

The apple residue spectra also show a decrease in the fluorescence peak intensity with
the increasing dilutions for the 450–600 nm range; the values for the 1:5 and 1:10 samples
increase, whereas the remaining samples show fluorescence properties similar to those
of stainless steel. In the 600–730 nm region, the fluorescence peak of stainless steel is the
highest, and there are differences between the fluorescence peaks exhibited by the original
juice and the 1:5 dilution concentration. However, there are almost no differences among
the fluorescence peaks at the other dilution concentrations.

The watermelon residue spectra also show a decrease in fluorescence peak intensities
in the 450–600 nm range with increasing dilution; the values for the 1:5, 1:10, and 1:20
samples increase, whereas the remaining samples exhibit fluorescence properties similar
to those of stainless-steel. In the 600–730 nm range, the peak value of stainless steel is
the highest, and there are almost no differences among the fluorescence peaks at all the
dilution concentrations.

On the 2B finished surface, all the fruits used in the experiment show significant
differences in the spectra for the different concentrations in the 450–600 nm range. In
the 600–730 nm range, the peak value of stainless-steel is the highest for all four fruits,
and it is difficult to distinguish based on the dilution concentration. The 450–600 nm and
600–730 nm ranges are known to be related to carotenoids and chlorophyll characteristics,
respectively [35–37].

Figure 5 shows, for each fruit, the average spectra for each concentration of juice
residue on the surfaces of #4-finished SSS. For all the fruits, the original juice exhibits the
highest fluorescence intensities and the #4 surface has much less influence on the juice
residue spectra in Figure 5 compared to the influence of the 2B surface in the juice residue
spectra in Figure 4. In the 450–600 nm range, all the samples have fluorescence properties
similar to those of #4-finished SSS. In the 650–690 nm range, the original juice, and the 1:5
and 1:10 dilution samples exhibit intensities much higher than the #4 SSS does, whereas
the spectra of the remaining dilution samples are more similar in intensity and in their
trend with concentration.

In the 450–600 nm range, the spectra of the honeydew residue on #4 SSS show a
decrease in fluorescence peak intensities with each sequential dilution of the original juice.
Although the spectra of the original juice and the first three dilutions are very clearly
distinguishable, but those of the two most dilute samples (1:50 and 1:100) are not. In the
600–730 nm range, the original juice and the 1:5 dilution can be distinguished but the four
remaining dilutions cannot.

The spectra of the orange residue on #4 SSS show decreasing fluorescence intensity
with increasing dilution in the 450–600 nm range, similar to that of the honeydew residue
spectra. In the 600–730 nm range, clearly distinguishable fluorescence peaks are observed
for the original juice and for the 1:50 and 1:100 dilution samples.
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The spectra of apple residue on #4 SSS show a similar pattern of decreasing fluores-
cence intensity with increasing dilution in the 450–600 nm range, with the original juice
and the 1:5 and 1:10 dilutions being the most distinct. The remaining samples have spectral
properties similar to those of stainless steel. In the 600–730 nm range, the high intensity
fluorescence peak decreases as the dilution increases for the six juice concentrations.

The spectra of watermelon residue on #4 SSS show a similar pattern to those of honey-
dew and orange in the 450–600 nm range, with decreasing fluorescence peak intensities
with each sequential dilution of the original juice and distinguishable spectra for the orig-
inal juice and the first three dilutions, but non-distinguishable spectra for the two most
dilute samples (1:50 and 1:100). In the 600–730 nm range, the original juice and the 1:10
dilution clearly show a high intensity spectral peak but the spectra of the four remaining
dilutions are not distinguishable.

All the fruits show features in common on the 2B-finished as well as #4-finished
surfaces. The broad peaks in the 450–600 nm range are presumed to be due to the complex
composition of components that affect sugar content, such as glucose, or the components
of flavonoids and carotenoids. The peak between 600–730 nm may to be due to chloro-
phyll [6,35,38–43].

3.2. Optimal Waveband Selection Using ANOVA Analysis Results

ANOVA analysis was performed according to the two types of SS surfaces and fruit
juice dilution levels in order to select the optimal wavebands for detecting residue contami-
nation. Figures S1–S6 show the F-value of the one-way ANOVA for classifying two types
of SS surfaces and four types of fruit residues using the SW and the TWR. The optimal
wavebands and classification results for each algorithm in terms of residue detection using
the pixel spectra are shown in Tables 1–4.

Table 1. Optimal wavebands and discrimination algorithm results using the single-waveband method for 2B-finished
stainless steel sheets (SSS).

