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Abstract: Multi-classifiers are widely applied in many practical problems. But the features that can
significantly discriminate a certain class from others are often deleted in the feature selection process
of multi-classifiers, which seriously decreases the generalization ability. This paper refers to this
phenomenon as interclass interference in multi-class problems and analyzes its reason in detail. Then,
this paper summarizes three interclass interference suppression methods including the method based
on all-features, one-class classifiers and binary classifiers and compares their effects on interclass
interference via the 10-fold cross-validation experiments in 14 UCI datasets. Experiments show that
the method based on binary classifiers can suppress the interclass interference efficiently and obtain
the best classification accuracy among the three methods. Further experiments were done to compare
the suppression effect of two methods based on binary classifiers including the one-versus-one
method and one-versus-all method. Results show that the one-versus-one method can obtain a better
suppression effect on interclass interference and obtain better classification accuracy. By proposing
the concept of interclass inference and studying its suppression methods, this paper significantly
improves the generalization ability of multi-classifiers.

Keywords: interclass interference; multi-class classification problem; suppression method;
one-versus-all (OVA); one-versus-one (OVO); generalization ability

1. Introduction

Classification tasks exist widely in real-world applications, such as computer vi-
sion [1], fault diagnosis [2,3], human action recognition [4], face recognition [5], image
recognition [6], material science [7], big data analysis, [8,9] etc. Many of them are classifica-
tion tasks that include more than two classes, which are called multi-class problems [10].
Multi-class problems are usually more difficult to solve than binary classification problem
because multi-class problems need to distinguish more classes. Multi-class problems are
quite common in the real world [11–17]. For example, an image recognition device needs
to distinguish many different kinds of images. An industrial fault diagnosis system [18,19]
needs to diagnose what fault occurs in the machine. A sentiment analysis system [20,21]
needs to classify different attitudes of people according to the information in social me-
dia such as Twitter and Facebook. Improving the classification accuracy of multi-class
problems has great significance in actual applications [22].

Multi-class problems can be addressed in many ways. Among the well-recognized
classifiers, some classifiers can handle multi-class problems directly, such as decision
tree [23,24], rough set-based classifiers [25–28], neural networks [29,30], naive Bayes [31],
K-nearest neighbor (KNN) [32] and so forth. Others can only deal with binary classification
problems like support vector machine (SVM) [33,34]. Although there are some studies on
how to use binary classifiers to solve multi-class problems, these studies usually focus
on the situations where some classifiers cannot solve multi-class problems by themselves.
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For these classifiers, current studies focus on how to address multi-class problems by
decomposing multi-class problems into binary classification problems. When binary
classifiers are used to address multi-class problems, the most common strategies are
currently one-versus-one (OVO) strategies [35] and one-versus-all (OVA) strategies [36,37].
For the OVO strategy, Galar et al. [38] developed a distance-based combination strategy,
which weights the competence of the outputs of the base classifiers depending on the
closeness of the query instance to each one of the classes. Galar et al.’s method reduced the
effect of the non-competent classifiers, enhancing the results obtained by the state-of-the-art
combinations for the OVO strategy. Galar et al. [39] proposed a dynamic classifier selection
strategy for the OVO scheme that tries to avoid non-competent classifiers. For the OVA
approach, Dinh et al. [40] proved new fast learning rates for OVA multi-class plug-in
classifiers trained either from exponentially strongly mixing data or from data generated
by a converging drifting distribution. They reported that their results retain the optimal
learning rate in the independently identically distributed case in contrast to previous works
for least squares SVMs under the binary-class setting. In literature [41], Rebetez et al. used
an ensemble of binary OVA neural network classifiers and reported that the performances
of their methods are comparable to lazy learning methods that require the whole dataset.

Currently, the generalization ability of multi-classifiers remains a longstanding chal-
lenge [42]. Many scholars have carried out relevant research on it. Eiadon et al. [43]
decomposed the classes into subsets by embedding a structure of binary trees and put
forward a novel splitting criterion based on minimizing generalization errors and greedy
search procedures across the classes. Lei et al. [44] established data-dependent error bounds
in terms of complexities of a linear function class defined on a finite set induced by training
examples, for which they showed tight lower and upper bounds, applied the results to
several prominent multi-class learning machines and exhibited a tight dependency on the
number of classes. Kantavat et al. [45] proposed new methods for support vector machine
(SVM) using tree architecture for multi-class classification and reported that their proposed
methods run much faster than the traditional techniques but still provide comparable
accuracy. Dhifli et al. [46] introduced a novel multi-class classification method for the
open-set problem and proved the efficiency of their approach in classifying novel instances
from known as well as unknown classes through experiments on benchmark datasets and
synthetic datasets.

From the literature above, it can be noticed that many researchers focus on improving
the generalization ability of classifiers. However, these researchers merely focus on gener-
alized classification problems. There is little research specifically for multi-class problems.
Researchers usually regard multi-class problems as ordinary classification problems to
improve their generalization ability. Few researchers focus on the unique characteristics of
multi-class problems. Although there are some studies on how to use binary classifiers to
solve multi-class problems, these studies usually focus on the situations where some classi-
fiers cannot solve multi-class problems by themselves. The differences between common
binary classifiers and multi-classifiers are not studied sufficiently. This is the problem that
this paper deals with.

This paper observes that there exists a special phenomenon in multi-class problems,
which are quite different from binary classification problems. The features that can signifi-
cantly discriminate a certain class from others are often deleted in the process of feature
selection because they cannot discriminate among other classes. By contrast, the features
that can discriminate among all classes are often reserved after feature selection. Although
there are small errors in the training set, there may be large errors in test sets because
reserved features cannot reflect the essence of a certain class. This phenomenon is an inher-
ent problem in feature selection of multi-class problems and becomes more serious as the
number of classes increases. This phenomenon significantly decreases the generalization
ability of multi-classifiers. To improve the generalization ability of multi-classifiers better,
this phenomenon must be eliminated or suppressed. Therefore, this paper elaborates this
special phenomenon in multi-class problems, names it interclass interference, analyzes its
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reason systematically, designs its suppression methods and compares their suppression
effects on interclass interference through 10-fold cross-validation experiments in 14 UCI
datasets. The main contributions of this paper are listed as follows.

