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Abstract: The interface crack of a slab track is a fracture of mixed-mode that experiences a complex
loading–unloading–reloading process. A reasonable simulation of the interaction between the layers
of slab tracks is the key to studying the interface crack. However, the existing models of interface
disease of slab track have problems, such as the stress oscillation of the crack tip and self-repairing,
which do not simulate the mixed mode of interface cracks accurately. Aiming at these shortcomings,
we propose an improved cohesive zone model combined with an unloading/reloading relationship
based on the original Park–Paulino–Roesler (PPR) model in this paper. It is shown that the improved
model guaranteed the consistency of the cohesive constitutive model and described the mixed-mode
fracture better. This conclusion is based on the assessment of work-of-separation and the simulation
of the mixed-mode bending test. Through the test of loading, unloading, and reloading, we observed
that the improved unloading/reloading relationship effectively eliminated the issue of self-repairing
and preserved all essential features. The proposed model provides a tool for the study of interface
cracking mechanism of ballastless tracks and theoretical guidance for the monitoring, maintenance,
and repair of layer defects, such as interfacial cracks and slab arches.

Keywords: railway slab track; interface mixed-mode fracture; cohesive zone model; unloading/
reloading relationship

1. Introduction

Chinese railway track systems (CRTS) have successfully served for more than 10 years
in China’s high-speed railway (CRH) and have performed well during the period. However,
with increasing operation time and the influence of complex temperature and environmen-
tal conditions, hundreds of interfacial cracks (as shown in Figure 1) between track slab and
cement asphalt mortar (CA mortar) have appeared on the high-speed railway tracks [1,2].
Under extremely high temperatures in summer, defects of slab arching also occur.

Typical interlayer defects, such as slab arch [3], are closely related to the interfacial
cracks between the track slab and the under-layer. During operation, the track directly
undertakes the effects of the cyclic loads from the high-speed train and environmental
temperature, which increases the possibility of interface cracking. As a vertical multilayer
and longitudinally heterogeneous structure, the slab ballastless track has weak parts
between the new and old concrete interface and composite connection surface. Therefore,
a reasonable simulation of interlayer interactions is the key to studying the defects of track
structures.

Cohesive zone model (CZM), an effective and favored crack model in interface fracture
mechanics, has been widely used to simulate crack initiation and propagation in various ma-
terials, such as metals [4–6], polymers [7], ceramics [8], concrete [9–11], and fiber-reinforced
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composites [12]. In CZM, material failure is characterized by a traction–separation law,
which relates the traction across the crack to the corresponding separation [13]. The ap-
proach ensures that CZM maintains the continuity conditions mathematically and removes
the singularity present in Linear Elastic Fracture Mechanics (LEFM) [14–16]. With the de-
velopment of CZM over the past six decades since it was proposed by Barenblatt [17] and
Dugdale [18], a large variety of traction–separation laws have been established. The most
popular are bilinear [19–22], trapezoidal [23–25], exponential [26–28], polynomial [29–31],
and so on.
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Various cohesive zone models may have different applicable conditions due to dif-
ferent initial assumptions. For instance, the trapezoidal cohesion zone model proposed
by Tvergaard [23] could not consider the situation where the mode I fracture energy is
not equal to the mode II fracture energy. The exponential cohesive zone model proposed
by Xu and Needleman [27] could consider the difference values of normal and tangential
fracture energies, but when the two fracture energies are different, there is a “self-repairing”
problem at the crack tip under mixed-mode loading and unloading.

The Park–Paulino–Roesler (PPR) model is a kind of polynomial traction–separation
law for mixed-mode fractures that was proposed by Park et al. [32] in 2009. This model is
versatile because it can consider different fracture energies with respect to fracture modes
and can be applied to represent various material softening responses, i.e., ductile, brittle,
and quasi-brittle, due to the controllable softening given by the shape parameters [13,32].
More significantly, the model guarantees the consistency of the cohesive constitutive
relationship under mixed-mode conditions [30,33,34].

Due to the above advantages and the convenient implementation in commercial
software ABAQUS as a user subroutine [34–36], the PPR model has been utilized to
investigate a wide range of failure phenomena and cited in many papers. The model
was found to still have limitations that need to be improved. Nguyen et al. [37] indicated
that due to the different cohesive interaction regions between the normal and tangential
tractions when fracture energies are different, one traction component might become zero
while the other traction component had not yet vanished. This situation does not conform
to reality in which normal and tangential tractions typically fail simultaneously when a
fracture happens.

In addition, Spring et al. [38] noted that the unloading/reloading relationship, which
was commonly utilized in conjunction with the PPR model, produced self-healing behavior
when the crack underwent unloading/reloading. To address this issue, a new coupled
unloading/reloading relationship, which maintained the thermodynamic consistency of the
PPR cohesive model, was developed [38]. More recently, the research by Gilormini et al. [39]
showed that the new unloading/reloading relationship prevented the questionable features
that might appear when the original model [34,35] was used, but also bred a new issue
regarding damage initiated from the very beginning of the loading process. This model
ignores the initial elastic region.

In this paper, an alternative simplified PPR traction–separation law and an improved
unloading/reloading relationship are developed and validated using multiple cases that
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could effectively eliminate the above issues and preserve all essential features of the original
one. The modeling method of connections between the layers of the slab track as proposed
in this paper can contribute to the mechanism of high-speed railway (HSR) interlayer
defects, on-site monitoring, inspection, and maintenance.

