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Abstract

:

Multi-classifiers are widely applied in many practical problems. But the features that can significantly discriminate a certain class from others are often deleted in the feature selection process of multi-classifiers, which seriously decreases the generalization ability. This paper refers to this phenomenon as interclass interference in multi-class problems and analyzes its reason in detail. Then, this paper summarizes three interclass interference suppression methods including the method based on all-features, one-class classifiers and binary classifiers and compares their effects on interclass interference via the 10-fold cross-validation experiments in 14 UCI datasets. Experiments show that the method based on binary classifiers can suppress the interclass interference efficiently and obtain the best classification accuracy among the three methods. Further experiments were done to compare the suppression effect of two methods based on binary classifiers including the one-versus-one method and one-versus-all method. Results show that the one-versus-one method can obtain a better suppression effect on interclass interference and obtain better classification accuracy. By proposing the concept of interclass inference and studying its suppression methods, this paper significantly improves the generalization ability of multi-classifiers.
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1. Introduction


Classification tasks exist widely in real-world applications, such as computer vision [1], fault diagnosis [2,3], human action recognition [4], face recognition [5], image recognition [6], material science [7], big data analysis, [8,9] etc. Many of them are classification tasks that include more than two classes, which are called multi-class problems [10]. Multi-class problems are usually more difficult to solve than binary classification problem because multi-class problems need to distinguish more classes. Multi-class problems are quite common in the real world [11,12,13,14,15,16,17]. For example, an image recognition device needs to distinguish many different kinds of images. An industrial fault diagnosis system [18,19] needs to diagnose what fault occurs in the machine. A sentiment analysis system [20,21] needs to classify different attitudes of people according to the information in social media such as Twitter and Facebook. Improving the classification accuracy of multi-class problems has great significance in actual applications [22].



Multi-class problems can be addressed in many ways. Among the well-recognized classifiers, some classifiers can handle multi-class problems directly, such as decision tree [23,24], rough set-based classifiers [25,26,27,28], neural networks [29,30], naive Bayes [31], K-nearest neighbor (KNN) [32] and so forth. Others can only deal with binary classification problems like support vector machine (SVM) [33,34]. Although there are some studies on how to use binary classifiers to solve multi-class problems, these studies usually focus on the situations where some classifiers cannot solve multi-class problems by themselves. For these classifiers, current studies focus on how to address multi-class problems by decomposing multi-class problems into binary classification problems. When binary classifiers are used to address multi-class problems, the most common strategies are currently one-versus-one (OVO) strategies [35] and one-versus-all (OVA) strategies [36,37]. For the OVO strategy, Galar et al. [38] developed a distance-based combination strategy, which weights the competence of the outputs of the base classifiers depending on the closeness of the query instance to each one of the classes. Galar et al.’s method reduced the effect of the non-competent classifiers, enhancing the results obtained by the state-of-the-art combinations for the OVO strategy. Galar et al. [39] proposed a dynamic classifier selection strategy for the OVO scheme that tries to avoid non-competent classifiers. For the OVA approach, Dinh et al. [40] proved new fast learning rates for OVA multi-class plug-in classifiers trained either from exponentially strongly mixing data or from data generated by a converging drifting distribution. They reported that their results retain the optimal learning rate in the independently identically distributed case in contrast to previous works for least squares SVMs under the binary-class setting. In literature [41], Rebetez et al. used an ensemble of binary OVA neural network classifiers and reported that the performances of their methods are comparable to lazy learning methods that require the whole dataset.



Currently, the generalization ability of multi-classifiers remains a longstanding challenge [42]. Many scholars have carried out relevant research on it. Eiadon et al. [43] decomposed the classes into subsets by embedding a structure of binary trees and put forward a novel splitting criterion based on minimizing generalization errors and greedy search procedures across the classes. Lei et al. [44] established data-dependent error bounds in terms of complexities of a linear function class defined on a finite set induced by training examples, for which they showed tight lower and upper bounds, applied the results to several prominent multi-class learning machines and exhibited a tight dependency on the number of classes. Kantavat et al. [45] proposed new methods for support vector machine (SVM) using tree architecture for multi-class classification and reported that their proposed methods run much faster than the traditional techniques but still provide comparable accuracy. Dhifli et al. [46] introduced a novel multi-class classification method for the open-set problem and proved the efficiency of their approach in classifying novel instances from known as well as unknown classes through experiments on benchmark datasets and synthetic datasets.



From the literature above, it can be noticed that many researchers focus on improving the generalization ability of classifiers. However, these researchers merely focus on generalized classification problems. There is little research specifically for multi-class problems. Researchers usually regard multi-class problems as ordinary classification problems to improve their generalization ability. Few researchers focus on the unique characteristics of multi-class problems. Although there are some studies on how to use binary classifiers to solve multi-class problems, these studies usually focus on the situations where some classifiers cannot solve multi-class problems by themselves. The differences between common binary classifiers and multi-classifiers are not studied sufficiently. This is the problem that this paper deals with.



This paper observes that there exists a special phenomenon in multi-class problems, which are quite different from binary classification problems. The features that can significantly discriminate a certain class from others are often deleted in the process of feature selection because they cannot discriminate among other classes. By contrast, the features that can discriminate among all classes are often reserved after feature selection. Although there are small errors in the training set, there may be large errors in test sets because reserved features cannot reflect the essence of a certain class. This phenomenon is an inherent problem in feature selection of multi-class problems and becomes more serious as the number of classes increases. This phenomenon significantly decreases the generalization ability of multi-classifiers. To improve the generalization ability of multi-classifiers better, this phenomenon must be eliminated or suppressed. Therefore, this paper elaborates this special phenomenon in multi-class problems, names it interclass interference, analyzes its reason systematically, designs its suppression methods and compares their suppression effects on interclass interference through 10-fold cross-validation experiments in 14 UCI datasets. The main contributions of this paper are listed as follows.



Firstly, this paper observes a special phenomenon in the feature selection of multi-classifiers and names it interclass inference. To the best of our knowledge, this is the first time that the concept of interclass inference is proposed. Secondly, the reasons for interclass inference are analyzed. The essence of interclass inference is revealed in this paper. The negative influence of interclass inference on the generalization ability of multi-class classifiers is also analyzed in detail. Thirdly, this paper summarizes the possible methods for suppressing interclass inference and compares their effects on interclass inference suppression.



The rest of this paper is organized as follows. In Section 2, the concept of interclass interference in multi-classifiers is proposed and its reason is analyzed systematically. In Section 3, suppression methods of interclass interference are summarized. In Section 4, interclass interference suppression algorithms used for the comparison experiments in this paper are designed. Section 5 shows the results of our comparison experiments. Section 6 concludes the paper.