Firstly, this paper observes a special phenomenon in the feature selection of multi-
classifiers and names it interclass inference. To the best of our knowledge, this is the
first time that the concept of interclass inference is proposed. Secondly, the reasons for
interclass inference are analyzed. The essence of interclass inference is revealed in this paper.
The negative influence of interclass inference on the generalization ability of multi-class
classifiers is also analyzed in detail. Thirdly, this paper summarizes the possible methods
for suppressing interclass inference and compares their effects on interclass inference
suppression.

The rest of this paper is organized as follows. In Section 2, the concept of interclass
interference in multi-classifiers is proposed and its reason is analyzed systematically. In
Section 3, suppression methods of interclass interference are summarized. In Section 4,
interclass interference suppression algorithms used for the comparison experiments in this
paper are designed. Section 5 shows the results of our comparison experiments. Section 6
concludes the paper.

2. Interclass Interference of Multi-Class Problems

Interclass interference is an inherent problem in feature extraction of multi-class
problems. The removal of key features of some classes as redundant features is the direct
cause of interclass interference in multi-class problems.

In this section, this paper will use an example of multi-class vibration fault diagnosis
of steam turbine shown in Table 1 to introduce the concept of interclass interference and
reveal its essence. According to expert knowledge, the vibration signal of 0.4f~0.6f, 1f and
2f, namely the features a1, a2 and a3, are the essential features that can significantly discrim-
inate oil film whirl, unbalance and misalignment from other faults, respectively [47–49].
Note that f denotes the rotation frequency in Table 1.

Table 1. Decision table for vibration fault diagnosis of a steam turbine.

Fault Instances Conditional Attributes (C) Decision
Attributes (D)

U 0.4f~0.6f (a1) 1f (a2) 2f (a3) Fault (d)

x1 Low High Low Unbalance
x2 Low High Medium Unbalance
x3 Low High High Unbalance
x4 Low Medium Low Unbalance
x5 Low Medium Medium Unbalance
x6 Low Low High Misalignment
x7 Low Medium Medium Misalignment
x8 Low Medium High Misalignment
x9 High Low Low Oil Film Whirl
x10 High Low Medium Oil Film Whirl

In machine learning, feature selection is an essential step in classification, which can
reduce dimensionality. In Table 1, a1 is the feature that can significantly distinguish the
oil film whirl fault from other two fault classes including unbalance and misalignment.
Meanwhile, the fact that attribute a1 is the intrinsic characteristics of oil film whirl also
meets the physical laws [50,51]. However, feature a1 cannot distinguish unbalance and
misalignment faults. In the feature selection process, features that can distinguish all
classes have the highest priorities to be preserved. Feature a1 may be deleted because it
cannot distinguish between unbalance and misalignment fault. If feature a1 is deleted, the
generalization ability of this multi-classifier will be bad because the essential feature of the
oil film whirl is deleted. This phenomenon is called interclass inference in this paper. In the
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following part of this section, this paper will use a rough set for feature selection, elaborate
the interclass inference and analyze the bad influence of interclass inference in detail.

Rough set is a popular feature selection method. This paper uses rough sets for
feature selection because the attribute reduction of rough sets removes unnecessary and
unimportant features and has great advantages in feature selection. In rough set theory,
data are usually stored in the form of a decision table < U, A = C ∪ D, V, f >, where U is
the universe, A is the set of attributes, C is the set of conditional attributes, D is the set of
decision attributes, V is the set of all attributive values and f is the information function.
For any conditional attribute subset B ⊆ C, there exits an equivalence relation IND(B),
and it is defined by IND(B) = {(x, y) ∈ U ×U| f (x, a) = f (y, a), ∀a ∈ B}. The set of all
equivalence classes is denoted as U/B. For every x ∈ U, the equivalence classes of x,
denoted by [x]B, are defined by [x]B = {y ∈ U|( x, y)∈ IND(B)}. Let X be a subset of U;
then, the B-lower approximation B(X) and B-upper approximation B(X) of X are defined
by B(X) = {x ∈ U|[x]B ⊆ X} and B(X) = {x ∈ U|[x]B ∩ X 6= ∅}, respectively. The B-
positive region POSB(D) in the relation IND(D) is defined by POSB(D) = ∪

X∈U/D
B(X).

The dependency degree γB(D) of U/D on B is defined by γB(D) = |POSB(D)|/|U|, where
|F| denotes the cardinality of set F. If B is a subset of C such that γB(D) = γC(D), then B is
a reduct of C [50]. Currently, there are many attribute reduction algorithms, among which
one of the most common-used ones is the dependency degree-based algorithm proposed
in [51]. Therefore, this paper used it for feature selection.