Dilution

2B-Finished SSS

Waveband
[nm]

F-Value
Calibration Validation

No. of Spectra TH Accuracy [%] No. of Spectra Accuracy [%]

Honeydew

original 492 106,900 1548 1983 92.92 386 92.94
1:5 472 43,074 1570 827 91.56 392 91.45

1:10 488 11,786 1604 545 86.86 400 86.99
1:20 484 3666 1617 362 86.33 404 83.99
1:50 648 1437 1630 1742 75.78 407 70.46
1:100 644 353 1536 1563 69.08 383 67.25

Orange

original 488 112,939 1290 1891 92.30 322 92.55
1:5 468 78,675 1620 1242 90.88 405 91.04

1:10 468 32,946 1590 800 87.52 397 87.68
1:20 484 16,047 1592 495 85.40 398 85.67
1:50 480 3090 1444 332 80.08 360 80.01
1:100 644 464 1476 1585 72.55 368 72.67

Apple

original 488 15,440 1504 481 93.38 375 93.37
1:5 488 6618 1731 415 86.16 432 85.29

1:10 488 2913 1533 382 85.16 383 83.86
1:20 648 1579 1519 1707 82.79 379 81.30
1:50 644 745 1220 1556 80.06 305 75.54
1:100 648 536 1131 1825 73.65 282 73.00

Watermelon

original 488 24,763 1687 861 85.35 421 85.73
1:5 468 14,236 1592 487 82.74 398 82.71

1:10 484 4000 1535 382 82.94 383 82.78
1:20 472 1324 1448 260 82.55 362 78.10
1:50 644 796 1420 1555 75.48 355 70.55
1:100 644 149 1408 1642 67.53 351 60.02

Note: TH = Threshold value.
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Table 2. Optimal wavebands and discrimination algorithm results using the single-waveband method for #4-finished SSS.

Dilution

#4-Finished SSS

Waveband
[nm]

F-Value
Calibration Validation

No. of Spectra TH Accuracy[%] No. of Spectra Accuracy [%]

Honeydew

original 508 59,703 1702 1857 92.55 425 92.54
1:5 488 11,384 1636 688 92.25 408 92.19

1:10 468 6652 1531 429 90.68 382 91.91
1:20 484 2110 2052 459 90.50 512 89.88
1:50 484 314 1460 388 69.73 365 63.42
1:100 660 1318 1465 483 68.70 366 65.64

Orange

original 492 193,159 1844 620 98.23 461 98.10
1:5 464 66,281 1771 1422 91.15 442 91.37

1:10 464 18,748 1592 1003 91.47 397 91.66
1:20 464 10,785 1987 454 92.98 496 92.74
1:50 668 15,079 1527 577 92.72 381 92.85
1:100 660 17,562 1775 994 89.81 443 89.75

Apple

original 584 9260 1672 677 85.81 418 85.17
1:5 480 3512 1861 344 82.48 465 79.47

1:10 468 1509 1763 338 83.55 440 72.34
1:20 652 1073 2076 433 80.63 518 77.48
1:50 656 359 1570 437 71.83 392 70.04
1:100 672 2521 1431 487 70.02 357 69.06

Watermelon

original 460 26,669 2246 791 89.04 561 89.22
1:5 464 5731 1555 434 87.71 388 86.91

1:10 464 2845 1551 340 88.54 387 86.03
1:20 460 1401 1984 290 83.36 495 77.82
1:50 652 928 1576 409 77.91 394 69.30
1:100 672 2414 1471 486 71.74 367 70.76

Note: TH = Threshold value.

Table 3. Optimal two wavebands and discrimination algorithm results using the two-waveband method for 2B-finished SSS.

Dilution

2B-Finished SSS

Ratio
Waveband [nm]

F-Value
Calibration Validation

No. of Spectra TH Accuracy [%] No. of Spectra Accuracy [%]

Honeydew

original 460 656 2396 1548 0.98 91.79 386 92.44
1:5 460 660 2089 1570 0.40 90.56 392 91.63
1:10 460 676 1306 1604 0.34 87.51 400 88.67
1:20 472 652 809 1617 0.18 85.40 404 84.36
1:50 476 656 344 1630 0.15 79.19 407 78.23

1:100 472 652 95 1536 0.14 74.84 383 73.43

Orange

original 456 660 2614 1290 0.43 92.30 322 92.36
1:5 460 652 2400 1620 0.63 90.96 405 91.84
1:10 472 640 2011 1590 0.44 90.06 397 90.36
1:20 460 660 1358 1592 0.28 88.48 398 88.62
1:50 468 652 767 1444 0.17 84.90 360 85.79

1:100 472 644 270 1476 0.17 74.37 368 72.02

Apple

original 472 644 2058 1504 0.21 93.12 375 92.90
1:5 464 640 505 1731 0.70 89.07 432 89.53
1:10 472 644 1213 1533 0.20 88.22 383 87.53
1:20 484 656 1084 1519 0.16 87.63 379 83.90
1:50 488 648 958 1220 0.19 83.95 305 76.09

1:100 472 652 172 1131 0.11 77.02 282 72.91

Watermelon

original 460 656 1237 1687 0.56 87.31 421 93.31
1:5 464 640 1178 1592 0.41 87.15 398 90.67
1:10 472 632 1131 1535 0.32 87.31 383 87.45
1:20 464 644 654 1448 0.20 84.39 362 82.06
1:50 468 648 161 1420 0.18 77.57 355 80.33

1:100 472 580 105 1408 0.70 64.71 351 63.36

Note: TH = Threshold value.
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Table 4. Optimal two wavebands and discrimination algorithm results using the two-waveband method for #4-finished SSS.