2. Interclass Interference of Multi-Class Problems


Interclass interference is an inherent problem in feature extraction of multi-class problems. The removal of key features of some classes as redundant features is the direct cause of interclass interference in multi-class problems.



In this section, this paper will use an example of multi-class vibration fault diagnosis of steam turbine shown in Table 1 to introduce the concept of interclass interference and reveal its essence. According to expert knowledge, the vibration signal of 0.4f~0.6f, 1f and 2f, namely the features    a 1   ,    a 2    and    a 3   , are the essential features that can significantly discriminate oil film whirl, unbalance and misalignment from other faults, respectively [47,48,49]. Note that f denotes the rotation frequency in Table 1.



In machine learning, feature selection is an essential step in classification, which can reduce dimensionality. In Table 1,    a 1    is the feature that can significantly distinguish the oil film whirl fault from other two fault classes including unbalance and misalignment. Meanwhile, the fact that attribute    a 1    is the intrinsic characteristics of oil film whirl also meets the physical laws [50,51]. However, feature    a 1    cannot distinguish unbalance and misalignment faults. In the feature selection process, features that can distinguish all classes have the highest priorities to be preserved. Feature    a 1    may be deleted because it cannot distinguish between unbalance and misalignment fault. If feature    a 1    is deleted, the generalization ability of this multi-classifier will be bad because the essential feature of the oil film whirl is deleted. This phenomenon is called interclass inference in this paper. In the following part of this section, this paper will use a rough set for feature selection, elaborate the interclass inference and analyze the bad influence of interclass inference in detail.



Rough set is a popular feature selection method. This paper uses rough sets for feature selection because the attribute reduction of rough sets removes unnecessary and unimportant features and has great advantages in feature selection. In rough set theory, data are usually stored in the form of a decision table   < U , A = C ∪ D , V , f >  , where  U  is the universe,  A  is the set of attributes,  C  is the set of conditional attributes,  D  is the set of decision attributes,  V  is the set of all attributive values and  f  is the information function. For any conditional attribute subset   B ⊆ C  , there exits an equivalence relation   I N D ( B )  , and it is defined by   I N D ( B ) = { ( x , y ) ∈ U × U | f ( x , a ) = f ( y , a ) , ∀ a ∈ B }  . The set of all equivalence classes is denoted as   U / B  . For every   x ∈ U  , the equivalence classes of  x , denoted by     [ x ]  B   , are defined by     [ x ]  B  = { y ∈ U  | (  x , y ) ∈ I N D ( B ) }  . Let  X  be a subset of  U ; then, the B-lower approximation    B _  ( X )   and B-upper approximation    B ¯  ( X )   of  X  are defined by    B _  ( X ) = { x ∈ U |   [ x ]  B  ⊆ X }   and    B ¯  ( X ) = { x ∈ U |   [ x ]  B  ∩ X ≠ ∅ }  , respectively. The B-positive region   P O  S B  ( D )   in the relation   I N D ( D )   is defined by   P O  S B  ( D ) =   ∪  X ∈ U / D     B _  ( X )    . The dependency degree    γ B   ( D )    of   U / D   on  B  is defined by    γ B  ( D ) =   | P O  S B  ( D ) |  /  | U |    , where    | F |    denotes the cardinality of set   F  . If B is a subset of  C  such that    γ B  ( D ) =  γ C  ( D )  , then  B  is a reduct of  C  [50]. Currently, there are many attribute reduction algorithms, among which one of the most common-used ones is the dependency degree-based algorithm proposed in [51]. Therefore, this paper used it for feature selection.



According to the feature selection algorithm proposed in the literature [51], a feature subset    {   a 2  ,  a 3   }    is obtained after attribute reduction. In this feature subset    {   a 2  ,  a 3   }   , two rules namely   ‘ (  a 2  = l o w ) ^ (  a 3  = m e d i u m ) ⇒   (  d = o i l   f i l m   w h i r l  )    ’    and   ‘  (   a 2  = l o w  )  ^  (   a 3  = l o w  )  ⇒ d = o i l   f i l m   w h i r l ’  , are needed to diagnose the fault of oil film whirl. The support coefficients of two rules are both   1 / 10  . If the essential feature of oil film whirl, namely feature    a 1    is used, only one rule   ‘ (  a 1  = h i g h ) ⇒  ( d = o i l   f i l m   w h i r l )  ’   is needed to diagnose the fault of oil film whirl, and the support coefficient of this rule increases to   2 / 10  . The rule obtained by using essential features and non-essential features can both realize the perfect classification of the existing instances of oil film whirl in Table 1. However, we can obtain shorter rules and larger support coefficients based on the essential feature    a 1   . In general, it can reflect the characteristics of data better and contribute to better generalization ability if there are fewer rules and larger support coefficients. Thus, the rule   ‘ (  a 1  = h i g h ) ⇒  ( d = o i l   f i l m   w h i r l )  ’   is a more direct reflection of the oil film whirl compared with the previous two rules and accords with well expert knowledge. However, in the process of feature selection, the essential feature    a 1    of oil film whirl is deleted. Obviously, the deletion of essential features deviates from the intrinsic characteristics and thus seriously decreases the generalization ability of multi-classifiers. In this paper, the deletion of essential features that can significantly discriminate a certain class from the other classes in the feature selection of multi-classifiers is called interclass interference.



Next, we will analyze the reason for interclass interference, namely the reason why essential features are deleted. We performed feature selection through the algorithm in [50]. First, we calculate the significance of conditional attribute    a 1   ,    a 2    and    a 3    in Table 1: we can obtain that    γ   a 1     ( d )  =  2  10    ,    γ   a 2     ( d )  =  3  10     and    γ   a 3     ( d )  = 0  . The feature    a 2    has the greatest significance, so it is selected first. Then, on the basis of attribute    a 2   , we calculate the significance of    a 1    and    a 3   . We obtain    γ   {   a 1  ,  a 2   }     ( d )  =  6  10     and    γ   {   a 2  ,  a 3   }     ( d )  =  8  10    . The feature    a 3    has a greater significance, so it is selected. Because of    γ  {  a 2  ,  a 3  }    ( d )  =  γ  {  a 1  ,  a 2  ,  a 3  }    ( d )   , the feature selection ends and the selected feature subset is    {   a 2  ,  a 3   }   . In this process, the reason for the deletion of attribute    a 1    is not because it has no contribution to classification. The essential features of the imbalance    a 2    and misalignment    a 3    are capable of classifying not only the instances of imbalance and misalignment but also the existing instances of oil film whirl correctly. After selecting feature    a 2    and    a 3   , the essential feature    a 1    becomes redundant in terms of the existing instances of oil film whirl and thus is deleted.