According to the feature selection algorithm proposed in the literature [51], a feature
subset {a2, a3} is obtained after attribute reduction. In this feature subset {a2, a3}, two rules
namely ′(a2 = low)̂(a3 = medium) ⇒ (d = oil f ilm whirl)′ and ′(a2 = low)̂(a3 = low) ⇒
(d = oil f ilm whirl)′, are needed to diagnose the fault of oil film whirl. The support coefficients
of two rules are both 1/10. If the essential feature of oil film whirl, namely feature a1 is used, only
one rule ′(a1 = high)⇒ (d = oil f ilm whirl)′ is needed to diagnose the fault of oil film whirl,
and the support coefficient of this rule increases to 2/10. The rule obtained by using essential
features and non-essential features can both realize the perfect classification of the existing
instances of oil film whirl in Table 1. However, we can obtain shorter rules and larger support
coefficients based on the essential feature a1. In general, it can reflect the characteristics of data
better and contribute to better generalization ability if there are fewer rules and larger support
coefficients. Thus, the rule ′(a1 = high)⇒ (d = oil f ilm whirl)′ is a more direct reflection of
the oil film whirl compared with the previous two rules and accords with well expert knowledge.
However, in the process of feature selection, the essential feature a1 of oil film whirl is deleted.
Obviously, the deletion of essential features deviates from the intrinsic characteristics and thus
seriously decreases the generalization ability of multi-classifiers. In this paper, the deletion of
essential features that can significantly discriminate a certain class from the other classes in the
feature selection of multi-classifiers is called interclass interference.

Next, we will analyze the reason for interclass interference, namely the reason why
essential features are deleted. We performed feature selection through the algorithm in [50].
First, we calculate the significance of conditional attribute a1, a2 and a3 in Table 1: we
can obtain that γa1(d) =

2
10 , γa2(d) =

3
10 and γa3(d) = 0. The feature a2 has the greatest

significance, so it is selected first. Then, on the basis of attribute a2, we calculate the
significance of a1 and a3. We obtain γ{a1,a2}(d) =

6
10 and γ{a2,a3}(d) =

8
10 . The feature a3

has a greater significance, so it is selected. Because of γ{a2,a3}(d) = γ{a1,a2,a3}(d), the feature
selection ends and the selected feature subset is {a2, a3}. In this process, the reason for the
deletion of attribute a1 is not because it has no contribution to classification. The essential
features of the imbalance a2 and misalignment a3 are capable of classifying not only the
instances of imbalance and misalignment but also the existing instances of oil film whirl
correctly. After selecting feature a2 and a3, the essential feature a1 becomes redundant in
terms of the existing instances of oil film whirl and thus is deleted.

From the above analysis, the essence of interclass inference can be revealed. The
phenomenon of interclass interference occurs in the feature selection process of multi-class
problems. Usually, features with the ability to distinguish all classes are prioritized in
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feature selection. The features that can significantly discriminate a certain class from others
are called essential features of a certain class in this paper. Some essential features not
only have strong classification ability for corresponding classes but also have classification
ability for other classes to some extent. Thus, they are often reserved. By contrast, other
essential features, which can distinguish a certain class significantly but cannot discriminate
among other classes well, are often deleted as reductant features in feature selection. Once
essential features are deleted, the phenomenon of interclass inference occurs. Interclass
interference becomes more serious as the number of attributes increases. Although there
are small training errors, there are usually large test errors because reserved features cannot
reflect the essence of a certain class. The phenomenon of interclass inference seriously
decreases the generalization ability of multi-classifiers. Therefore, interclass interference
must be eliminated or suppressed in order to improve the generalization performance of
multi-classifiers.

3. Interclass Interference Suppression Methods
3.1. All-Features-Based Approach

In the feature selection process of multi-classifiers, the essential features of a certain
class are often deleted as redundant features, which causes interclass inference. Therefore,
an intuitive solution to interclass inference suppression is to forgo feature selection and
retain all features. This idea is intuitive and can eliminate interclass inference completely.
However, this method goes against the conventional way that is widely adopted in the
machine learning field, and it also seriously increases the computational cost. In the field
of machine learning, many studies have shown that feature selection is an important
way to improve the generalization performance of learning machines. As a result, for
many machine learning methods, feature selection has become an indispensable part in
the learning process [52]. Feature selection can greatly reduce the dimension of input
space by removing those unimportant or redundant features, thus reducing the complexity
of functions implemented by machine learning methods. Feature selection can generally
improve the generalization performance of machine learning methods. Therefore, reserving
all attributes are not very suitable to suppress the interclass inference.

3.2. One-Class Classifier Based Approach

One-class classifier [53] only uses the information of a certain classifier, so there is
no interclass interference problem. Therefore, methods based on one-class classifiers can
completely eliminate the interclass interference in multi-classifiers.

The typical example of a one-class classifier is the one-class support vector machine
(SVM) [54]. One-class SVM uses a kernel function to map the original normal data to a high-
dimensional space, where one-class SVM tries to find a hyperplane that enables the normal
data to be as far from the origin as possible. Let the distance between the hyperplane
and the origin be ρ. Then, the samples whose distance from the origin is smaller than ρ is
detected as abnormal samples [54,55]. If there are m features and N training samples in
the training set, let xi(i = 1, . . . , N) denote the training data, then one-class SVM can be
denoted by the following optimization problem.

min 1
2‖w‖2 − ρ + 1

vN

N
∑

i=1
ξi

s.t.(w·ϕ(xi)) ≥ ρ− ξi
ξi ≥ 0, i = 1, . . . , N

(1)

where ξi is the slack variable, v ∈ (0, 1) is the error rate, ϕ(.) is a nonlinear mapping that is
usually realized by a kernel function.

Research studies have shown that a one-class classifier can only use the information of
the target class when defining the classification boundary, unlike multi-classifiers that can
use the information of other classes. Therefore, in general, the performance of a one-class
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classifier is difficult to make comparable to that of multi-classifiers [56]. Thus, one-class
classifier-based approaches are not very suitable to suppress the interclass inference, either.

3.3. Binary-Classifier-Based Approach

There is also interclass interference in binary classifiers; that is, the essential fea-
tures of a certain class are deleted as redundant features. Nevertheless, compared with
multi-classifiers, the interclass interference of the binary classifiers is significantly reduced.
Therefore, it is possible to solve multi-class problems by constructing binary classifiers to
suppress interclass interference. Currently, two popular ways of solving multi-class prob-
lems through binary classifiers are one-versus-one (OVO) strategies [35] and one-versus-all
(OVA) strategies [40].