Dilution

#4-Finished SSS

Ratio
Waveband [nm]

F-Value
Calibration Validation

No. of Spectra TH Accuracy [%] No. of Spectra Accuracy [%]

Honeydew

original 612 676 3043 1702 0.55 90.64 425 90.61
1:5 464 640 1349 1636 1.27 90.43 408 88.28
1:10 464 640 1053 1531 1.11 90.53 382 87.74
1:20 476 612 126 2052 0.74 82.77 512 81.93
1:50 580 648 54 1460 0.50 62.19 365 62.46

1:100 540 664 311 1465 0.33 59.61 366 59.60

Orange

original 472 612 387 1844 0.29 97.98 461 97.86
1:5 476 664 1942 1771 2.06 91.03 442 91.94
1:10 480 612 1326 1592 1.64 90.63 397 89.28
1:20 464 600 1112 1987 1.13 89.03 496 89.94
1:50 608 676 700 1527 0.22 88.35 381 88.14

1:100 560 664 1779 1775 0.50 85.60 443 87.73

Apple

original 564 676 638 1672 0.14 84.12 418 84.18
1:5 456 564 256 1861 0.26 74.19 465 74.37
1:10 472 548 104 1763 0.22 74.03 440 73.93
1:20 500 612 70 2076 0.41 64.86 518 64.74
1:50 504 612 81 1570 1.48 65.11 392 61.30

1:100 488 656 280 1431 0.24 58.17 357 58.05

Watermelon

original 464 728 428 2246 0.59 96.53 561 96.66
1:5 464 616 1452 1555 1.08 90.52 388 84.17
1:10 488 580 135 1551 0.55 89.31 387 89.81
1:20 488 580 53 1984 0.55 88.59 495 89.15
1:50 580 676 158 1576 2.48 82.60 394 82.84

1:100 548 660 492 1471 1.01 74.52 367 76.86

Note: TH = Threshold value.

3.2.1. Development of Single-Waveband Algorithm (SWA)
Residue Detection Algorithm for Honeydew

A single-waveband algorithm (SWA) was developed to detect honeydew residue on
the surface of 2B-finished SSS (Table 1). Figure S1a shows F-value of the one-way ANOVA
for classifying 2B finished SS surface and honeydew residues. The resultant optimal
wavebands for the original juice, and the 1:5, 1:10, and 1:20 dilution samples were close to
480 nm, and the threshold values for detecting the residues using the selected wavebands
were 1983, 827, 545, and 362, respectively (Figure S1). The calibration accuracies were
92.92%, 91.56%, 86.86%, and 86.33%, and the validation accuracies were 92.94%, 91.45%,
86.99%, and 83.99%, respectively. The optimal wavebands for the 1:50 and 1:100 dilution
samples were 684.4 nm, and the threshold values were 1742 and 1563, respectively. The
calibration accuracies were 75.78% and 69.08%, and the validation accuracies were 70.46%
and 67.25%, respectively. The 480-nm and 684-nm wavebands are related to carotenoids
and chlorophyll, respectively [35–37].

For the SWA developed to detect honeydew residue on the surface of #4-finished SSS,
the optimal waveband for the original juice was 508 nm, the threshold value was 1857,
the calibration accuracy was 92.55%, and the validation accuracy was 92.54% (Figure S2a).
The optimal wavebands for the 1:5, 1:10, 1:20, and 1:50 dilution samples were close to 480
nm, and the threshold values were 688, 429, 459, and 388, respectively. The calibration
accuracies were 92.25%, 90.91%, 90.05%, and 69.73%, and the validation accuracies were
92.19%, 91.91%, 89.88%, and 63.42%, respectively. The optimal waveband for the original
juice was 660 nm, the threshold value was 483, the calibration accuracy was 68.70%, and
the validation accuracy was 65.64%. The 480-nm and 684-nm wavebands were related to
carotenoids and chlorophyll-a, respectively [35–37].
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Residue Detection Algorithm for Orange

For the SWA developed to detect orange residue on the surface of 2B-finished SSS, the
optimal wavebands for the original juice, and the 1:5, 1:10, 1:20, and 1:50 dilution samples
were close to 470 nm, and the threshold values for detecting the residues using the selected
wavebands were 1891, 1242, 800, 495, and 332, respectively (Figure S1b). The calibration
accuracies were 92.30%, 90.88%, 87.52%, 85.40%, and 80.08%, and the validation accuracies
were 92.55%, 91.04%, 87.68%, 85.67%, and 80.01%, respectively. The optimal waveband for
the original juice was 644 nm, the threshold value was 1585, the calibration accuracy was
72.55%, and the validation accuracy was 72.67%. The 470-nm and 644-nm wavebands were
related to carotenoids and chlorophyll-b, respectively [35–37].