This paper is organized as follows. The review of the original PPR model (traction–
separation law) and unloading/reloading relationship are presented in Section 2. Section 3
shows the modification of the original PPR model and the comparison of the modified
model and original through example cases. Section 4 introduces the improvement of the
unloading/reloading relationship and demonstrates that the improved one is effective
with the example used in [39]. Then, Section 5 presents the application of the proposed
model to analyze interface damage of railway slab track. Finally, the paper is summarized
in Section 6.

2. Original Models

The PPR model was designed for pure loading conditions and did not contain a
built-in unloading/reloading relationship [38]. To simulate the fracture submitted to the
general loading conditions, such as loading, unloading, and reloading, the PPR model was
combined with an unloading/reloading relationship [34]. The original PPR model and
unloading/reloading relationship are introduced shortly in the following subsections.

2.1. Original PPR Model

The fundamental issue in cohesive zone modeling is the definition of traction–separation
law, which gives the constitutive behavior of the fracture. The original PPR model defines
the traction–separation law by taking the derivative of the cohesive fracture potential. The
potential consists of polynomials formulated in terms of a normal separation (∆n) and a
tangential separation (∆t), and it is expressed as [32]:

Ψ(∆n, ∆t) = min(φn, φt) +
[

Γn

(
1− ∆n

δn

)α(m
α + ∆n

δn

)m
+ 〈φn − φt〉

][
Γt

(
1− |∆t |

δt

)β( n
β + |∆t |

δt

)n
+ 〈φt − φn〉

]
(1)

Therefore, the traction–separation law is calculated
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(3)

where 〈·〉 is the Macaulay bracket, i.e., if x ≤ 0, then 〈x〉 = 0, otherwise 〈x〉 = x.
There are eight basic parameters (φn, φt, σmax, τmax, α, β, λn, and λt) involved in the

PPR model [32]. The PPR model considers different normal and tangential fracture energies
(φn and φt), different cohesive strengths (σmax and τmax), and controls the shape of the
traction–separation law using the parameters α, and β and the initial slope indicators λn,
and λt. The influence of α, β, λn, and λt on the material softening response were introduced
in detail in [32].

These eight parameters could be obtained by fitting the interface stress—displacement
relation measured in the splitting and shearing model test of concrete and mortar bonded
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composite specimens [40]. From these eight parameters, the following quantities can be
deduced, which are used in (1), (2), and (3):

m =
α(α− 1)λ2

n
(1− αλ2

n)
, n =

β(β− 1)λ2
t(

1− βλ2
t
) (4)

Γn = (−φn)
φn−φt/(φn−φt)

( α

m

)m
, Γt = (−φt)

φt−φn/(φt−φn)
(

β

n

)n
for (φn 6= φt) (5)

Γn = −φn

( α

m

)m
, Γt =

(
β

n

)n
for (φn = φt) (6)

δn =
φn

σmax
αλn(1− λn)

α−1
( α

m
+ 1
)( α

m
λn + 1

)m−1
(7)

δt =
φt

τmax
βλt(1− λt)

β−1
(

β

n
+ 1
)(

β

n
λt + 1

)n−1
(8)

where δn and δt are the normal final crack opening width and the tangential final crack
opening width, respectively. If ∆n ≥ δn or ∆t ≥ δt, the tractions Tn and Tt are set to
zero. Therefore, the traction–separation law is only valid in a region. To keep things
simple, the separations (∆n, ∆t) are assumed to be positive here. Then, the region can be
expressed as [ (∆n, ∆t)|0 ≤ ∆n ≤ δn, 0 ≤ ∆t ≤ δt]. Considering the region, the normal and
tangential cohesive tractions of the PPR model are plotted in Figure 2 with different fracture
energies (e.g., φn = 100 N/m, φt = 200 N/m, and other cases), cohesive strengths (e.g.,
σmax = 40 MPa, τmax = 30 MPa), shapes (e.g., α = 5, β = 1.3), and initial slope indicators
(e.g., λn = 0.1, λt = 0.2).

The normal cohesive traction (on the left in Figure 2) illustrates the fracture behavior
of a typical quasi-brittle material, while the tangential cohesive traction (on the right in
Figure 2) describes a plateau-type behavior. If φn < φt (Figure 2a,b), the tangential cohesive
traction was properly defined in the rectangular region corresponding to the final crack
opening widths (δn, δt) as mentioned above, while in the same region, the normal cohesive
traction Tn(∆n, ∆t) existed as negative (Figure 2a), which is contradictory to the nature of
cohesive tractions. Similarly, if φn > φt, the normal cohesive traction was properly defined
in the rectangular region, while the tangential cohesive traction was negative in some areas,
as illustrated in Figure 2c,d. If φn = φt (Figure 2e,f), the normal and tangential tractions
were non-negative in the same region.

To prevent the unphysical response, Park et al. [32] redefined the region by narrowing
it to make the cohesive traction non-negative in new region, and the traction was set to
zero if it was out of the new region. Taking φn < φt as an example, the change of region for
the normal traction is demonstrated in Figure 3 (separations are assumed positive here).
The parameter δt in Figure 3 is the tangential conjugate final crack opening width, and it is

the single root of Γt

(
1− |∆t |

δt

)β( n
β + |∆t |

δt

)n
+ 〈φt − φn〉 = 0 between 0 and δt [32].