From the above analysis, the essence of interclass inference can be revealed. The phenomenon of interclass interference occurs in the feature selection process of multi-class problems. Usually, features with the ability to distinguish all classes are prioritized in feature selection. The features that can significantly discriminate a certain class from others are called essential features of a certain class in this paper. Some essential features not only have strong classification ability for corresponding classes but also have classification ability for other classes to some extent. Thus, they are often reserved. By contrast, other essential features, which can distinguish a certain class significantly but cannot discriminate among other classes well, are often deleted as reductant features in feature selection. Once essential features are deleted, the phenomenon of interclass inference occurs. Interclass interference becomes more serious as the number of attributes increases. Although there are small training errors, there are usually large test errors because reserved features cannot reflect the essence of a certain class. The phenomenon of interclass inference seriously decreases the generalization ability of multi-classifiers. Therefore, interclass interference must be eliminated or suppressed in order to improve the generalization performance of multi-classifiers.




3. Interclass Interference Suppression Methods


3.1. All-Features-Based Approach


In the feature selection process of multi-classifiers, the essential features of a certain class are often deleted as redundant features, which causes interclass inference. Therefore, an intuitive solution to interclass inference suppression is to forgo feature selection and retain all features. This idea is intuitive and can eliminate interclass inference completely. However, this method goes against the conventional way that is widely adopted in the machine learning field, and it also seriously increases the computational cost. In the field of machine learning, many studies have shown that feature selection is an important way to improve the generalization performance of learning machines. As a result, for many machine learning methods, feature selection has become an indispensable part in the learning process [52]. Feature selection can greatly reduce the dimension of input space by removing those unimportant or redundant features, thus reducing the complexity of functions implemented by machine learning methods. Feature selection can generally improve the generalization performance of machine learning methods. Therefore, reserving all attributes are not very suitable to suppress the interclass inference.




3.2. One-Class Classifier Based Approach


One-class classifier [53] only uses the information of a certain classifier, so there is no interclass interference problem. Therefore, methods based on one-class classifiers can completely eliminate the interclass interference in multi-classifiers.



The typical example of a one-class classifier is the one-class support vector machine (SVM) [54]. One-class SVM uses a kernel function to map the original normal data to a high-dimensional space, where one-class SVM tries to find a hyperplane that enables the normal data to be as far from the origin as possible. Let the distance between the hyperplane and the origin be  ρ . Then, the samples whose distance from the origin is smaller than  ρ  is detected as abnormal samples [54,55]. If there are  m  features and  N  training samples in the training set, let    x i  ( i = 1 , … , N )   denote the training data, then one-class SVM can be denoted by the following optimization problem.


    min  1 2  ‖ w  ‖ 2  − ρ +  1  v N     ∑  i = 1  N    ξ i        s . t . ( w · φ (  x i  ) ) ≥ ρ −  ξ i       ξ i  ≥ 0 , i = 1 , … , N    



(1)




where    ξ i    is the slack variable,   v ∈ ( 0 , 1 )   is the error rate,   φ ( . )   is a nonlinear mapping that is usually realized by a kernel function.



Research studies have shown that a one-class classifier can only use the information of the target class when defining the classification boundary, unlike multi-classifiers that can use the information of other classes. Therefore, in general, the performance of a one-class classifier is difficult to make comparable to that of multi-classifiers [56]. Thus, one-class classifier-based approaches are not very suitable to suppress the interclass inference, either.




3.3. Binary-Classifier-Based Approach


There is also interclass interference in binary classifiers; that is, the essential features of a certain class are deleted as redundant features. Nevertheless, compared with multi-classifiers, the interclass interference of the binary classifiers is significantly reduced. Therefore, it is possible to solve multi-class problems by constructing binary classifiers to suppress interclass interference. Currently, two popular ways of solving multi-class problems through binary classifiers are one-versus-one (OVO) strategies [35] and one-versus-all (OVA) strategies [40].



For an M-class problem, the OVA strategy requires M binary classifiers, each of them distinguishes one class from the rest. Taking a three-class classification problem as an example, there are three classes: Class 1, Class 2 and Class 3 in the problem. OVA strategy uses three binary classifiers to solve this multi-class problem. The first binary classifier distinguishes the samples from belonging to class 1 and not belonging to class 1. The second binary classifier distinguishes the samples from belonging to class 2 and not belonging to class 2. The third binary classifier distinguishes the samples from belonging to class 3 and not belonging to class 3. This method is simple and direct in the construction of binary classifiers. However, the samples processed by each of the binary classifiers constructed by OVA are usually class-imbalanced. Unlike the OVA strategy, the OVO strategy builds binary classifiers between any two classes of the original multi-class problem. For an M-class problem, OVO needs to construct M(M-1)/2 binary classifiers, which are usually much larger than the number of classifiers required by OVA.



Although OVO requires more classifiers, each classifier built by OVO only needs to distinguish any two classes in the original multi-class problem. Thus, each classifier processes fewer instances, and the problems to be learned by each classifier are usually simpler compared with the original multi-class problem and the OVA strategy. In addition, the class-imbalanced problem existing in OVA strategy does not exist in the OVO strategy. Many practical applications have shown that the OVO construction method usually achieves the best performance when dealing with multi-class problems.



To sum up, although the all-features-based approach and the one-class classifier-based approach can eliminate interclass interference, their classification performances are usually not good. The binary classifier-based approach is a good choice to suppress the interclass inference.





4. Design of Interclass Interference Suppression Algorithms


In this section, this paper designs interclass interference suppression algorithms in order to perform the comparison experiments between the interclass inference methods better. The all-features-based approach and one-classifier based approach are easy to implement, so this section focuses on the binary-classifier-based approach only. The binary classifier-based approach is discussed in detail, and corresponding algorithms for the comparison experiments are presented in this section.



4.1. Construction of Binary Classifier


The binary-classifier-based approach decomposes multi-class problems into several binary classification problems. OVA and OVO are two commonly used strategies.



Firstly, OVA strategy is presented. For a given M-class problem, OVA strategy uses the instances belonging to class   i ( i = 1 , 2 , … , M )   and the instances not belonging to class  i  to construct M binary classifiers. In this paper, other classes except class  i  are called the negative class of class  i , denoted as class   i ¯  . Algorithm 1 shows the detailed procedure of experiments based on OVA in this paper.