For an M-class problem, the OVA strategy requires M binary classifiers, each of them
distinguishes one class from the rest. Taking a three-class classification problem as an
example, there are three classes: Class 1, Class 2 and Class 3 in the problem. OVA strategy
uses three binary classifiers to solve this multi-class problem. The first binary classifier
distinguishes the samples from belonging to class 1 and not belonging to class 1. The second
binary classifier distinguishes the samples from belonging to class 2 and not belonging to
class 2. The third binary classifier distinguishes the samples from belonging to class 3 and
not belonging to class 3. This method is simple and direct in the construction of binary
classifiers. However, the samples processed by each of the binary classifiers constructed
by OVA are usually class-imbalanced. Unlike the OVA strategy, the OVO strategy builds
binary classifiers between any two classes of the original multi-class problem. For an
M-class problem, OVO needs to construct M(M-1)/2 binary classifiers, which are usually
much larger than the number of classifiers required by OVA.

Although OVO requires more classifiers, each classifier built by OVO only needs
to distinguish any two classes in the original multi-class problem. Thus, each classifier
processes fewer instances, and the problems to be learned by each classifier are usually
simpler compared with the original multi-class problem and the OVA strategy. In addition,
the class-imbalanced problem existing in OVA strategy does not exist in the OVO strat-
egy. Many practical applications have shown that the OVO construction method usually
achieves the best performance when dealing with multi-class problems.

To sum up, although the all-features-based approach and the one-class classifier-based
approach can eliminate interclass interference, their classification performances are usually
not good. The binary classifier-based approach is a good choice to suppress the interclass
inference.

4. Design of Interclass Interference Suppression Algorithms

In this section, this paper designs interclass interference suppression algorithms in
order to perform the comparison experiments between the interclass inference methods
better. The all-features-based approach and one-classifier based approach are easy to
implement, so this section focuses on the binary-classifier-based approach only. The binary
classifier-based approach is discussed in detail, and corresponding algorithms for the
comparison experiments are presented in this section.

4.1. Construction of Binary Classifier

The binary-classifier-based approach decomposes multi-class problems into several
binary classification problems. OVA and OVO are two commonly used strategies.

Firstly, OVA strategy is presented. For a given M-class problem, OVA strategy uses
the instances belonging to class i(i = 1, 2, . . . , M) and the instances not belonging to class i
to construct M binary classifiers. In this paper, other classes except class i are called the
negative class of class i, denoted as class i. Algorithm 1 shows the detailed procedure of
experiments based on OVA in this paper.
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Secondly, the OVO strategy is presented. For a given M-class problem, OVO strategy
uses to construct M(M-1)/2 binary classifiers respectively. Algorithm 2 shows the detailed
procedure of experiments based on OVO strategy in this paper.

For OVO and OVA method, there are three decision strategies. The first one is based
on the voting of classification results. The second one is based on the voting of a certain
coefficient. The third one is based on the voting of the support coefficient. For voting based
on the support coefficient, the OVA method can use the support coefficient of either the
positive class or the negative class.

Algorithm 1 Binary classifier construction procedure based on OVA strategy

Input: the original dataset
Output: M binary classifiers; the corresponding feature subset iRedu, rule set iRuleset and
support coefficient iSupp of M binary classifiers; the average number of attributes aveNum_Redu;
the overall feature subsets used_Redu; the overall number of rules Num; average support
coefficient aveSupp; the average rule length aveLen; the overall number of rules Num for negative
class; average support coefficient aveSupp for negative class and the average rule length aveLen
for negative class.
Begin
i = 0;
while i ≤ M; //M is the number of classes in multi-class problems
1. Mark all instances not belonging to class i as class i and obtain the dataset i_Dataset of i-th
classifier. // class i is denoted as the negative class of class i here.
2. Obtain the feature subset i_Redu of i_Dataset via attribute reduction and denote the number
of attributes in feature subset as iNum_Redu.
3. Extract rules from feature subset, and denote the rule set of i-th classifier as iRuleset
4. Compute the support coefficient of each rule in rule set iRuleset and denote the set of support
coefficients as iSupp.
5. Compute the rule number iNum, the sum of support coefficient iSum_Supp and the sum of
rule length iSum_Len of the class i.
6. Compute the rule number iNum, the sum of support coefficient iSum_Supp and the sum of
rule length iSum_Len of the class i.
7. i = i + 1;
end {while}
aveNum_Redu← sum

i
(iNum_Redu)/M // the average number of attributes

used_Redu← ∪
i
iRedu // used feature subset for M-class problem

Num← sum
i
(iNum) // the number of rules for M-class problem

aveSupp← sum
i
(iSum_Supp)/Num // average support coefficient of rules

aveLen← sum
i
(iSum_Len)/Num // average rule length

Num← sum
i
(iNum) // the number of rules for negative class

aveSupp← sum
i
(iSum_Supp)/Num // average support coefficient of negative class

aveLen← sum
i
(iSum_Len)/Num // average rule length for negative class

End
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Algorithm 2 Binary classifier construction procedure based on OVO strategy