For the new cohesive interaction region (on the right in Figure 3), one border of the
new region is the normal final crack opening width δn. The other border is the tangential
conjugate final crack opening width δt. Due to δt < δt, the new region was smaller than the
original one [ (∆n, ∆t)|0 ≤ ∆n ≤ δn, 0 ≤ ∆t ≤ δt] (on the left in Figure 3), whereas the region
of the tangential traction is the original one as shown in Figure 2b when φn < φt. This
means the cohesive interaction regions of the normal and tangential tractions are different,
and the tangential traction may still be large, while the normal traction has vanished
in some regions. In other words, when a fracture happens, the normal and tangential
tractions will not fail simultaneously. This is unrealistic for most interfaces encountered in
engineering practice.
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2.2. Unloading/Reloading Relationship

The original unloading/reloading relationship, which was commonly used with the
PPR model, was linear to the origin [35], and expressed as follows

Tυ
n (∆n, ∆t) = Tn(∆max

n , ∆t)
∆n

∆max
n

(9)

Tυ
t (∆n, ∆t) = Tt(∆n, ∆max

t )
∆t

∆max
t

(10)

where ∆max
n and ∆max

t are the largest values of ∆n and ∆t reached so far. If ∆n < δ
peak
n

(respective ∆t < δ
peak
t ), with δ

peak
n = λnδn (resp. δ

peak
t = λtδt), then ∆max

n = 0 (resp.
∆max

t = 0), and Tυ
n (∆n, ∆t) = Tn(∆n, ∆t) (resp. Tυ

t (∆n, ∆t) = Tt(∆n, ∆t)). If ∆n ≥ δ
peak
n

(resp. ∆t ≥ δ
peak
t ), then ∆max

n = ∆n (resp. ∆max
t = ∆t). That is to say, the original

unloading/reloading relationship is activated when the normal or tangential separation is
past the peak cohesive strength.

Spring et al. [38] found that the original unloading/reloading relationship was not
thermodynamically consistent and produced self-healing behavior. To address this issue, a
new coupled unloading/reloading relationship was proposed.

Tυ
n (∆n, ∆t) = Tn(∆max

n , ∆max
t )

∆n

∆max
n

(11)

Tυ
n (∆n, ∆t) = Tn(∆max

n , ∆max
t )

∆n

∆max
n

(12)

where ∆max
n and ∆max

t are updated as soon as ∆n > 0 and ∆t > 0. This means the linear
unloading/reloading response applies even before any peak has been passed.

Gilormini et al. [39] compared the two unloading/reloading relationships. They
demonstrated that the new unloading/reloading relationship performed better than the
original one and did not have the above questionable features. However, they also indicated
that the new one did not include an initial elastic region, since the energy was dissipated
by increasing the damage from the very beginning of the loading process. To address this
issue, our paper improves the unloading/reloading relationship (see Section 4).

3. Simplified PPR Traction–Separation Law

The traction–separation law of the PPR model is adjusted here to avoid the issues
mentioned in Section 2.1. The modifications of the traction–separation law are interpreted
below. Then, based on previous studies [32], the path dependence of work-of-separation is
investigated with respect to proportional and non-proportional paths to demonstrate the
consistency of the simplified PPR traction–separation law. Finally, the simplified model
was verified by simulating a mixed-mode bending test and comparing with the original
model.

3.1. Modification

From Figure 2, we concluded that the cohesive interaction regions for the normal
and tangential tractions were the same only if φn = φt. Substituting φn = φt into
Equations (2) and (3), we obtain the traction–separation law as follows.

Tn(∆n, ∆t) =
φn
δn

(
α
m
)m
(

β
n

)n(
1− |∆t |

δt

)β( n
β + |∆t |

δt

)n[
α
(

1− ∆n
δn

)α−1(m
α + ∆n

δn

)m
−m

(
1− ∆n

δn

)α(m
α + ∆n

δn

)m−1
]

(13)
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Tt(∆n, ∆t) =
φn
δt

(
α
m
)m
(

β
n

)n(
1− ∆n

δn

)α(m
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)m[
β
(
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− n

(
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δt
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]

∆t
|∆t | .

(14)

The traction–separation law only depends on mode I fracture energy φn. To account
for different values of φn and φt, the mode II fracture energy φt is substituted for φn
in the equation for the tangential traction. Therefore, the final form of simplified PPR
traction–separation law is given by

Tn(∆n, ∆t) =
φn
δn

(
α
m
)m
(

β
n

)n(
1− |∆t |

δt

)β( n
β + |∆t |

δt

)n[
α
(
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)m
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(
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)m−1
]

(15)

Tt(∆n, ∆t) =
φt
δt

(
α
m
)m
(

β
n

)n(
1− ∆n

δn

)α(m
α + ∆n

δn

)m[
β
(

1− |∆t |
δt
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β + |∆t |
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− n

(
1− |∆t |

δt

)β( n
β + |∆t |

δt

)n−1
]

∆t
|∆t |

(16)

The simplified PPR traction–separation law is similar to the original PPR model and
can also consider different fracture energies, cohesive strengths, and various material
softening behaviors. The noteworthy merits of the simplified model are that the energy
constants Γn and Γt are omitted (other parameters are the same as the original model), and
the formulas are unified regardless of what the fracture energies are. Taking φn = 100 N/m
and φt = 200 N/m as an example, the normal and tangential cohesive tractions of the
simplified model are plotted in Figure 4. Figure 4 shows that the normal and tangential
tractions are both properly defined in the same regions as expected. In the following
section, the applicability of the simplified model is demonstrated using multiple cases.
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Figure 4. The cohesive tractions with φn = 100 N/m, φt = 200 N/m, σmax = 40 MPa, τmax = 30 MPa, α = 5, β = 1.3,
λn = 0.1, and λt = 0.2. Normal traction (a); tangential traction (b).