Secondly, the OVO strategy is presented. For a given M-class problem, OVO strategy uses to construct M(M-1)/2 binary classifiers respectively. Algorithm 2 shows the detailed procedure of experiments based on OVO strategy in this paper.



For OVO and OVA method, there are three decision strategies. The first one is based on the voting of classification results. The second one is based on the voting of a certain coefficient. The third one is based on the voting of the support coefficient. For voting based on the support coefficient, the OVA method can use the support coefficient of either the positive class or the negative class.



	Algorithm 1 Binary classifier construction procedure based on OVA strategy



	Input: the original dataset



	Output: M binary classifiers; the corresponding feature subset   i R e d u  , rule set   i R u l e s e t   and support coefficient   i S u p p   of M binary classifiers; the average number of attributes   a v e N u m _ R e d u  ; the overall feature subsets   u s e d _ R e d u  ; the overall number of rules   N u m  ; average support coefficient   a v e S u p p  ; the average rule length   a v e L e n  ; the overall number of rules     N u m  ¯    for negative class; average support coefficient     a v e S u p p  ¯    for negative class and the average rule length     a v e L e n  ¯    for negative class.



	Begin



	  i = 0  ;



	while  i ≤ M  ; // M  is the number of classes in multi-class problems



	1. Mark all instances not belonging to class  i  as class   i ¯   and obtain the dataset   i _ D a t a s e t    of i-th classifier.  // class   i ¯   is denoted as the negative class of class  i  here.



	2. Obtain the feature subset   i _ R e d u   of   i _ D a t a s e t   via attribute reduction  and denote the number of attributes in feature subset as   i N u m _ R e d u  .



	3. Extract rules from feature subset, and denote the rule set of i-th classifier as   i R u l e s e t  



	4. Compute the support coefficient of each rule in rule set   i R u l e s e t   and denote the set of support coefficients as   i S u p p  .



	5. Compute the rule number   i N u m  , the sum of support coefficient   i S u m _ S u p p   and the sum of rule length   i S u m _ L e n   of the class  i .



	6. Compute the rule number     i N u m  ¯   , the sum of support coefficient     i S u m _ S u p p  ¯    and the sum of rule length     i S u m _ L e n  ¯    of the class   i ¯  .



	7.   i = i + 1  ;



	end {while}



	  a v e N u m _ R e d u ←   s u m  i  ( i N u m _ R e d u ) / M    // the average number of attributes



	  u s e d _ R e d u ←  ∪ i  i R e d u    // used feature subset for M-class problem



	  N u m ←   s u m  i  ( i N u m )    // the number of rules for M-class problem



	  a v e S u p p ←   s u m  i  ( i S u m _ S u p p ) / N u m    // average support coefficient of rules



	  a v e L e n ←   s u m  i  ( i S u m _ L e n ) / N u m    // average rule length



	    N u m  ¯  ←   s u m  i  (   i N u m  ¯  )     // the number of rules for negative class



	    a v e S u p p  ¯  ←   s u m  i  (   i S u m _ S u p p  ¯  ) /   N u m  ¯   // average support coefficient of negative class



	    a v e L e n  ¯  ←   s u m  i  (   i S u m _ L e n  ¯  ) /   N u m  ¯     // average rule length for negative class



	End








	Algorithm 2 Binary classifier construction procedure based on OVO strategy



	Input: the original dataset



	Output:   M  (  M − 1  )  / 2   binary classifiers; the corresponding feature subset   i j R e d u  ; rule set   i j R u l e s e t  ; support coefficient   i j S u p p   of M binary classifiers; the average number of attributes   a v e N u m _ R e d u  ; the overall feature subsets   u s e d _ R e d u  ; the equivalent overall number of rules   N u m  ; average support coefficient   a v e S u p p  ; average rule length   a v e L e n  .



	Begin



	for each class   i   in the original class problem (  1 ≤ i ≤ M − 1  )



	for each class  i  in the original class problem (  i + 1 ≤ j ≤ M  )



	1. Search all instances of class  i  and class  j  in the original dataset and construct new dataset   i j _ D a t a s e t  ;



	2. Perform feature selection for dataset   i j _ D a t a s e t   through rough set, obtain the feature subset   i j Re d u   and denote the number of attributes in feature subset   i j Re d u   as   i j N u m _ Re d u  .



	3. Extract rules and obtain the rule set   i j R u l e s e t   and calculate the rule’s support set   i j S u p p  .



	4. For class  i , calculate the rule number   i N u m  , the sum of the rule support   i S u m _ S u p p   and the sum of the rule length   i S u m _ L e n  . Then store   i N u m  ,   i S u m _ S u p p   and   i S u m _ L e n   in the hash table   S u m _ N u m  ,   S u m _ S u p p   and   S u m _ L e n   respectively with the key being class  i .



	5. For class  j , calculate the rule number   j N u m  , the sum of support coefficient   j S u m _ S u p p   and the sum of rule length   j S u m _ L e n  . Then store   j N u m  ,   j S u m _ S u p p  ,   j S u m _ L e n   in the above hash table   S u m _ N u m  ,   S u m _ S u p p   and   S u m _ L e n   respectively with the key being class  j .



	end {for}



	end {for}



	  a v e N u m _ Re d u ←   s u m   i , j   ( i j N u m _ Re d u )       ( M ( M − 1 ) / 2 )  .



	  u s e d _ Re d u ←  ∪  i , j   i j Re d u  . // actually used reduction subset



	  N u m ←   s u m  i  ( S u m _ N u m       ( M − 1 ) )  . // equivalent overall rule number



	  a v e S u p p ←   s u m  i  ( S u m _ S u p p )         s u m  i  ( S u m _ N u m )  . // average support coefficient



	  a v e L e n ←   s u m  i  ( S u m _ L e n )         s u m  i  ( S u m _ N u m )  . // average rule length



	End









4.2. Multi-Classifier Unified Collaborative Decision Algorithm


Algorithms for constructing binary classifiers based on OVA and OVO have been elaborated in Algorithm 1 and Algorithm 2. In order to classify new instances of multi-class problems, it is necessary to design a collaborative decision algorithm for these binary classifiers. Algorithm 3 gives a unified classifier collaborative decision algorithm. In Algorithm 3, the classification decision scoring indexes of each classifier can be classified in terms of support coefficients, certain coefficients and classification decision results. Different scoring indicators are chosen to get different collaborative decision-making strategies. It is necessary to explain that, for the binary classifiers based on OVA, the decision-making algorithm can make decisions based on either the classification decision score of each category or the negative class of each category. Meanwhile, we can still use the unified storage structure and algorithm described in Figure 1 to classify decision; the difference is that the classification decision scoring index value needs to be negative, and the algorithm is based on the absolute minimum principle of categorical decision scoring of negative categories to classify new model instances. The classification decision based on each class of negative classes is usually based on the majority of the class rules, so the rules usually have good statistical properties.