According to the SWA developed to detect orange residue on the surface of #4-finished
SSS, the optimal waveband for the original juice was 492 nm, the threshold value was 620,
the calibration accuracy was 98.23%, and the validation accuracy was 98.10% (Figure S2b).
The optimal waveband for the 1:5, 1:10, and 1:20 dilution samples was 464 nm, and the
threshold values were 1422, 1003, and 454, respectively. The calibration accuracies were
91.15%, 91.47%, and 92.98%, and the validation accuracies were 98.10%, 91.37%, and 91.66%,
respectively. The optimal wavebands for the 1:50 and 1:100 dilution samples were 660 nm,
and the threshold values were 577 and 994, respectively. The calibration accuracies were
92.72% and 89.81%, and the validation accuracies were 92.85% and 89.75%, respectively.
492-nm and 660-nm were related to carotenoids and chlorophyll-b, respectively [36,37].

Residue Detection Algorithm for Apple

For the SWA developed for detecting apple residue on the surface of 2B-finished SSS,
the optimal waveband for the original juice, and the 1:5 and 1:10 dilution samples was 488
nm, and the threshold values for detecting the residues using the selected wavebands were
481, 415, and 382, respectively (Figure S1c). The calibration accuracies were 93.38%, 86.16%
and 85.16% and the validation accuracies were 93.37%, 85.29% and 83.86%, respectively.
The optimal wavebands for the 1:20, 1:50, and 1:100 dilution samples were close to 648 nm,
and the threshold values for detecting the residues using the selected wavebands were
1707, 1556, and 1825, respectively. The 488-nm and 648-nm wavebands were related to
carotenoids and chlorophyll-b, respectively [36,37].

For the SWA developed for detecting apple residue on the surface of #4-finished SSS,
the optimal waveband for the original juice was 584 nm, the threshold value was 677, the
calibration accuracy was 85.81%, and the validation accuracy was 85.17% (Figure S2c). The
optimal wavebands for the 1:5 and 1:10 dilution samples were close to 470 nm, and the
threshold values were 422 and 344, respectively. The calibration accuracies were 82.48%
and 83.55%, and the validation accuracies were 79.47% and 72.34%, respectively. The
optimal wavebands for the 1:20, 1:50, and 1:100 dilution samples were close to 660 nm,
and the threshold values were 338, 437, and 487, respectively. The calibration accuracies
were 80.63%, 71.83%, and 70.02%, and the validation accuracies were 77.48%, 70.04%, and
69.06%, respectively. The 470-nm and 660-nm wavebands were related to carotenoids and
chlorophyll-b, respectively [36,37].

Residue Detection Algorithm for Watermelon

For the SWA developed to detect watermelon residue on the surface of 2B-finished SSS,
the optimal wavebands for the original juice, and the 1:5, 1:10, and 1:20 dilution samples
were close to 470 nm, and the threshold values for detecting the residues using the selected
wavebands were 861, 487, 382, and 260, respectively (Figure S1d). The calibration accuracies
were 85.35%, 82.74%, 82.94%, and 82.55%, and the validation accuracies were 85.73%,
82.71%, 82.78%, and 78.10%, respectively. The optimal wavebands for the 1:50 and 1:100
dilution samples were 644 nm, and the threshold values were 1555 and 1642, respectively.
The calibration accuracies were 75.48% and 67.53%, and the validation accuracies were
70.55% and 60.02%, respectively. The 470-nm and 644-nm wavebands were related to
carotenoids and chlorophyll-b, respectively [35–37].
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For the SWA developed for detecting watermelon residue on the surface of 2B-finished
SSS, the optimal wavebands for the original juice, and the 1:5, 1:10, and 1:20 dilution
samples were close to 460 nm, and the threshold values for detecting the residues using the
selected wavebands were 791, 434, 340, and 290, respectively (Figure S2d). The calibration
accuracies were 89.04%, 87.71%, 88.54%, and 83.36%, and the validation accuracies were
89.22%, 86.91%, 86.03%, and 77.82%, respectively. The optimal wavebands for the 1:50
and 1:100 dilution samples were close to 660 nm, and the threshold values were 409 and
486, respectively. The calibration accuracies were 77.91% and 71.74%, and the validation
accuracies were 69.30% and 70.76%, respectively. The 460-nm and 660-nm wavebands were
related to carotenoids and chlorophyll-b, respectively [35–37].

Tables 1 and 2 summarize the results of the ANOVA analysis performed to determine
the optimal wavelengths to detect different samples. First, when the SWA was applied,
the optimal wavebands for each of the dilution samples were similarly selected on the
surfaces of 2B-finished SSS and #4-finished SSS. For honeydew, orange, and watermelon,
the optimal wavebands for the original juice and the 1:5, 1:10, and 1:20 dilution samples
were in the 470–500 nm range, and the optimal wavebands for the 1:50 and 1:100 dilution
samples were in the 660–680 nm range. For apple, the optimal wavebands for original
juice, and the 1:5 and 1:10 dilution samples were in the 480–490 nm range, and the optimal
wavebands for the 1:20, 1:50, and 1:100 dilution samples were in the 648–660 nm range.
The lower the dilution levels on both surfaces, the lower was the accuracy of the selected
waveband.