3.2. Path Dependence of Work-of-Separation

The analysis of work-of-separation is a way to study the behavior of a coupled cohesive
zone model [13,32,41]. In this paper, we compare the work-of-separation of the simplified
PPR traction–separation law (SPPR) with the original PPR model for proportional separa-
tion paths and non-proportional paths. The fracture parameters in [32] were utilized in
this investigation: φn = 100 N/m, φt = 200 N/m, σmax = 3 MPa, τmax = 12 MPa, α = 3,
β = 3, λn = 0.01, and λt = 0.01.
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3.2.1. Proportional Separation

The proportional separation path is shown in Figure 5. The variable θ in Figure 5
is the separation angle between the path direction and tangent, and ∆r is the separation
for the proportional path. With the increase in ∆r, the interface gradually debonds. The
work-of-separation is calculated with the following expression [32].

Wsep =
∫ δr

0
Tn(∆rsinθ, ∆rcosθ)sinθd∆r +

∫ δr

0
Tt(∆rsinθ, ∆rcosθ)cosθd∆r (17)

where δr =
√

δ2
n + δ2

t . The first term in the work-of-separation expression is the work
conducted by the normal traction (Wn), and the second term in the expression is the work
conducted by the tangential traction (Wt). Wsep = Wn = φn when the separation angle θ is
90◦. When θ = 0◦, the work-of-separation Wsep and Wt are the same as the mode II fracture
energy φt.

Figure 6 illustrates the variation of Wsep, Wn, and Wt with respect to the separation
angles. The results for the PPR model are on the left and for the SPPR model are on the
right. The changing laws of Wsep, Wn, and Wt, with respect to the separation angles for
different models, are the same. Especially, when the separation angle is 0◦ or 90◦, the
curves for the SPPR model are exactly the same as the PPR model.

If θ is equal to 0◦, Wsep and Wt increase from 0 to the mode II fracture energy (200 N/m)
with the increase in ∆r, while Wn remains zero. When θ is equal to 90◦, Wsep and Wn reach
the mode I fracture energy (100 N/m), and Wt stays at zero. For the intermediate angles
(0◦ < θ < 90◦), the Wsep, Wn, and Wt of both models change monotonically with respect to
the increase in the separation angle θ. These verify that the PPR model and SPPR models
both guarantee the consistency of the cohesive constitutive model.

There is a difference between the PPR model and the SPPR model. When 0◦ < θ < 90◦,
the work conducted by the normal traction Wn for the PPR model only has a small change
with increases in the separation angle. In contrast, the SPPR model has a more obvious and
uniform change within the whole separation angles. This is due to the fact that the cohesive
interaction region for normal traction of the PPR model is smaller than the SPPR model
here (φn < φt), leading to a smaller Wn for the PPR model under mixed-mode fracture
conditions.
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Figure 5. Proportional separation path (∆r) with the separation angle (θ). Before separation (a); after
separation (b).
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Figure 6. The work-of-separation Wsep (a,b); work conducted by the normal traction Wn (c,d); and work conducted by
the tangential traction Wt (e,f); with respect to the change of the proportional angle θ. Park–Paulino–Roesler (PPR) model
(a,c,e); simplified PPR traction–separation law (SPPR) model (b,d,f).

3.2.2. Non-Proportional Separation

The non-proportional separation path is shown in Figure 7. Path 1 is that the interface
is loaded in the normal direction until ∆n = ∆n,max; then, complete tangential separation
occurs. Accordingly, path 2 is that the interface is first loaded in shear up to ∆t,max, and then
completely broken in the normal direction [41]. The expressions of the work-of-separation
for the two paths were given by [32]:

Wsep =
∫ ∆n,max

0
Tn(∆n, 0)d∆n +

∫ δt

0
Tt(∆n,max, ∆t)d∆t (18)

Wsep =
∫ ∆t,max

0
Tt(0, ∆t)d∆t +

∫ δn

0
Tn(∆n, ∆t,max)d∆n (19)
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For the first path (Figure 7a), ∆n,max = 0 represents the pure mode II fracture, while
∆n,max = δn describes the pure mode I fracture. Similarly, for the second path (Figure 7b),
when ∆t,max is zero, the separation path illustrates the pure mode I failure, while ∆t,max = δt
represents the pure mode II fracture. The change of ∆t,max from 0 to δt (resp. ∆n,max from
0 to δn) demonstrates the gradual change of the mode mixity from the mode I fracture to
the mode II fracture (resp. from the mode II fracture to the mode I fracture). Based on
Equations (18) and (19), the work-of-separation may change with the increasing of ∆n,max
or ∆t,max. If the work-of-separation has a monotonic variation from one fracture mode to
the other fracture mode, this demonstrates the consistency of the cohesive constitutive
model [32,41].

Figure 8 shows the variation of Wsep, Wn, and Wt with respect to the two paths, under
the condition of φn < φt. The results for PPR model are on the left and for the SPPR model
are on the right. Wsep, Wn, and Wt all change monotonically for both models. For path 1
(Figure 8a,b), the curves of Wsep, Wn, and Wt for the SPPR model are exactly the same as
the PPR model.