Input: the original dataset
Output: M(M− 1)/2 binary classifiers; the corresponding feature subset ijRedu; rule set
ijRuleset; support coefficient ijSupp of M binary classifiers; the average number of attributes
aveNum_Redu; the overall feature subsets used_Redu; the equivalent overall number of rules
Num; average support coefficient aveSupp; average rule length aveLen.
Begin
for each class i in the original class problem (1 ≤ i ≤ M− 1)
for each class i in the original class problem (i + 1 ≤ j ≤ M)
1. Search all instances of class i and class j in the original dataset and construct new dataset
ij_Dataset;
2. Perform feature selection for dataset ij_Dataset through rough set, obtain the feature subset
ijRedu and denote the number of attributes in feature subset ijRedu as ijNum_Redu.
3. Extract rules and obtain the rule set ijRuleset and calculate the rule’s support set ijSupp.
4. For class i, calculate the rule number iNum, the sum of the rule support iSum_Supp and the
sum of the rule length iSum_Len. Then store iNum, iSum_Supp and iSum_Len in the hash table
Sum_Num, Sum_Supp and Sum_Len respectively with the key being class i.
5. For class j, calculate the rule number jNum, the sum of support coefficient jSum_Supp and the
sum of rule length jSum_Len. Then store jNum, jSum_Supp, jSum_Len in the above hash table
Sum_Num, Sum_Supp and Sum_Len respectively with the key being class j.
end {for}
end {for}
aveNum_Redu← sum

i,j
(ijNum_Redu) (M(M− 1)/2) .

used_Redu← ∪
i,j

ijRedu . // actually used reduction subset

Num← sum
i
(Sum_Num (M− 1)) . // equivalent overall rule number

aveSupp← sum
i
(Sum_Supp) sum

i
(Sum_Num) . // average support coefficient

aveLen← sum
i
(Sum_Len) sum

i
(Sum_Num) . // average rule length

End

4.2. Multi-Classifier Unified Collaborative Decision Algorithm

Algorithms for constructing binary classifiers based on OVA and OVO have been
elaborated in Algorithm 1 and Algorithm 2. In order to classify new instances of multi-class
problems, it is necessary to design a collaborative decision algorithm for these binary
classifiers. Algorithm 3 gives a unified classifier collaborative decision algorithm. In
Algorithm 3, the classification decision scoring indexes of each classifier can be classified
in terms of support coefficients, certain coefficients and classification decision results.
Different scoring indicators are chosen to get different collaborative decision-making
strategies. It is necessary to explain that, for the binary classifiers based on OVA, the
decision-making algorithm can make decisions based on either the classification decision
score of each category or the negative class of each category. Meanwhile, we can still use
the unified storage structure and algorithm described in Figure 1 to classify decision; the
difference is that the classification decision scoring index value needs to be negative, and
the algorithm is based on the absolute minimum principle of categorical decision scoring
of negative categories to classify new model instances. The classification decision based on
each class of negative classes is usually based on the majority of the class rules, so the rules
usually have good statistical properties.
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Algorithm 3 Multi-classifier unified collaborative decision algorithm.

Input: two types of classifiers for M class problems (iRedu, iRuleset and iSupp) and new instance
x
Output: the final classification result of x
Begin
for the i classifier in all binary classifiers do
1. According to the relevant classification decision method, the classifier is used to classify x;
2. According to the classification decision scoring index, the classification decision score of the
classifier is stored in the corresponding classification decision of the unified structure of Figure 1
through the accumulative method.
end{for}
Selecting the largest category of cumulative classification decision score from the structure as the
final classification result of x
End
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The binary-classifier-based approach decomposes multi-class problems into several
binary classification problems. The OVO strategy needs M(M-1)/2 binary classifiers, and
the OVA strategy needs M classifiers. The classification of a new instance is made by
voting of these binary classifiers. The OVO strategy has three voting methods, including
classification results, certain coefficient and support coefficient of each binary classifier.
The OVA method has one method besides the above three methods, namely voting based
on the support coefficient of negative classes of each binary classifier. The consumed score
of each class is stored in the structure shown in Figure 1 after selecting one voting method.
The final classification decision is made in terms of the class with the highest consumed
score.

5. Experiments
5.1. Configurations of Experiments

In Section 4, binary classifiers construction algorithms based on OVO and OVA are
presented, and three different classifier collaborative decision strategies can be selected for each
algorithm. In order to verify the effect of these methods on interclass inference, this paper
carries out 10-fold cross-validation experiments [57] of 14 UCI datasets [58]. Table 2 summarizes
the information of these datasets. In this section, this paper compares the classification accuracy,
the number of attributes, the number of rules, the length of rules and the support coefficient of
various classification algorithms to compare the effect of these methods on interclass inference.

5.2. Comparison Among Different Interclass Interference Suppression Methods

In this section, this paper compares the OVA method and the OVO method with
conventional multi-classifiers. This paper uses the algorithm in the literature [51] for
feature selection and to classify through LEM2 algorithm [59], a common-used rule-based
classification algorithm. For the conventional algorithm, feature selection is made once
only. For the OVA and OVO methods, we need to construct M and M(M− 1)/2 classifiers,
respectively, and we need to make feature selection for each constructed classifier. The
classification accuracy obtained from the various methods is given in Table 3. OVA_V,
OVA_C, OVA_PS and OVA_NS represent the strategies of voting based on classification
results, voting based on certain coefficients of rule, voting based on the support coefficient of
positive classes and voting based on the support coefficient of negative classes for the OVA
method, respectively. Meanwhile, OVO_V, OVO _C and OVO _S represent the strategies of
voting based on classification results, voting based on certain coefficients of rule and voting
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based on the support coefficient for the OVO method, respectively. This paper performs
10-fold cross-validation to select the parameters of these algorithms and compares the
interclass inference suppression effects. Specifically, the data are randomly divided into ten
equal parts. Each unique part is selected as the test set, and the other nine parts are used as
the training set. Thus, ten experiments are performed in total. The classification accuracy
of 10-fold cross-validation is the mean value of the ten experiments. Corresponding 10-fold
cross-validation classification accuracies of these methods are shown in Table 3. From
Table 3, the following phenomena can be observed.

Table 2. Datasets used for experiments.