	Algorithm 3 Multi-classifier unified collaborative decision algorithm.



	Input: two types of classifiers for M class problems (  i Re d u  ,   i R u l e s e t   and   i S u p p  ) and new instance   x  



	Output: the final classification result of   x  



	Begin



	for the   i   classifier in all binary classifiers do



	1. According to the relevant classification decision method, the classifier is used to classify   x  ;



	2. According to the classification decision scoring index, the classification decision score of the classifier is stored in the corresponding classification decision of the unified structure of Figure 1 through the accumulative method.



	end{for}



	Selecting the largest category of cumulative classification decision score from the structure as the final classification result of   x  



	End








The binary-classifier-based approach decomposes multi-class problems into several binary classification problems. The OVO strategy needs M(M-1)/2 binary classifiers, and the OVA strategy needs M classifiers. The classification of a new instance is made by voting of these binary classifiers. The OVO strategy has three voting methods, including classification results, certain coefficient and support coefficient of each binary classifier. The OVA method has one method besides the above three methods, namely voting based on the support coefficient of negative classes of each binary classifier. The consumed score of each class is stored in the structure shown in Figure 1 after selecting one voting method. The final classification decision is made in terms of the class with the highest consumed score.





5. Experiments


5.1. Configurations of Experiments


In Section 4, binary classifiers construction algorithms based on OVO and OVA are presented, and three different classifier collaborative decision strategies can be selected for each algorithm. In order to verify the effect of these methods on interclass inference, this paper carries out 10-fold cross-validation experiments [57] of 14 UCI datasets [58]. Table 2 summarizes the information of these datasets. In this section, this paper compares the classification accuracy, the number of attributes, the number of rules, the length of rules and the support coefficient of various classification algorithms to compare the effect of these methods on interclass inference.




5.2. Comparison Among Different Interclass Interference Suppression Methods


In this section, this paper compares the OVA method and the OVO method with conventional multi-classifiers. This paper uses the algorithm in the literature [51] for feature selection and to classify through LEM2 algorithm [59], a common-used rule-based classification algorithm. For the conventional algorithm, feature selection is made once only. For the OVA and OVO methods, we need to construct  M  and   M ( M − 1 ) / 2   classifiers, respectively, and we need to make feature selection for each constructed classifier. The classification accuracy obtained from the various methods is given in Table 3. OVA_V, OVA_C, OVA_PS and OVA_NS represent the strategies of voting based on classification results, voting based on certain coefficients of rule, voting based on the support coefficient of positive classes and voting based on the support coefficient of negative classes for the OVA method, respectively. Meanwhile, OVO_V, OVO _C and OVO _S represent the strategies of voting based on classification results, voting based on certain coefficients of rule and voting based on the support coefficient for the OVO method, respectively. This paper performs 10-fold cross-validation to select the parameters of these algorithms and compares the interclass inference suppression effects. Specifically, the data are randomly divided into ten equal parts. Each unique part is selected as the test set, and the other nine parts are used as the training set. Thus, ten experiments are performed in total. The classification accuracy of 10-fold cross-validation is the mean value of the ten experiments. Corresponding 10-fold cross-validation classification accuracies of these methods are shown in Table 3. From Table 3, the following phenomena can be observed.




	(1)

	
Based on the OVA and OVO methods, the classification accuracy is significantly improved compared with the conventional algorithm. This shows that the binary-classifier-based method can effectively suppress the interclass interference in multi-classifiers.




	(2)

	
The OVO method obtains the best classification accuracy among OVO, OVA and conventional algorithms. Compared with conventional algorithms, the OVA method can also improve the classification accuracy, but the improvement is not obvious. This shows that the OVO method can suppress the interclass inference better than the OVA method. The reason for this is that the OVA method usually causes the class-imbalanced problem in classification.




	(3)

	
In all kinds of decision strategies, the strategy of voting based on classification results obtains the optimal accuracy, and the strategy of voting based on certain coefficient of rules obtains the suboptimal accuracy. The strategy of voting based on the support coefficient of rules is the worst. For the OVA method, classification based on negative classes obtains a worse classification accuracy than that based on positive classes. This shows that voting based on classification results can be chosen as the optimal collaborative decision strategy.




	(4)

	
The OVO-based binary classification method requires building more classifiers than the OVA-based binary classification method and thus usually costs more computational time. Literature [60] points out the computational burden of the two methods. For a multi-class problem with  M  classes, OVO requires   M ( M − 1 ) / 2   base binary classifiers and the computational complexity can be regarded as   O (  M 2  )  . By contrast, OVA requires  M  base binary classifiers, and the computational complexity can be regarded as   O ( M )  . Although the OVO-based binary classification method costs more time, OVO can obtain better classification accuracy and thus better interclass inference suppression performance than the OVA method and is more suitable for the case where users require high classification accuracy.









Next, we will analyze the reasons for the performance improvement through some basic evaluation indexes of classifiers. Table 4 and Table 5 give the number of selected features, rule number, rule length and rule support coefficient of various methods. From Table 4 and Table 5, we can obtain the following results:




	(1)

	
The number of attributes and rules obtained by the OVO interclass interference suppression method is significantly smaller than that of the conventional algorithm. Meanwhile, the rule length is shorter, and the support coefficient is larger. Obviously, OVO method can reflect the intrinsic characteristics better and obtain better generalization ability.




	(2)

	
Compared with the OVO approach, the above-mentioned indexes obtained by the OVA approach are similar to the conventional multi-classifiers, which explains why the performance improvement is not obvious to some extent. In addition, although the negative-classes-based classification obtains larger support coefficients and shorter rules than the positive-classes-based classification, its classification accuracy is not ideal since it is an indirect decision-making strategy.










5.3. Performance of the All-Features-Based Approach


When dealing with multi-class problems, deletion of essential features leads to interclass interference. If all features are reserved, interclass inference can be eliminated. Thus, this paper evaluates the effect of this method on interclass interference through experiments.



Table 6 shows the classification accuracy, number of rules, rule length and the support coefficient of rules obtained by the all-features-based method and the OVO method. In Table 6, CV_A represents the all-features-based methods and OVO_VA represents the method that reserves all features and uses OVO strategy and makes classification by voting based on the classification results of each classifier. By comparing it with Table 3, Table 4 and Table 5, the following phenomena are observed.