Figure 8a,b show that the work conducted by the tangential traction Wt gradually
decreases from φt to 0, while the work conducted by the normal traction Wn increases from
0 to φn. The work-of-separation Wsep is the sum of Wn and Wt, and this monotonically
varies from the value of φt to the value of φn by increasing ∆n,max from 0 to δn. For path 2
(Figure 8c,d), the change rules of Wsep, Wn, and Wt are the exact opposite of those in path
1. There is a kink point on the curves of Wn and Wsep, as shown in Figure 8c, but not in
Figure 8d.

The separation at the kink point corresponds to the border ∆t = δt of the original
PPR model, where δt is the tangential conjugate final crack opening width as previously
described in Section 2.1. When ∆t is smaller than δt, the normal cohesive interaction is
obtained based on Equation (2). When ∆t is greater than δt, the normal traction is set to zero.
The normal cohesive interaction is then not smooth but piece-wise continuous at ∆t = δt.
As a result, the Wn and Wsep also have the kink point at the same location. In contrast, the
curves of Wsep, Wn, and Wt for the SPPR model, as shown in Figure 8d, are continuous and
smooth. This is because both the normal and tangential cohesive interactions for the SPPR
model are continuous and smooth in the region [ (∆n, ∆t)|0 ≤ ∆n ≤ δn, 0 ≤ ∆t ≤ δt]. This
indicates that the SPPR model describes the mixed-mode fracture better.

Additionally, the same conclusion can be reached when the mode I fracture energy is
greater than the mode II fracture energy as shown in Figure 9. For the PPR model, the kink
point occurs in path 1 because the tangential cohesive interaction is piece-wise continuous
while being continuous and smooth for the SPPR model.
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Figure 8. Variation of the work-of-separation for the case of φn < φt (φn = 100 N/m and φt = 200 N/m): non-proportional
Path 1 (a,b); or non-proportional Path 2 (c,d). PPR model (a,c); SPPR model (b,d).
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3.3. Mixed-Mode Bending (MMB) Test Verification

The simplified PPR traction–separation law is verified here and compared to the
original PPR model by simulating the mixed-mode bending (MMB) test. The MMB test has
been widely used to validate the applicability of CZM for mixed-mode fracture [37]. The
configuration of the test is shown in Figure 10. Following the geometry parameters of the
MMB test, specimens were considered: L = 51 mm, h = 1.56 mm, a0 = 33.7 mm, c = 60 mm,
and B = 25.4 mm.

Numerical simulations of the mixed-mode fracture were implemented using the
commercial software ABAQUS with a user-defined element (UEL) subroutine, and such a
subroutine for the PPR model was given in the work of [34]. In this paper, user element
subroutines (UEL) were also utilized to implement the simplified PPR traction–separation
law. Since the mesh, FE element type, boundary conditions, as well as the solving method
are all the same as in [34], those items are not covered again here.

In this study, two cases were tested, one with the same fracture energy (φn = φt =
1 N/m) and another with different fracture energies (φn = 1 N/m and φt = 2 N/m). The
cohesive strength σmax = τmax = 200 MPa, shape parameter α = β = 3, and the initial
slope indicator λn = λt = 0.02 were the same for both cases. The numerical results were
compared to the analytical solution given in [32].

For the same fracture energy, the computational results for different models are
illustrated in Figure 11a. The results for the SPPR model and PPR model were the same,
and coincided with the analytical solutions. For the case of different fracture energies
(Figure 11b), the computational results for the SPPR model were in better agreement
with analytical solution compared with the PPR model under the same conditions. The
results for the PPR model were relatively small, as shown in Figure 11b. The reason is
that the effective region for the PPR model is smaller than for the SPPR model when
φn 6= φt, leading to the smaller tractions and energies under mixed-mode fractures as
mentioned before.
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Figure 11. Computational results for different models (a) considering the same facture energy
(φn = φt = 1 N/m), or (b) considering different facture energies (φn = 1 N/m and φt = 2 N/m).

4. Improved Unloading/Reloading Relationship

Previous studies [38,39] demonstrated that the original unloading/reloading rela-
tionship was not thermodynamically consistent and produced self-healing behavior. In
addition, the new unloading/reloading relationship proposed by Spring et al. [38] did not
include the initial elastic region. To prevent these issues, an improved unloading/reloading
relationship was developed. The modifications of the unloading/reloading relationship
are interpreted below. Then, the comparison of the three models is presented in Section
4.2. For convenience in the presentation of the results, the original unloading/reloading
relationship is referred to as model (i) here. The new unloading/reloading relationship
developed in [38] is referred to as model (ii), while the improved one proposed in this
paper is referred to as model (iii).

4.1. Modification

The reason why model (ii) has a lack of an initial elastic region is that the variables ∆max
n

and ∆max
t in Equations (11) and (12) are updated at the very beginning. Referring to the

definition of model (i), ∆max
n and ∆max

t should not be updated unless certain conditions are
met, for example, the peak cohesive strength should be passed. Therefore, how to determine
the peak becomes the key. For model (i), δ

peak
n and δ

peak
t are used. However, δ

peak
n and δ

peak
t

are the separations corresponding to the peak cohesive strength under mode I and mode
II fractures, respectively. Under the conditions of mixed-mode fracture, the separations
are not δ

peak
n and δ

peak
t , as illustrated in Figure 12. Figure 12 also shows that the peaks

change with the variation of mode mixing. Thus, the separations corresponding to the peak
under mixed-mode fractures are not convenient to obtain. For this, an alternative method
is presented here to estimate the peak, which is based on the gradients of the tractions.