No. Name Size
Conditional

Attribute
Number

Number
of Classes

1 zoo 101 16 7
2 lymphography 148 18 4
3 wine 178 13 3
4 flags 194 28 8
5 autos 205 23 6
6 machine 209 7 8
7 images 210 19 7
8 glass 214 9 6
9 audiology 226 69 24
10 heart 303 13 5
11 solar 323 10 3
12 soybean 683 35 19
13 vehicle 846 18 4
14 anneal 898 38 5

(1) Based on the OVA and OVO methods, the classification accuracy is significantly
improved compared with the conventional algorithm. This shows that the binary-
classifier-based method can effectively suppress the interclass interference in multi-
classifiers.

(2) The OVO method obtains the best classification accuracy among OVO, OVA and
conventional algorithms. Compared with conventional algorithms, the OVA method
can also improve the classification accuracy, but the improvement is not obvious.
This shows that the OVO method can suppress the interclass inference better than
the OVA method. The reason for this is that the OVA method usually causes the
class-imbalanced problem in classification.

(3) In all kinds of decision strategies, the strategy of voting based on classification results
obtains the optimal accuracy, and the strategy of voting based on certain coefficient of
rules obtains the suboptimal accuracy. The strategy of voting based on the support
coefficient of rules is the worst. For the OVA method, classification based on negative
classes obtains a worse classification accuracy than that based on positive classes.
This shows that voting based on classification results can be chosen as the optimal
collaborative decision strategy.

(4) The OVO-based binary classification method requires building more classifiers than
the OVA-based binary classification method and thus usually costs more computa-
tional time. Literature [60] points out the computational burden of the two methods.
For a multi-class problem with M classes, OVO requires M(M− 1)/2 base binary
classifiers and the computational complexity can be regarded as O(M2). By contrast,
OVA requires M base binary classifiers, and the computational complexity can be
regarded as O(M). Although the OVO-based binary classification method costs more
time, OVO can obtain better classification accuracy and thus better interclass inference
suppression performance than the OVA method and is more suitable for the case
where users require high classification accuracy.
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Table 3. Classification accuracy of OVA and OVO approach.

Dataset
Conventional

Algorithm
OVA OVO

OVA_V OVA_C OVA_PS 1vR_NS OVO_V OVO_C OVO_S

zoo 0.9400 0.9509 0.9409 0.9509 0.9309 0.9509 0.9509 0.9009
lymphography 0.8186 0.8252 0.8324 0.8319 0.8319 0.8257 0.8257 0.7786

wine 0.9389 0.9444 0.9389 0.9441 0.9219 0.9549 0.9549 0.9157
flags 0.5937 0.5884 0.5837 0.5984 0.5982 0.6495 0.6287 0.4700
autos 0.7438 0.7731 0.7833 0.7636 0.7590 0.7633 0.7586 0.5221

machine 0.6552 0.6267 0.6505 0.6457 0.6410 0.6886 0.6886 0.5074
images 0.8667 0.8667 0.8714 0.8429 0.8524 0.8667 0.8667 0.6238
glass 0.6955 0.6771 0.6768 0.6675 0.5781 0.6823 0.6777 0.5799

audiology 0.7615 0.7447 0.7490 0.7316 0.7708 0.7800 0.7800 0.5002
heart 0.5216 0.5246 0.5246 0.5244 0.5051 0.5544 0.5443 0.5841
solar 0.8671 0.8609 0.8607 0.8578 0.8483 0.8761 0.8731 0.7865

soybean 0.8462 0.8960 0.9033 0.8843 0.8814 0.9254 0.9298 0.4802
vehicle 0.6631 0.6855 0.7020 0.6843 0.6962 0.7175 0.7210 0.6192
anneal 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 0.9989 0.9232
Mean 0.7794 0.7832 0.7870 0.7805 0.7725 0.8024 0.7999 0.6565

Next, we will analyze the reasons for the performance improvement through some
basic evaluation indexes of classifiers. Tables 4 and 5 give the number of selected features,
rule number, rule length and rule support coefficient of various methods. From Tables 4
and 5, we can obtain the following results:

(1) The number of attributes and rules obtained by the OVO interclass interference
suppression method is significantly smaller than that of the conventional algorithm.
Meanwhile, the rule length is shorter, and the support coefficient is larger. Obvi-
ously, OVO method can reflect the intrinsic characteristics better and obtain better
generalization ability.

(2) Compared with the OVO approach, the above-mentioned indexes obtained by the
OVA approach are similar to the conventional multi-classifiers, which explains why
the performance improvement is not obvious to some extent. In addition, although
the negative-classes-based classification obtains larger support coefficients and shorter
rules than the positive-classes-based classification, its classification accuracy is not
ideal since it is an indirect decision-making strategy.

Table 4. Numbers of attributes and rules obtained by different methods.

Dataset
Numbers of Attributes Numbers of Rules

Conventional
Algorithm OVA OVO Convention

OVA
OVO

P N

zoo 4.9000 2.4571 1.0857 12.2000 10.0000 20.7000 7.4500
lymphography6.0000 3.7000 2.1000 34.9000 33.3500 39.2500 15.7333

wine 4.0000 3.5667 2.5000 13.5000 12.5000 16.5000 9.1500
flags 8.8000 5.1625 2.7571 73.8000 76.2500 144.2500 38.9857
autos 9.2000 5.5667 2.9600 51.1000 52.3500 82.9500 28.6400

machine 6.7000 3.7125 1.7250 37.0000 35.0000 69.1000 17.7286
images 6.3000 3.2143 1.7048 28.3000 27.6500 53.6500 16.2500
glass 6.8000 5.1667 3.0467 32.4000 29.9000 50.6000 18.5400

audiology 13.3000 2.9716 1.1023 58.1000 55.3000 122.4000 28.7445
heart 9.8000 9.1800 8.0100 98.2000 96.3000 135.5000 59.8000
solar 9.0000 7.9000 6.5667 52.1000 52.1000 63.4000 37.5500

soybean 11.3000 3.0421 1.1234 115.7000 91.0500 151.1500 28.5278
vehicle 14.2000 11.5250 8.8500 181.5000 181.9000 207.8000 91.6333
anneal 3.0000 1.2000 1.0000 7.0000 5.0000 8.0000 5.5250
Mean 8.0929 4.8832 3.1808 56.8429 54.1893 83.2321 28.8756
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Table 5. Length and support coefficient of rules obtained by different methods.