	(1)

	
By reserving all features, the classification accuracy of multi-class problems is obviously improved. Further comparison shows that all-features-based method obtains fewer rules and a larger support coefficient than the conventional algorithm. This shows that each class can be expressed by its own essential features and that the intrinsic characteristics of data can be reflected better when reserving all features. This can explain the why all-features-based method obtains better classification accuracy to some extent.




	(2)

	
The OVO_VA method and OVO_V method has few differences in classification accuracy. Thus, reserving all features has little effect on the classification accuracy of OVO method. This is because the OVO method itself can make use of the essential features to express the knowledge and suppress interclass interference.




	(3)

	
The all-features-based method still obtains worse classification accuracy than the OVO_V method shown in Table 3. Compared with the conventional algorithm and the all-features-based algorithm, the OVO method extracts simpler and clearer classification knowledge and stronger obtained rules. Thus, the OVO method obtains better generalization ability.









Compared with conventional algorithms, the all-features-based algorithm can effectively suppress interclass interference and achieve better generalization ability in multi-class problems. However, the method also preserves redundant features, leading to more computational cost. Table 7 shows the number of attributes obtained by the conventional method, the all-features-based method and the OVO method when dealing with multi-class problems. It is observed that the number of attributes used by the all-features-based method is significantly higher than that of the conventional method. Although the number of attributes obtained by the OVO method is also larger than by the conventional algorithm, it uses much fewer attributes than all-features-based method. This shows that the OVO method can not only effectively suppress the interclass interference of multi-class problems but also delete redundant features and avoid the additional cost caused by these features. Therefore, when dealing with multi-class problems, the OVO method is a better choice to suppress interclass inference than the all-features-based method.




5.4. Comparison Among the One-Class Classifier and Binary Classifier-Based Approach


The method based on one-class classifiers can completely eliminate the class interference existing in multi-classifiers. However, a one-class classifier only uses the information of the target class in the definition of the classification boundary. Many studies show that the performance of one-class classifiers is usually worse than that of multi-classifiers. In order to confirm that the OVO method is the best choice to suppress interclass interference, we used a binary support vector machine (SVM) based on the OVO method and one-class SVM [61] to carry out a comparison experiment. In the experiment, we did not carry out feature selection. Radial basis function was used for binary SVM and one-class SVM. We first compared the classification accuracy of binary and one-class SVM under different parameters to determine their optimal parameters and obtained their best classification accuracy. Then, the best classification accuracy of the two methods was compared to evaluate the performance of binary and one-class SVM. Results are shown in Table 8.



From Table 8, we can draw the following conclusions. When we take C = 100 in the experiment, SVM based on the OVO method acquires the best performance. When we take v = 0.01, one-class SVM obtains the better performance. By comparing the best performance obtained by the two methods, it is observed that the classification accuracy of the binary SVM is significantly better than one-class SVM, which is consistent with the previous research results of one-class classifiers. The performance of one-class classifiers is usually worse than binary classifiers, and it is difficult to implement one-class classification algorithm in many multi-classifiers. Therefore, the interclass interference suppression method based on binary classifiers is the best choice to suppress the interclass interference of multi-classifiers.





6. Conclusions


The generalization ability of classifiers is a crucial problem in pattern recognition. In multi-classifiers, there is a special phenomenon that essential features with the ability to discriminate a certain class from others are often deleted in feature selection. This phenomenon seriously decreases the classification accuracy of multi-classifiers. To address this problem, this paper called this phenomenon interclass inference, analyzed its reasons in detail and summarized three interclass inference suppression methods including all-features-based method, the one-class classifier-based method and the binary-classifier-based method. By comparing the three methods in 14 UCI datasets through 10-fold cross-validation, the following conclusions can be drawn.



Firstly, the concept of interclass inference is proposed and the essence of interclass inference is revealed. The deletion of essential features leads to interclass inference.



Secondly, the three methods can all improve the classification accuracy to some extent when they are compared with the conventional algorithm. This shows that suppressing the interclass inference is an effective method to improve the generalization ability of multi-classifiers. The binary classifier-based method can suppress the interclass inference best and obtain the best generalization ability.



Thirdly, this paper compares the suppression effects of two binary classifier-based methods, including one-versus-one (OVO) and one-versus-all (OVA) on interclass inference. OVO method obtains better classification accuracy than the OVA method. Thus, it is the best method to suppress the interclass inference. By studying the interclass inference and its suppression methods, the generalization ability of multi-classifiers is significantly improved.
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Figure 1. Store Structure of Consumed Score for the M-Class Problem. 
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Table 1. Decision table for vibration fault diagnosis of a steam turbine.
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Fault Instances

	
Conditional Attributes (C)

	
Decision Attributes (D)




	
  U  

	
0.4f~0.6f (   a 1   )

	
1f (   a 2   )

	
2f (   a 3   )

	
Fault ( d )






	
    x 1    

	
Low

	
High

	
Low

	
Unbalance




	
    x 2    

	
Low

	
High

	
Medium

	
Unbalance




	
    x 3    

	
Low

	
High

	
High

	
Unbalance




	
    x 4    

	
Low

	
Medium

	
Low

	
Unbalance




	
    x 5    

	
Low

	
Medium

	
Medium

	
Unbalance




	
    x 6    

	
Low

	
Low

	
High

	
Misalignment




	
    x 7    

	
Low

	
Medium

	
Medium

	
Misalignment




	
    x 8    

	
Low

	
Medium

	
High

	
Misalignment




	
    x 9    

	
High

	
Low

	
Low

	
Oil Film Whirl




	
    x  10     

	
High

	
Low

	
Medium

	
Oil Film Whirl
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Table 2. Datasets used for experiments.
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	No.
	Name
	Size
	Conditional

Attribute Number
	Number

of Classes





	1
	zoo
	101
	16
	7



	2
	lymphography
	148
	18
	4



	3
	wine
	178
	13
	3



	4
	flags
	194
	28
	8



	5
	autos
	205
	23
	6



	6
	machine
	209
	7
	8



	7
	images
	210
	19
	7



	8
	glass
	214
	9
	6



	9
	audiology
	226
	69
	24



	10
	heart
	303
	13
	5



	11
	solar
	323
	10
	3



	12
	soybean
	683
	35
	19



	13
	vehicle
	846
	18
	4



	14
	anneal
	898
	38
	5
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Table 3. Classification accuracy of OVA and OVO approach.






Table 3. Classification accuracy of OVA and OVO approach.