The improved unloading/reloading relationship (model (iii)) is expressed as

Tυ
n (∆n, ∆t) = Tn

(
∆χ

n , ∆γ
t
)∆n

∆χ
n

(20)

Tυ
t (∆n, ∆t) = Tt

(
∆χ

n , ∆γ
t
) ∆t

∆γ
t

(21)

where ∆χ
n and ∆γ

t are state variables, and ∆χ
n = ∆n and ∆γ

t = ∆t by default. This indicates
that Tυ

n (∆n, ∆t) = Tn(∆n, ∆t) and Tυ
t (∆n, ∆t) = Tt(∆n, ∆t), until the following conditions

are met: the gradients of tractions
Tn(∆i

n ,∆i
t)−Tn(∆i−1

n ,∆i−1
t )

∆i
n−∆i−1

n
≤ 0 or

Tυ
t (∆i

n ,∆i
t)−Tυ

t (∆i−1
n ,∆i−1

t )
∆i

t−∆i−1
t

≤ 0.

Then, ∆χ
n and ∆γ

t become the largest values of ∆n and ∆t reached so far. Since ∆i
n > ∆i−1

n > 0
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and ∆i
t > ∆i−1

t > 0, ∆χ
n = ∆i

n and ∆γ
t = ∆i

t. Once one of above conditions is satisfied, both
∆χ

n and ∆γ
t are updated. That is to say, the improved unloading/reloading relationship

(model (iii)) is activated when one of above conditions is met.
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Figure 12. Variations of the normal traction component (a) and tangential component (b) under
mode I (mode II) loading, mixed-mode ∆n = ∆t, and mixed-mode ∆n = 0.5∆t.

4.2. Comparison

In this section, comparisons of the three models are drawn using the example in [39],
where the following set of parameters is used: φn = 100 N/m, φt = 300 N/m, σmax = 2 MPa,
τmax = 4 MPa, α = 3, β = 5, λn = 0.20, and λt = 0.25. The loading process consists of
three steps. First, a proportional mixed-mode loading where ∆n = ∆t is applied up to a
predefined value ∆. Then, a proportional mixed-mode unloading where ∆n = ∆t is carried
out down to 0. Finally, a mode I reloading (keeping ∆t = 0) is conducted.

Unlike the work in [39], the simplified PPR traction–separation law proposed in this
paper is used here instead of the PPR model. Therefore, δt is not used, and the fracture
occurs for either ∆n = δn or for ∆t = δt. Based on the parameters above, δn = 0.099 mm,
δt = 0.171 mm, δ

peak
n = 0.020 mm, and δ

peak
t = 0.043 mm.
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Figure 13 shows how the dissipated energy for the three models change with the
increase in the proportional loading amplitude ∆. The three models give the same energy
values at the beginning and end. The variation of the energy value for model (i) is quite
different from model (ii) and model (iii), while model (ii) and model (iii) are almost the same.
The dissipated energy given by model (iii) is identical to model (i) when ∆ < 0.017 mm,
which is a constant equal to the mode I fracture energy of φn = 100N/m.

When ∆ ≥ 0.017 mm, the change law of the energy value for model (iii) is exactly the
same as model (ii). There are three discontinuities for model (i), at ∆ = δ

peak
n = 0.020 mm,

∆ = δ
peak
t = 0.043 mm, and ∆ = δn = 0.099 mm, whereas model (ii) gives a smooth

continuous curve, and model (iii) only has one discontinuity at ∆ = 0.017 mm. These
differences are explained below by analyzing the changes of the traction components
during the loading process.

First, consider the proportional loading amplitudes ∆ around 0.017 mm. Figure 14
presents the variations of the traction components during the loading process for a pro-
portional loading amplitude of ∆ = 0.016 mm. The computation results for model (i) and
model (iii) are identical; thus, both are presented using Figure 14a. As can be observed in
Figure 14a, during unloading, both traction values back up along the same curves that they
followed during loading, when the peak of tractions was not reached.

Consequently, the final energy is only dissipated in pure mode I reloading, which is
equal to φn = 100 N/m. In contrast, both unloading curves follow straight lines with the
model (ii), as shown in Figure 14b. This is due to no peak value being needed to start using
the linear response. That is say, damage is assumed to occur at the beginning, and the
initial elastic region is ignored. Due to the assumed damage, the energy dissipated in pure
mode I reloading for model (ii) is smaller than for model (i) and model (iii). As a result, the
total dissipated energy (97.0 J/m2) for model (ii) is lower than φn.

When ∆ = 0.017 mm, the peak of normal traction is reached under the mixed-mode
loading (Figure 15a,b), and therefore, the linear unloading response of model (iii) is ac-
tivated. As a consequence, the variations of the traction components during the whole
loading process for model (iii) become the same as for model (ii), both presented in
Figure 15b. They still apply for larger proportional loading amplitudes ∆ > 0.017 mm.

Thus, in the following analysis, the results for model (ii) and model (iii) are all
displayed with the same diagrams. Due to the variation of response, the dissipated energy
for model (iii) changes from 100 J/m2 (φn) at ∆ = 0.016 mm to 97.0 J/m2 at ∆ = 0.017 mm.
Such an energy discontinuity is inherent to any CZM model that obeys a curved line in
the reversible range and an unloading straight line when irreversibility has appeared,
which was discussed in detail by Gilormini et al. [39]. Therefore, the small energy jump
is accepted.