Dataset
Rule Length Rule Support Coefficient

Conventional
Algorithm

OVA
OVO Convention

OVA
OVO

P N P N

zoo 2.3088 2.0904 1.1108 1.0402 0.0823 0.1024 0.3679 0.4726
lymphography 2.5843 2.5264 2.3725 2.0472 0.0457 0.0471 0.0919 0.1438

wine 2.1845 2.1782 1.6184 1.5169 0.1070 0.1027 0.1755 0.2150
flags 2.8297 2.7584 1.8370 1.6013 0.0175 0.0155 0.0739 0.1219
autos 2.8248 2.6671 1.9757 1.7014 0.0246 0.0210 0.0831 0.1202

machine 2.8934 2.9594 2.0499 1.6984 0.0334 0.0266 0.1263 0.2206
images 2.5950 2.5412 1.6086 1.3716 0.0423 0.0370 0.1373 0.2281
glass 3.1033 3.1045 2.1525 1.9460 0.0335 0.0314 0.1433 0.1732

audiology 3.2776 2.9791 1.4881 1.0709 0.0223 0.0198 0.2522 0.4143
heart 4.8349 4.9566 3.8769 3.5863 0.0155 0.0125 0.0657 0.0649
solar 3.3148 3.4920 3.0869 2.9350 0.0272 0.0222 0.0442 0.0503

soybean 4.1696 3.8603 2.1925 1.2280 0.0105 0.0112 0.1676 0.3356
vehicle 4.4220 4.5494 3.9427 3.6300 0.0087 0.0069 0.0266 0.0287
anneal 1.7143 1.2000 1.0000 1.0000 0.1429 0.2000 0.5888 0.4526
Mean 3.0755 2.9902 2.1652 1.8838 0.0438 0.0469 0.1674 0.2173

5.3. Performance of the All-Features-Based Approach

When dealing with multi-class problems, deletion of essential features leads to in-
terclass interference. If all features are reserved, interclass inference can be eliminated.
Thus, this paper evaluates the effect of this method on interclass interference through
experiments.

Table 6 shows the classification accuracy, number of rules, rule length and the support
coefficient of rules obtained by the all-features-based method and the OVO method. In
Table 6, CV_A represents the all-features-based methods and OVO_VA represents the
method that reserves all features and uses OVO strategy and makes classification by voting
based on the classification results of each classifier. By comparing it with Tables 3–5, the
following phenomena are observed.

(1) By reserving all features, the classification accuracy of multi-class problems is obvi-
ously improved. Further comparison shows that all-features-based method obtains
fewer rules and a larger support coefficient than the conventional algorithm. This
shows that each class can be expressed by its own essential features and that the
intrinsic characteristics of data can be reflected better when reserving all features. This
can explain the why all-features-based method obtains better classification accuracy
to some extent.

(2) The OVO_VA method and OVO_V method has few differences in classification
accuracy. Thus, reserving all features has little effect on the classification accuracy of
OVO method. This is because the OVO method itself can make use of the essential
features to express the knowledge and suppress interclass interference.

(3) The all-features-based method still obtains worse classification accuracy than the
OVO_V method shown in Table 3. Compared with the conventional algorithm
and the all-features-based algorithm, the OVO method extracts simpler and clearer
classification knowledge and stronger obtained rules. Thus, the OVO method obtains
better generalization ability.
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Table 6. Classification accuracy obtained by the method based on all features.

Dataset
Classification Accuracy Number of Rules Rule Length Support Coefficient

CV_A OVO_VA CV_A OVO_VA CV_A OVO_VA CV_A OVO_VA

zoo 0.9518 0.9518 9.3000 7.3500 2.2239 1.0544 0.1110 0.4798
lymphography 0.8319 0.8452 25.6000 12.9000 2.9551 2.2118 0.0744 0.2199

wine 0.9497 0.9552 10.1000 8.1500 2.1206 1.6022 0.1961 0.3247
flags 0.6187 0.6134 57.1000 31.3429 3.3845 1.9894 0.0266 0.1994
autos 0.7640 0.7933 48.2000 23.8800 2.8919 1.8957 0.0285 0.1761

machine 0.6505 0.6743 37.2000 16.7000 2.8934 1.7571 0.0335 0.2673
images 0.8857 0.8857 25.0000 13.5167 2.5977 1.4600 0.0488 0.2854
glass 0.6955 0.6677 32.3000 18.0200 3.1229 1.9913 0.0336 0.1792

audiology 0.7972 0.8241 40.7000 24.6133 3.6348 1.1128 0.0362 0.4837
heart 0.5216 0.5283 98.8000 58.6000 4.8474 3.5952 0.0152 0.0731
solar 0.8580 0.8672 51.6000 36.3500 3.2850 2.9984 0.0277 0.0531

soybean 0.9165 0.9370 61.7000 22.6667 4.0635 1.2661 0.0207 0.4276
vehicle 0.6760 0.7151 177.2 86.2667 4.4825 3.6881 0.0092 0.0381
anneal 1.0000 1.0000 5.0000 5.0000 1.2000 1.0000 0.2000 0.5000
Mean 0.7941 0.8042 48.5571 26.0969 3.1217 1.9730 0.0615 0.2648

Compared with conventional algorithms, the all-features-based algorithm can effec-
tively suppress interclass interference and achieve better generalization ability in multi-
class problems. However, the method also preserves redundant features, leading to more
computational cost. Table 7 shows the number of attributes obtained by the conventional
method, the all-features-based method and the OVO method when dealing with multi-
class problems. It is observed that the number of attributes used by the all-features-based
method is significantly higher than that of the conventional method. Although the number
of attributes obtained by the OVO method is also larger than by the conventional algorithm,
it uses much fewer attributes than all-features-based method. This shows that the OVO
method can not only effectively suppress the interclass interference of multi-class problems
but also delete redundant features and avoid the additional cost caused by these features.
Therefore, when dealing with multi-class problems, the OVO method is a better choice to
suppress interclass inference than the all-features-based method.