	
Dataset

	
Conventional Algorithm

	
OVA

	
OVO




	
OVA_V

	
OVA_C

	
OVA_PS

	
1vR_NS

	
OVO_V

	
OVO_C

	
OVO_S






	
zoo

	
0.9400

	
0.9509

	
0.9409

	
0.9509

	
0.9309

	
0.9509

	
0.9509

	
0.9009




	
lymphography

	
0.8186

	
0.8252

	
0.8324

	
0.8319

	
0.8319

	
0.8257

	
0.8257

	
0.7786




	
wine

	
0.9389

	
0.9444

	
0.9389

	
0.9441

	
0.9219

	
0.9549

	
0.9549

	
0.9157




	
flags

	
0.5937

	
0.5884

	
0.5837

	
0.5984

	
0.5982

	
0.6495

	
0.6287

	
0.4700




	
autos

	
0.7438

	
0.7731

	
0.7833

	
0.7636

	
0.7590

	
0.7633

	
0.7586

	
0.5221




	
machine

	
0.6552

	
0.6267

	
0.6505

	
0.6457

	
0.6410

	
0.6886

	
0.6886

	
0.5074




	
images

	
0.8667

	
0.8667

	
0.8714

	
0.8429

	
0.8524

	
0.8667

	
0.8667

	
0.6238




	
glass

	
0.6955

	
0.6771

	
0.6768

	
0.6675

	
0.5781

	
0.6823

	
0.6777

	
0.5799




	
audiology

	
0.7615

	
0.7447

	
0.7490

	
0.7316

	
0.7708

	
0.7800

	
0.7800

	
0.5002




	
heart

	
0.5216

	
0.5246

	
0.5246

	
0.5244

	
0.5051

	
0.5544

	
0.5443

	
0.5841




	
solar

	
0.8671

	
0.8609

	
0.8607

	
0.8578

	
0.8483

	
0.8761

	
0.8731

	
0.7865




	
soybean

	
0.8462

	
0.8960

	
0.9033

	
0.8843

	
0.8814

	
0.9254

	
0.9298

	
0.4802




	
vehicle

	
0.6631

	
0.6855

	
0.7020

	
0.6843

	
0.6962

	
0.7175

	
0.7210

	
0.6192




	
anneal

	
1.0000

	
1.0000

	
1.0000

	
1.0000

	
1.0000

	
0.9989

	
0.9989

	
0.9232




	
Mean

	
0.7794

	
0.7832

	
0.7870

	
0.7805

	
0.7725

	
0.8024

	
0.7999

	
0.6565
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Table 4. Numbers of attributes and rules obtained by different methods.
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Dataset

	
Numbers of Attributes

	
Numbers of Rules




	
Conventional

Algorithm

	
OVA

	
OVO

	
Convention

	
OVA

	
OVO




	
P

	
N






	
zoo

	
4.9000

	
2.4571

	
1.0857

	
12.2000

	
10.0000

	
20.7000

	
7.4500




	
lymphography

	
6.0000

	
3.7000

	
2.1000

	
34.9000

	
33.3500

	
39.2500

	
15.7333




	
wine

	
4.0000

	
3.5667

	
2.5000

	
13.5000

	
12.5000

	
16.5000

	
9.1500




	
flags

	
8.8000

	
5.1625

	
2.7571

	
73.8000

	
76.2500

	
144.2500

	
38.9857




	
autos

	
9.2000

	
5.5667

	
2.9600

	
51.1000

	
52.3500

	
82.9500

	
28.6400




	
machine

	
6.7000

	
3.7125

	
1.7250

	
37.0000

	
35.0000

	
69.1000

	
17.7286




	
images

	
6.3000

	
3.2143

	
1.7048

	
28.3000

	
27.6500

	
53.6500

	
16.2500




	
glass

	
6.8000

	
5.1667

	
3.0467

	
32.4000

	
29.9000

	
50.6000

	
18.5400




	
audiology

	
13.3000

	
2.9716

	
1.1023

	
58.1000

	
55.3000

	
122.4000

	
28.7445




	
heart

	
9.8000

	
9.1800

	
8.0100

	
98.2000

	
96.3000

	
135.5000

	
59.8000




	
solar

	
9.0000

	
7.9000

	
6.5667

	
52.1000

	
52.1000

	
63.4000

	
37.5500




	
soybean

	
11.3000

	
3.0421

	
1.1234

	
115.7000

	
91.0500

	
151.1500

	
28.5278




	
vehicle

	
14.2000

	
11.5250

	
8.8500

	
181.5000

	
181.9000

	
207.8000

	
91.6333




	
anneal

	
3.0000

	
1.2000

	
1.0000

	
7.0000

	
5.0000

	
8.0000

	
5.5250




	
Mean

	
8.0929

	
4.8832

	
3.1808

	
56.8429

	
54.1893

	
83.2321

	
28.8756
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Table 5. Length and support coefficient of rules obtained by different methods.
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Dataset

	
Rule Length

	
Rule Support Coefficient




	
Conventional

Algorithm

	
OVA

	
OVO

	
Convention

	
OVA

	
OVO




	
P

	
N

	
P

	
N






	
zoo

	
2.3088

	
2.0904

	
1.1108

	
1.0402

	
0.0823

	
0.1024

	
0.3679

	
0.4726




	
lymphography

	
2.5843

	
2.5264

	
2.3725

	
2.0472

	
0.0457

	
0.0471

	
0.0919

	
0.1438




	
wine

	
2.1845

	
2.1782

	
1.6184

	
1.5169

	
0.1070

	
0.1027

	
0.1755

	
0.2150




	
flags

	
2.8297

	
2.7584

	
1.8370

	
1.6013

	
0.0175

	
0.0155

	
0.0739

	
0.1219




	
autos

	
2.8248

	
2.6671

	
1.9757

	
1.7014

	
0.0246

	
0.0210

	
0.0831

	
0.1202




	
machine

	
2.8934

	
2.9594

	
2.0499

	
1.6984

	
0.0334

	
0.0266

	
0.1263

	
0.2206




	
images

	
2.5950

	
2.5412

	
1.6086

	
1.3716

	
0.0423

	
0.0370

	
0.1373

	
0.2281




	
glass

	
3.1033

	
3.1045

	
2.1525

	
1.9460

	
0.0335

	
0.0314

	
0.1433

	
0.1732




	
audiology

	
3.2776

	
2.9791

	
1.4881

	
1.0709

	
0.0223

	
0.0198

	
0.2522

	
0.4143




	
heart

	
4.8349

	
4.9566

	
3.8769

	
3.5863

	
0.0155

	
0.0125

	
0.0657

	
0.0649




	
solar

	
3.3148

	
3.4920

	
3.0869

	
2.9350

	
0.0272

	
0.0222

	
0.0442

	
0.0503




	
soybean

	
4.1696

	
3.8603

	
2.1925

	
1.2280

	
0.0105

	
0.0112

	
0.1676

	
0.3356




	
vehicle

	
4.4220

	
4.5494

	
3.9427

	
3.6300

	
0.0087

	
0.0069

	
0.0266

	
0.0287




	
anneal

	
1.7143

	
1.2000

	
1.0000

	
1.0000

	
0.1429

	
0.2000

	
0.5888

	
0.4526




	
Mean

	
3.0755

	
2.9902

	
2.1652

	
1.8838

	
0.0438

	
0.0469

	
0.1674

	
0.2173
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Table 6. Classification accuracy obtained by the method based on all features.
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Dataset