In order to determine whether the accuracy was higher when using a single waveband
or multiple wavebands, the optimal wavebands were selected using the ratio algorithm
(Tables 3 and 4).

3.2.2. Development of the Two-Waveband Ratio Algorithm (TWRA)
Residue Detection Algorithm for Honeydew

A two-waveband ratio algorithm (TWRA) was developed to detect honeydew residue
on the surface of 2B-finished SSS. The resultant optimal wavebands for the original juice up
to the 1:100 dilution samples were in the 460–480 nm and 650–680 nm ranges (Figure S3).
The TWRA calibration accuracies were 91.79%, 90.56%, 87.51%, 85.40%, 75.19%, and 74.84%
with threshold values of 0.98, 0.40, 0.34, 0.18, 0.15, and 0.14, and validation accuracies of
92.44%, 91.63%, 88.67%, 84.36%, 78.23%, and 73.43%, respectively, for the original juice and
the 1:5, 1:10, 1:20, 1:50, and 1:100 dilutions.

For the TWRA developed to detect honeydew residue on the surface of #4-finished
SSS, the optimal wavebands for the original juice were 612 nm and 676 nm (Figure S7).
The TWRA calibration accuracy was 90.64% with a threshold value of 0.55 and validation
accuracy of 90.61%. The optimal wavebands for the 1:5, 1:10, and 1:20 dilution samples
were in the 460–480 nm and 610–640 nm ranges. The TWRA calibration accuracies were
90.43%, 90.53%, and 82.77% with threshold values of 1.27, 1.11, and 0.74, and validation
accuracies of 88.28%, 87.74%, and 81.93%, respectively, for these samples. The optimal
wavebands for the 1:50 and 1:100 dilution samples were in the 540–580 nm and 640–670 nm
ranges. The TWRA calibration accuracies were 62.19% and 59.61% with threshold values
of 0.50 and 0.33, and validation accuracies of 62.46% and 59.60%, respectively.

Residue Detection Algorithm for Orange

For the TWRA developed to detect orange residue on the surface of 2B-finished SSS,
the optimal waveband for the original juice and dilution samples up to 1:100 were in the
460–480 nm and 640–660 nm ranges (Figure S4). The TWRA calibration accuracies were
92.30%, 90.96% 90.06%, 88.48%, 84.90%, and 74.37% with threshold values of 0.43, 0.63,
0.44, 0.28, 0.17, and 0.17, and validation accuracies of 92.36%, 91.84%, 90.36%, 88.62%,
85.79%, and 72.02%, respectively, for the original juice and the 1:5, 1:10, 1:20, 1:50, and
1:100 dilutions.
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Based on the TWRA developed to detect orange residue on the surface of #4 finished
SSS, the optimal wavebands for original juice, and the 1:5, 1:10 and 1:20 dilution samples
were in the 450–470 nm and 610–660 nm ranges (Figure S8). The TWRA calibration
accuracies were 97.98%, 91.03%, 90.63%, and 89.03% with threshold values of 0.29, 2.06,
1.64, and 1.13, and validation accuracies of 97.86%, 91.94%, 89.28%, and 89.94%, for these
samples. The optimal wavebands for the 1:50 and 1:100 dilution samples were in the
560–608 nm and 664–676 nm ranges. The TWRA calibration accuracies were 88.35% and
88.14% with threshold values of 0.22 and 0.50, and validation accuracies of 88.14% and
87.73%, respectively.

Residue Detection Algorithm for Apple

For the TWRA developed for detecting apple residue on the surface of 2B-finished
SSS, the optimal wavebands for the original juice and dilution samples up to 1:100 were
in the 460–490 nm and 640–660 nm ranges (Figure S5). The TWRA calibration accuracies
were 93.12%, 89.07%, 88.22%, 87.63%, 83.95%, and 77.02% with threshold values of 0.21,
0.70, 0.20, 0.16, 0.19, and 0.11, and validation accuracies of 92.90%, 89.53%, 87.53%, 83.90%,
76.09% and 72.91%, respectively, for the original juice and the 1:5, 1:10, 1:20, 1:50, and
1:100 dilutions.

For the TWRA developed for detecting apple residue on the surface of #4-finished
SSS, the optimal wavebands for the original juice were 564 nm and 676 nm (Figure S9).
The TWRA calibration accuracy was 84.12% with a threshold value of 0.14 and validation
accuracy of 84.18%. The optimal wavebands for the 1:5 and 1:10 dilution samples were in
the 456–472 nm and 548–564 nm ranges. The TWRA calibration accuracies were 74.19%
and 74.03% with threshold values of 0.26 and 0.22, and validation accuracies of 74.37% and
73.93%, respectively. The optimal wavebands for the 1:20, 1:50, and 1:100 dilution samples
were 488–505 nm and 612–656 nm. The TWRA calibration accuracies were 64.86%, 65.11%,
and 58.17% with threshold values of 0.41, 1.48 and 0.2, and validation accuracies of 64.74%,
61.30%, and 58.05%, respectively.