Table 7. Numbers of attributes obtained by the method based on all features and other methods.

Dataset Conventional
Algorithm CV_A OVO_V

zoo 4.9000 16 8.7000
lymphography 6.0000 18 8.1000

wine 4.0000 13 5.6000
flags 8.8000 28 14.9000
autos 9.2000 23 12.5000

machine 6.7000 7 7.0000
images 6.3000 19 11.4000
glass 6.8000 9 7.0000

audiology 13.3000 69 23.8000
heart 9.8000 13 10.0000
solar 9.0000 10 8.9000

soybean 11.3000 35 24.9000
vehicle 14.2000 18 16.1000
anneal 3.0000 38 4.9000
Mean 8.0929 22.5714 11.7000

5.4. Comparison Among the One-Class Classifier and Binary Classifier-Based Approach

The method based on one-class classifiers can completely eliminate the class interfer-
ence existing in multi-classifiers. However, a one-class classifier only uses the information
of the target class in the definition of the classification boundary. Many studies show that
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the performance of one-class classifiers is usually worse than that of multi-classifiers. In
order to confirm that the OVO method is the best choice to suppress interclass interference,
we used a binary support vector machine (SVM) based on the OVO method and one-class
SVM [61] to carry out a comparison experiment. In the experiment, we did not carry out
feature selection. Radial basis function was used for binary SVM and one-class SVM. We
first compared the classification accuracy of binary and one-class SVM under different
parameters to determine their optimal parameters and obtained their best classification
accuracy. Then, the best classification accuracy of the two methods was compared to
evaluate the performance of binary and one-class SVM. Results are shown in Table 8.

Table 8. Comparison between classification accuracies obtained by binary SVM and one-class SVM.

Dataset
Binary SVM (OVO) One-Class SVM

C = 1 C = 100 C = 1000 ν = 0.001 ν = 0.01 ν = 0.3

zoo 0.9209 0.9609 0.9609 0.9418 0.8718 0.8218
lymphography 0.7852 0.8457 0.8457 0.7233 0.7100 0.7171

wine 0.4611 0.4892 0.4892 0.5062 0.5229 0.5173
flags 0.3766 0.3768 0.3768 0.2226 0.2637 0.2639
autos 0.3469 0.3469 0.3469 0.0433 0.1705 0.0690

machine 0.6031 0.6031 0.6031 0.1533 0.1629 0.1819
images 0.3048 0.3190 0.3190 0.2905 0.2952 0.2952
glass 0.6675 0.7000 0.6855 0.5461 0.5506 0.5240

audiology 0.5045 0.8198 0.8198 0.3974 0.4334 0.4557
heart 0.5412 0.5412 0.5412 0.1218 0.1218 0.1218
solar 0.8855 0.8640 0.8483 0.7925 0.8139 0.6469

soybean 0.9398 0.9428 0.9355 0.8536 0.8653 0.8404
vehicle 0.2895 0.2989 0.2989 0.3002 0.3013 0.3013
anneal 0.9254 0.9599 0.9599 0.8508 0.8530 0.8408
Mean 0.6109 0.6477 0.6451 0.4817 0.4955 0.4712

From Table 8, we can draw the following conclusions. When we take C = 100 in
the experiment, SVM based on the OVO method acquires the best performance. When
we take v = 0.01, one-class SVM obtains the better performance. By comparing the best
performance obtained by the two methods, it is observed that the classification accuracy
of the binary SVM is significantly better than one-class SVM, which is consistent with the
previous research results of one-class classifiers. The performance of one-class classifiers is
usually worse than binary classifiers, and it is difficult to implement one-class classification
algorithm in many multi-classifiers. Therefore, the interclass interference suppression
method based on binary classifiers is the best choice to suppress the interclass interference
of multi-classifiers.

6. Conclusions

The generalization ability of classifiers is a crucial problem in pattern recognition.
In multi-classifiers, there is a special phenomenon that essential features with the ability
to discriminate a certain class from others are often deleted in feature selection. This
phenomenon seriously decreases the classification accuracy of multi-classifiers. To address
this problem, this paper called this phenomenon interclass inference, analyzed its reasons
in detail and summarized three interclass inference suppression methods including all-
features-based method, the one-class classifier-based method and the binary-classifier-
based method. By comparing the three methods in 14 UCI datasets through 10-fold
cross-validation, the following conclusions can be drawn.

Firstly, the concept of interclass inference is proposed and the essence of interclass
inference is revealed. The deletion of essential features leads to interclass inference.

Secondly, the three methods can all improve the classification accuracy to some extent
when they are compared with the conventional algorithm. This shows that suppressing
the interclass inference is an effective method to improve the generalization ability of
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multi-classifiers. The binary classifier-based method can suppress the interclass inference
best and obtain the best generalization ability.

Thirdly, this paper compares the suppression effects of two binary classifier-based
methods, including one-versus-one (OVO) and one-versus-all (OVA) on interclass inference.
OVO method obtains better classification accuracy than the OVA method. Thus, it is the
best method to suppress the interclass inference. By studying the interclass inference
and its suppression methods, the generalization ability of multi-classifiers is significantly
improved.
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