	
Classification Accuracy

	
Number of Rules

	
Rule Length

	
Support Coefficient




	
CV_A

	
OVO_VA

	
CV_A

	
OVO_VA

	
CV_A

	
OVO_VA

	
CV_A

	
OVO_VA






	
zoo

	
0.9518

	
0.9518

	
9.3000

	
7.3500

	
2.2239

	
1.0544

	
0.1110

	
0.4798




	
lymphography

	
0.8319

	
0.8452

	
25.6000

	
12.9000

	
2.9551

	
2.2118

	
0.0744

	
0.2199




	
wine

	
0.9497

	
0.9552

	
10.1000

	
8.1500

	
2.1206

	
1.6022

	
0.1961

	
0.3247




	
flags

	
0.6187

	
0.6134

	
57.1000

	
31.3429

	
3.3845

	
1.9894

	
0.0266

	
0.1994




	
autos

	
0.7640

	
0.7933

	
48.2000

	
23.8800

	
2.8919

	
1.8957

	
0.0285

	
0.1761




	
machine

	
0.6505

	
0.6743

	
37.2000

	
16.7000

	
2.8934

	
1.7571

	
0.0335

	
0.2673




	
images

	
0.8857

	
0.8857

	
25.0000

	
13.5167

	
2.5977

	
1.4600

	
0.0488

	
0.2854




	
glass

	
0.6955

	
0.6677

	
32.3000

	
18.0200

	
3.1229

	
1.9913

	
0.0336

	
0.1792




	
audiology

	
0.7972

	
0.8241

	
40.7000

	
24.6133

	
3.6348

	
1.1128

	
0.0362

	
0.4837




	
heart

	
0.5216

	
0.5283

	
98.8000

	
58.6000

	
4.8474

	
3.5952

	
0.0152

	
0.0731




	
solar

	
0.8580

	
0.8672

	
51.6000

	
36.3500

	
3.2850

	
2.9984

	
0.0277

	
0.0531




	
soybean

	
0.9165

	
0.9370

	
61.7000

	
22.6667

	
4.0635

	
1.2661

	
0.0207

	
0.4276




	
vehicle

	
0.6760

	
0.7151

	
177.2

	
86.2667

	
4.4825

	
3.6881

	
0.0092

	
0.0381




	
anneal

	
1.0000

	
1.0000

	
5.0000

	
5.0000

	
1.2000

	
1.0000

	
0.2000

	
0.5000




	
Mean

	
0.7941

	
0.8042

	
48.5571

	
26.0969

	
3.1217

	
1.9730

	
0.0615

	
0.2648
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Table 7. Numbers of attributes obtained by the method based on all features and other methods.
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	Dataset
	Conventional Algorithm
	CV_A
	OVO_V





	zoo
	4.9000
	16
	8.7000



	lymphography
	6.0000
	18
	8.1000



	wine
	4.0000
	13
	5.6000



	flags
	8.8000
	28
	14.9000



	autos
	9.2000
	23
	12.5000



	machine
	6.7000
	7
	7.0000



	images
	6.3000
	19
	11.4000



	glass
	6.8000
	9
	7.0000



	audiology
	13.3000
	69
	23.8000



	heart
	9.8000
	13
	10.0000



	solar
	9.0000
	10
	8.9000



	soybean
	11.3000
	35
	24.9000



	vehicle
	14.2000
	18
	16.1000



	anneal
	3.0000
	38
	4.9000



	Mean
	8.0929
	22.5714
	11.7000
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Table 8. Comparison between classification accuracies obtained by binary SVM and one-class SVM.






Table 8. Comparison between classification accuracies obtained by binary SVM and one-class SVM.





	
Dataset

	
Binary SVM (OVO)

	
One-Class SVM




	
C = 1

	
C = 100

	
C = 1000

	
ν = 0.001

	
ν = 0.01

	
ν = 0.3






	
zoo

	
0.9209

	
0.9609

	
0.9609

	
0.9418

	
0.8718

	
0.8218




	
lymphography

	
0.7852

	
0.8457

	
0.8457

	
0.7233

	
0.7100

	
0.7171




	
wine

	
0.4611

	
0.4892

	
0.4892

	
0.5062

	
0.5229

	
0.5173




	
flags

	
0.3766

	
0.3768

	
0.3768

	
0.2226

	
0.2637

	
0.2639




	
autos

	
0.3469

	
0.3469

	
0.3469

	
0.0433

	
0.1705

	
0.0690




	
machine

	
0.6031

	
0.6031

	
0.6031

	
0.1533

	
0.1629

	
0.1819




	
images

	
0.3048

	
0.3190

	
0.3190

	
0.2905

	
0.2952

	
0.2952




	
glass

	
0.6675

	
0.7000

	
0.6855

	
0.5461

	
0.5506

	
0.5240




	
audiology

	
0.5045

	
0.8198

	
0.8198

	
0.3974

	
0.4334

	
0.4557




	
heart

	
0.5412

	
0.5412

	
0.5412

	
0.1218

	
0.1218

	
0.1218




	
solar

	
0.8855

	
0.8640

	
0.8483

	
0.7925

	
0.8139

	
0.6469




	
soybean

	
0.9398

	
0.9428

	
0.9355

	
0.8536

	
0.8653

	
0.8404




	
vehicle

	
0.2895

	
0.2989

	
0.2989

	
0.3002

	
0.3013

	
0.3013




	
anneal

	
0.9254

	
0.9599

	
0.9599

	
0.8508

	
0.8530

	
0.8408




	
Mean

	
0.6109

	
0.6477

	
0.6451

	
0.4817

	
0.4955

	
0.4712
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