Residue Detection Algorithm for Watermelon

For the TWRA developed for detecting watermelon residue on the surface of 2B-
finished SSS, the optimal wavebands for the original juice and dilution samples up to
1:100 were in the 460–480 nm and 630–660 nm ranges (Figure S6). The TWRA calibration
accuracies were 87.31%, 87.15%, 87.31%, 84.39%, 77.57%, and 64.71% with threshold values
of 0.56, 0.41, 0.32, 0.20, 0.18, and 0.70, and validation accuracies of 93.31%, 90.67%, 87.45%,
82.06%, 80.33%, and 63.36%, respectively, for the original juice and the 1:5, 1:10, 1:20, 1:50,
and 1:100 dilutions.

For the TWRA developed for detecting watermelon residue on the surface of #4-
finished SSS, the optimal wavebands for the original juice and dilution samples up to 1:20
were 460–490 nm, 728 nm, and 580–616 nm (Figure S10). The TWRA calibration accuracies
were 96.53%, 90.52%, 89.31%, and 88.59% with threshold values of 0.59, 1.08, 0.55, and 0.55,
and validation accuracies of 96.66%, 84.17%, 89.81%, and 89.15%, respectively. The optimal
wavebands for the 1:50 and 1:100 dilution samples were in the 548–580 nm and 660–676 nm
ranges. The TWRA calibration accuracies were 82.60% and 74.52% with threshold values
of 2.48 and 1.0, and validation accuracies of 82.84% and 76.86%, respectively.

Similar to the SWA results, the lower was the dilution concentration on both surfaces,
the lower was the accuracy of the selected waveband. In the TWRA, consistent wavebands
were selected for the 2B -finished SS surface. The detection accuracy for the original juices
was high; however, the accuracy tended to decrease with juice concentration.

3.2.3. Development of Global Imaging Algorithm for Detecting Residues

Based on these results, an algorithm was developed that allows the selected wave-
lengths to be applied for concentration, regardless of the type of fruit. The SWA was
initially applied (Table 5). On the 2B-finished SS surface, a detection accuracy of 93.37%
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was obtained when a threshold value of 482 was applied at 488 nm for the original juices.
Detection accuracies of 92.42%, 90.91%, and 83.34% were obtained when threshold values
of 670, 545, and 382 were applied, respectively, at 484 nm for the 1:5 up to 1:20 dilution
samples, respectively. For the 1:50 and 1:100 dilution samples, detection accuracies of
62.51% and 55.81% were obtained when thresholds values of 1633 and 1685 at 644 nm,
were applied, respectively. On the #4-finished SS surface, the original juices were detected
at an accuracy of 84.43%, when a threshold value of 670 was applied at 460 nm. Detection
accuracies of 90.74%, 83.31%, and 75.71% were obtained when the threshold values of 611,
594, and 549 were applied at 484 nm for the 1:5 up to 1:20 dilution samples, respectively.
For the 1:50 dilution sample at 652 nm and the 1:100 dilution sample at 660 nm, detection
accuracies of 68.41% and 80.95% were obtained when threshold values of 301 and 332 were
applied, respectively. For the detection of fruit residue, the 460 nm and 484 nm wave-
lengths related to carotenoids were selected for a 1:20 dilution concentration of the original
juice, and 644–660 nm related to chlorophyll was selected for a dilution concentration of
1:50–1:100 [35–37].

Table 5. Optimal single waveband and discrimination algorithm results for all the samples according to the dilution levels.

Total
2B-Finished SSS #4-Finished SSS

No of Sample Single Waveband
[nm] TH Accuracy [%] No of Sample Single Waveband

[nm] TH Accuracy [%]

original 7533 488 482 93.37 9329 460 670 84.43
1:5 8140 484 670 92.42 8526 464 611 90.74

1:10 7825 484 545 90.91 8043 464 594 83.31
1:20 7719 484 382 83.34 10,120 464 549 75.71
1:50 7141 644 1633 62.51 7665 652 301 68.41
1:100 6935 644 1685 55.81 7675 660 332 80.95

Note: TH = Threshold value.

Table 6 shows the results of applying the integrated wavebands using the TWRA.
On the 2B-finished SS surface, detection accuracies of 92.49%, 88.07%, 86.53%, 86.92%,
76.52%, and 61.14% were obtained for original juices up to 1:100 dilution samples when
the threshold values of 0.36, 0.32, 0.30, 0.28, 0.28, and 0.27 were applied in the combination
of 460 nm and 656 nm, 460 nm and 652 nm, 472nm and 644 nm, 468 nm and 648 nm,
468 nm and 652 nm, 472 nm and 652 nm, respectively. On the #4-finished SS surface,
detection accuracies of 75.80%, 52.97%, 65.63%, 57.57%, 60.05%, and 58.09% were obtained
for original juices up to 1:100 dilution samples when the threshold values of 1.31, 0.42,
1.69, 0.72, 0.45, and 0.24 were applied in the combinations of 488 nm and 676 nm, 464
nm and 612 nm, 476 nm and 580 nm, 476 nm and 612 nm, 580 nm and 676 nm, 560 nm
and 664 nm, respectively. The combination of 460 nm and 650 nm was selected for the
2B-finished SS surface. The difference between the wavebands selected at each dilution
concentration and the wavebands selected at the total dilution concentration on the 2B-
finished SS surface was not greater than that on the #4-finished SS surface. Therefore, the
integrated algorithms for the 2B-finished SS surface exhibited better detection accuracies
than those for the #4-finished SS surface.