When ∆ = 0.019 mm, the peak of normal traction is exceeded, as shown in Figure 16a,b.
However, because of ∆ < δ

peak
n = 0.020 mm, the normal traction for model (i) still returns

along the loading path during the unloading process, leading to a questionable response
that the traction increases with the decrease in separations. When ∆ = 0.020 mm, the
δ

peak
n value is reached, and thus the model (i) is activated. Similar to that for model (iii)

at ∆ = 0.017 mm mentioned above, there is a small energy jump for model (i) due to the
change from an elastic region to a softening region. In contrast, for model (ii) and model
(iii), the dissipated energy varies continuously.

Consider now the proportional loading amplitudes ∆ around δ
peak
t = 0.043 mm.

Figure 17a, for ∆ = 0.042 mm, shows that tangential traction component Tt still returns
along the loading path and increases significantly during the unloading process. When
∆ = 0.043 mm (Figure 17c), the δ

peak
t value is reached, and therefore, the tangential

unloading component in model (i) is activated as well. On account of the added energy that
is dissipated by Tt during the proportional loading/unloading process, the total energy
given by model (i) increases sharply, which induces a jump at ∆ = 0.043 mm in Figure 13.
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In contrast, model (ii) and model (iii) have a smooth evolution of dissipated energy, as can
be observed in Figure 17b,d.

Finally, consider the proportional loading amplitudes ∆ around δn = 0.099 mm. When
∆ = 0.098 mm (Figure 18a,b), which is slightly below the critical value δn, both tractions are
near 0 at the end of loading. For model (i), there is an increase in Tt during unloading, and,
due to that, ∆n in the tangential term of model (i) varies during proportional unloading.
When the proportional loading amplitude ∆ = 0.099 mm, the critical value δn is reached,
and hence fracture is complete (Figure 18a,b). As a result, the unloading and reloading
phases no longer exist, and the dissipated energy for the three models becomes the same,
equal to 155.2 J/m2.

From the above analysis, the original unloading/reloading relationship (referred to
as model (i) here) may induce some questionable responses, such as increasing traction
during unloading. The new unloading/reloading relationship proposed by Spring et al. [38]
(referred to as model (ii) here) may bring damage at the beginning and ignore the initial
elastic region. The improved unloading/reloading relationship (referred to as model (iii)
here) proposed in this paper combines the merits of the above two models, which prevents
the issues mentioned above, and defines an elastic region before a softening regime.
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Figure 13. Dissipated energy in the process of proportional loading/unloading and mode I reloading,
with the increase in the amplitude of proportional loading. Model (i) (solid line), model (ii) (dashed
line), and model (iii) (dotted line).
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Figure 14. Variations of the traction components Tn (solid lines) and Tt (dashed lines) during the process of proportional
loading/unloading and mode I reloading, for a proportional loading amplitude of ∆ = 0.016 mm. Model (i) and model (iii)
(a); model (ii) (b).
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Figure 15. Variations of the traction components Tn(solid lines) and Tt (dashed lines) during the process of proportional
loading/unloading and mode I reloading, for a proportional loading amplitude of ∆ = 0.017 mm. Model (i) (a); model (ii)
and model (iii) (b).
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Figure 16. Variations of the traction components Tn (solid lines) and Tt (dashed lines) during the process of proportional
loading/unloading and mode I reloading, for a proportional loading amplitude of ∆ = 0.019 mm (a,b); or ∆ = 0.020 mm
(c,d). Model (i) (a,c); model (ii) and model (iii) (b,d).
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Figure 17. Variations of the traction components Tn (solid lines) and Tt (dashed lines) during the process of proportional
loading/unloading and mode I reloading, for a proportional loading amplitude of ∆ = 0.042 mm (a,b); or ∆ = 0.043 mm
(c,d). Model (i) (a,c); and model (ii) and model (iii) (b,d).
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Figure 18. Variations of the traction components Tn (solid lines) and Tt (dashed lines) during the process of proportional
loading/unloading and mode I reloading, for a proportional loading amplitude of ∆ = 0.098 mm (a,b); or ∆ = 0.099 mm
(c,d). Model (i) (a,c); model (ii) and model (iii) (b,d).



Appl. Sci. 2021, 11, 456 19 of 25

5. Application

Interface damage, which even happens in the construction phase, has become a major
problem for China Railway Track System (CRTS-II) slab track. To reveal the behavior of the
slab track under the difference of temperatures, the effect of daily changing temperature
on the curling behavior and interface stress of slab track in the construction stage was
researched by the authors [2]. As a follow-up study, the interface damage of slab track
under daily changing temperature is analyzed by implementing the improved cohesive
zone model in this section.

The CRTS-II slab track consists of precast slab, CA mortar, and concrete base, as shown
in Figure 19. All of these components are modeled according to actual size. The dimensions,
material properties, mesh, FE element type, and boundary conditions of each component
are all the same as in [2]; those items are not covered again here.

Interface cracks usually occur between the track slab and CA mortar, as shown in
Figure 1. The interlaminar cracking is modelled based on the constitutive model proposed
in this paper, by using the commercial software ABAQUS with a user-defined interac-
tion (UINTER) subroutine. The validated interface parameters [42] are φn = 2.6 N/m,
φt = 4 N/m, σmax = 0.015 MPa, τmax = 0.015 MPa, α = 2, β = 2, λn = 0.1 and λt = 0.1.
Due to symmetry of the geometry and loading conditions, only a quarter of the slab track
is established. The 3-D finite element model of CRTS-II slab track is built as presented in
Figure 20.