Table 6. Optimal two wavebands and discrimination algorithm results for all the samples according to the dilution levels.

Total
2B-Finished SSS #4-Finished SSS

No of Sample Ratio
Waveband [nm] TH Accuracy [%] No of Sample Ratio

Waveband [nm] TH Accuracy [%]

original 7533 460.8 656.4 0.36 92.49 9329 488.8 676.4 1.31 75.80
1:5 8140 460.8 652.4 0.32 88.07 8526 464.8 612.5 0.42 54.97

1:10 7825 472.8 644.5 0.30 86.53 8043 476.8 580.6 1.69 65.63
1:20 7719 468.8 648.4 0.28 86.92 10,120 476.8 612.5 0.72 57.57
1:50 7141 468.8 652.4 0.28 76.52 7665 580.6 676.4 0.45 60.05
1:100 6935 472.8 652.4 0.27 61.14 7675 560.6 664.4 0.24 58.09

Note: TH = Threshold value.
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Figure 6 shows an example of the process in which an image is applied at the selected
wavelength using ANOVA analysis. The threshold value determined using the TWRA is
applied after acquiring the ratio image with the selected single-wavelength images. The
obtained binary image renders it possible to determine whether the residues are detected
by expressing the part recognized as detected in white and the part recognized as missing
in black.

An imaging algorithm to detect fruit residue contamination was developed using
the waveband image selected through ANOVA analysis. Figure 6 illustrates the image
processing that was performed to detect residues using a two-band ratio image. If a residue
is present, the binary image is ‘1’, otherwise it is ‘0’. Figure 7 shows the determination
of residue contamination based on the concentration for four types of fruit. These results
establish the possibility of using fluorescence imaging techniques to detect organic residues
that may be present in food processing equipment, even after cleaning and sterilization.
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better performance than the spectrum-based discrimination result. Also, residue detection 
performance was better for the 2B-finished SS surface than for the #4-finished SS surface. 

Table 7. Discrimination accuracy from image using global two-band ratio algorithm. 

 Dilution 
2B-Finished SSS #4-Finished SSS 

No. of Droplet No. of Detection Accuracy 
[%] No. of Droplet No. of Detection Accuracy 

[%] 

Honeydew 

original 90 90 100.0 90 90 100.0 
1:5 90 90 100.0 90 90 100.0 
1:10 90 90 100.0 90 90 100.0 
1:20 90 90 100.0 90 87 96.67 
1:50 90 90 100.0 90 86 95.56 

1:100 90 86 95.56 90 83 92.22 

Orange 

original 90 90 100.0 90 90 100.0 
1:5 90 90 100.0 90 90 100.0 
1:10 90 90 100.0 90 90 100.0 
1:20 90 90 100.0 90 90 100.0 
1:50 90 90 100.0 90 90 100.0 

1:100 90 90 100.0 90 90 100.0 

Apple 

original 90 90 100.0 90 90 100.0 
1:5 90 90 100.0 90 90 100.0 
1:10 90 90 100.0 90 90 100.0 
1:20 90 90 100.0 90 78 86.67 
1:50 90 90 100.0 90 78 86.67 

1:100 90 85 94.44 90 74 82.22 

Figure 7. Discrimination image applied global imaging algorithms for juice dilution levels of each fruit (a) honeydew,
(b) orange, (c) apple and (d) watermelon.
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Table 7 shows the results of image discrimination applied with the integrated TWRA.
The discrimination accuracy of the integrated image model for the 2B-finished SSS was
100%, 99.17%, and 95% for original juices up to 1:20 dilution samples, 1:50 dilution samples,
and 1:100 dilution samples, respectively. The discrimination accuracy of the integrated im-
age model for the #4-finished SSS was 100%, 94.17%, 93.89%, and 89.44% for original juices
up to 1:10 dilution samples, 1:20 dilution samples, 1:50 dilution samples, and 1:100 dilution
samples, respectively. The image-based discrimination result showed better performance
than the spectrum-based discrimination result. Also, residue detection performance was
better for the 2B-finished SS surface than for the #4-finished SS surface.

Table 7. Discrimination accuracy from image using global two-band ratio algorithm.

Dilution
2B-Finished SSS #4-Finished SSS

No. of Droplet No. of Detection Accuracy
[%] No. of Droplet No. of Detection Accuracy

[%]

Honeydew

original 90 90 100.0 90 90 100.0
1:5 90 90 100.0 90 90 100.0
1:10 90 90 100.0 90 90 100.0
1:20 90 90 100.0 90 87 96.67
1:50 90 90 100.0 90 86 95.56

1:100 90 86 95.56 90 83 92.22

Orange

original 90 90 100.0 90 90 100.0
1:5 90 90 100.0 90 90 100.0
1:10 90 90 100.0 90 90 100.0
1:20 90 90 100.0 90 90 100.0
1:50 90 90 100.0 90 90 100.0

1:100 90 90 100.0 90 90 100.0

Apple

original 90 90 100.0 90 90 100.0
1:5 90 90 100.0 90 90 100.0
1:10 90 90 100.0 90 90 100.0
1:20 90 90 100.0 90 78 86.67
1:50 90 90 100.0 90 78 86.67

1:100 90 85 94.44 90 74 82.22

Watermelon

original 90 90 100.0 90 90 100.0
1:5 90 90 100.0 90 90 100.0
1:10 90 90 100.0 90 90 100.0
1:20 90 90 100.0 90 84 93.33
1:50 90 87 96.67 90 84 93.33

1:100 90 81 90.00 90 75 83.33

Total sample

original 360 360 100.0 360 360 100.0
1:5 360 360 100.0 360 360 100.0
1:10 360 360 100.0 360 360 100.0
1:20 360 360 100.0 360 339 94.17
1:50 360 357 99.17 360 338 93.89

1:100 360 342 95.00 360 322 89.44

4. Conclusions

In this study, a hyperspectral fluorescence imaging technique was developed for the
rapid detection of food residues that can remain as contaminants on the surfaces of food
processing equipment. A technique was developed for rapidly detecting apple, orange,
melon, and watermelon residue that may remain on the surfaces of 2B- and #4-finished
stainless steel sheets, which are commonly used for food processing equipment. These
two types of stainless-steel surfaces have different fluorescence spectral characteristics.
Analyses for the optimal wavelength using ANOVA indicated that the accuracy for 2B-
finished SSS was greater than that of #4-finished SSS. Compared to the SWA, the detection
accuracy of the TWRA was slightly higher or similar. The discrimination accuracy of the
integrated image model to detect the organic residue of all fruits on the 2B-finished SSS
was 100% and above 95%, respectively, for original juices up to 1:20 dilution samples and
for 1:50–1:100 dilution samples, respectively. By combining these results, global wavebands
were selected according to the dilution levels, regardless of the type of fruit. Moreover,
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the detection accuracy on the 2B-finished surface was higher than that on the #4-finished
surface. Based on these results, an algorithm will be developed that can be applied to
organic residue of various fresh-cut fruits and vegetables in the future.

The results of this study establish the possibility of using fluorescence imaging tech-
niques to detect residues that may be present in food processing equipment, even after
cleaning and sterilization [6]. Fluorescence imaging can be applied for testing the presence
of organic residues of various agricultural products by detecting microgram quantities. In
addition, the results show that sanitation monitoring for residues is possible. Therefore, the
results of this study can be applied to the development of a multispectral imaging system
to detect the residue of fresh-cut foods in food processing plants.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
417/11/1/458/s1, Figure S1: Results of one-way ANOVA for classifying 2B finished stainless steel
surface and residues of (a) honeydew, (b) orange, (c) apple, and (d) watermelon using the single
waveband algorithm. Figure S2: Results of one-way ANOVA for classifying #4 finished stainless
steel surface and residues of (a) honeydew, (b) orange, (c) apple, and (d) watermelon using the single
waveband algorithm. Figure S3: Results of one-way ANOVA for classifying 2B finished stainless
steel surface and honeydew residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100)
using the two wavebands ratio algorithm. Figure S4: Results of one-way ANOVA for classifying 2B
finished stainless steel surface and orange residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50,
and (f) 1:100) using the two wavebands ratio algorithm. Figure S5: Results of one-way ANOVA for
classifying 2B finished stainless steel surface and apple residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d)
1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm. Figure S6: Results of one-way
ANOVA for classifying 2B finished stainless steel surface and watermelon residue dilutions((a) 1:1,
(b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm. Figure
S7: Results of one-way ANOVA for classifying #4 finished stainless steel surface and honeydew
residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands
ratio algorithm. Figure S8: Results of one-way ANOVA for classifying #4 finished stainless steel
surface and orange residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and (f) 1:100) using the
two wavebands ratio algorithm. Figure S9: Results of one-way ANOVA for classifying #4 finished
stainless steel surface and apple residue dilutions((a) 1:1, (b) 1:5, (c) 1:10, (d) 1:20, (e) 1:50, and
(f) 1:100) using the two wavebands ratio algorithm. Figure S10: Results of one-way ANOVA for
classifying #4 finished stainless steel surface and watermelon residue dilutions((a) 1:1, (b) 1:5, (c) 1:10,
(d) 1:20, (e) 1:50, and (f) 1:100) using the two wavebands ratio algorithm.
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