Based on the proposed model, the interface damage is simulated under gravity load
and measured temperature. The measured temperature was input into the model as
temperature load using user-defined subroutines named UTEMP [2]. In the analysis, the
summer temperature (Figure 9 in [2]) is taken as an example. As the initial stress field has
an influence on the stress history and stress level, the time of 14:30 with the maximum
temperature difference is selected as the starting time.

Figure 21 shows the interface crack opening (COPEN) distribution of the slab track
system as a result of temperature change. It is found that the damage at four corners is
the most obvious. Such damage mode is exactly the same as that observed in high-speed
railway lines.

The normal and the two shear stresses of the interface at the slab corner are shown in
Figure 22. It can be observed that the interface damage is mainly caused by the presence of
normal and lateral shear stresses. It is worth noting that the stresses change smoothly for
the model proposed in the paper and PPR model, while piece-wise continuously for the
cohesive zone model in ABAQUS. Moreover, the problem of self-repair for the PPR model
is found in Figure 22b,c. The cause was mentioned before.

Figure 23 shows the interface normal stresses (CPRESS) between the slab and CA
mortar layer when interface cracking happens. It is found that the stress distribution for
the model proposed in the paper and PPR model is almost the same, and continuously
changes with location. However, that for the cohesive zone model in ABAQUS is rugged
and unreasonable. For example, the tensile and compressive stresses occur simultaneously
around slab corner. This may be due to the stress oscillation [33].
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Figure 21. Interface crack opening (COPEN) distribution of the slab track system as a result of
temperature change (scale factor is 20).
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stress, and (c) lateral shear stress.
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6. Conclusions

A simplified cohesive zone model combined with an improved unloading/reloading
relationship was proposed in this paper to overcome certain shortcomings of the original
model, and was validated using multiple cases.

First, the traction–separation laws of the PPR model under different conditions of
fracture energies were compared. We concluded that the cohesive interaction regions for
the normal and tangential traction components were different, when the mode I fracture
energy was not equal to the mode II fracture energy. This may lead to an undesired response
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where one traction component is still very large while the other traction component has
vanished, which is unrealistic for most interfaces encountered in civil engineering practice.
To address this issue, the simplified PPR model was developed based on the original
model. We found that the simplified model had unified formulas and cohesive interaction
regions regardless of the fracture energies. The investigations of the path dependence of
work-of-separation and the simulation of the mixed-mode bending test both demonstrated
that the simplified model guaranteed the consistency of the cohesive constitutive model
and had better performance in modeling the mixed-mode fracture.

When a loading/unloading/reloading process was applied, we observed that the
original unloading/reloading relationship, which was commonly utilized with the PPR
model, induced questionable responses, such as increasing the traction during unloading.
The new unloading/reloading relationship proposed by Spring et al. [38] ignored the
initial elastic region. By conducting an analysis of the above issues and the causes, the
unloading/reloading relationship was improved based on the gradient of traction. We
verified that the improved unloading/reloading relationship prevented the above issues
and defined an elastic region before a softening regime.

The proposed model provides a tool for the research of the interface cracking mecha-
nism of ballastless tracks. After the above analysis and verification, the proposed model
solves the problem of ”self-repair” in the existing models and can correctly simulate the
interface damages and cracking process under reciprocating loads. By using the UINTER
platform of ABAQUS/Standard user interface constitutive subroutine, the module of inter-
laminar cracking analysis based on the constitutive model proposed in this paper could be
constructed.

After coupling the module with the main structure model of ballastless track, a non-
linear finite element model of multilayer slab ballastless track system that could accurately
simulate the interlayer compound mode cracking was constructed. Based on the model,
the mechanism of interface cracking can be analyzed in detail [42]. The results of the
research on the defect mechanism of the ballastless track can provide a scientific basis for
the maintenance of the defects of ballastless tracks and guide the research of the monitoring
of track service status, such as monitoring point placement and data analysis.

The proposed model could model the initiation and propagation of interface cracks
under a coupled thermo-mechanical operating condition; however, it does not take into
account the time/temperature dependency of the interfacial fracture parameters, which is
regarded as our future work.
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Nomenclature
Ψ potential function for cohesive fracture
∆n, ∆t normal and tangential separation
∆max

n , ∆max
t maximum normal and tangential separations in a loading history

∆χ
n , ∆γ

t state variables for maximum normal and tangential traction
∆i

n, ∆i
t normal and tangential separations at step i

φn, φt mode I and mode II fracture energy
Γn, Γt energy constants in the PPR model
δn, δt normal and tangential final crack opening widths
δ

peak
n , δ

peak
t normal and tangential separation for peak traction

α, β shape parameter
m, n exponents
Tn, Tt normal and tangential tractions
Tυ

n , Tυ
t normal and tangential tractions for the unloading/reloading relation

σmax, τmax normal and tangential cohesive strength
λn, λt initial slope indicators in the PPR model
δn, δt normal and tangential conjugate final crack opening widths
θ separation angle between the path direction and tangent
∆ magnitude of ∆n = ∆t applied during preloading
∆r separation for proportional path
∆n,max, ∆t,max maximum normal and tangential separations
Wsep work-of-separation
Wn, Wt work conducted by the normal and tangential cohesive traction
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