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Abstract: Speech recognition consists of converting input sound into a sequence of phonemes, then
finding text for the input using language models. Therefore, phoneme classification performance is a
critical factor for the successful implementation of a speech recognition system. However, correctly
distinguishing phonemes with similar characteristics is still a challenging problem even for state-of-
the-art classification methods, and the classification errors are hard to be recovered in the subsequent
language processing steps. This paper proposes a hierarchical phoneme clustering method to exploit
more suitable recognition models to different phonemes. The phonemes of the TIMIT database
are carefully analyzed using a confusion matrix from a baseline speech recognition model. Using
automatic phoneme clustering results, a set of phoneme classification models optimized for the
generated phoneme groups is constructed and integrated into a hierarchical phoneme classification
method. According to the results of a number of phoneme classification experiments, the proposed
hierarchical phoneme group models improved performance over the baseline by 3%, 2.1%, 6.0%, and
2.2% for fricative, affricate, stop, and nasal sounds, respectively. The average accuracy was 69.5%
and 71.7% for the baseline and proposed hierarchical models, showing a 2.2% overall improvement.

Keywords: speech recognition; phoneme classification; clustering; recurrent neural networks

1. Introduction

These days, automatic speech recognition (ASR) performance has improved greatly
by using deep neural networks [1–5]. Since speech is a time series, recurrent neural
networks (RNNs) are mostly adopted for speech recognition [6–8], but there have been
several attempts to apply a convolution neural network (CNN) as well [9,10]. In most ASR
systems, speech is first converted to a sequence of phonemes, which is then translated to a
word sequence using lexical models and language models generate meaningful sentences
from the word sequence. Therefore, in ASR, the correct prediction of phonemes is the most
critical factor because the errors in the earlier stage cannot be recovered in the final text.

Phonetically, the phonemes are distinguished according to the variations in pronunci-
ation and vocalization. However, most speech recognition methods do not actively consider
different characteristics of phonemes, such as end-to-end speech recognition methods [11–16].
Phonemes with similar characteristics are often confused and hard to distinguish, and
they degrade the overall phoneme classification performance. Choosing feature extrac-
tion methods and acoustic model types appropriately for confusing phonemes can help
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improve the final sentence recognition performance. We propose a novel method of apply-
ing phoneme-specific acoustic models for automatic speech recognition by a hierarchical
phoneme classification framework.

The hierarchical phoneme classification is composed of a single, baseline phoneme
classifier, clustering into similar groups and final result generation using retrained group-
specific models. First, we analyze the result of a general phoneme classifier based on long
short-term memory (LSTM) [17]. In the next stage, we proceed clustering the confusing
phonemes using a confusion matrix to group phonemes with similar characteristics. Then
the phoneme groups are analyzed to find the characteristics that are common inside and
different across the groups. Consonants and vowels are distinguished well and the length
of consonants is usually shorter. In the proposed method, various lengths for the analysis
frame are compared and the best one is chosen according to the phoneme recognition
accuracy. In addition, there are several pairs of different consonants that differ by being
voiced or unvoiced. For example, ‘d’ and ‘t’ sounds in different words ‘dean’ and ‘teen’,
respectively, or ‘b’ and ‘p’ sounds in ‘bad’ and ‘pad’. Those consonants can be distinguished
by the existence of the glottal pulse that occurs at periodic time intervals [18–20], and we
use autocorrelation functions to add the periodicity feature of the phoneme sound if the
found phoneme falls into consonant categories. The proposed hierarchical framework uses
group-specific models with different features for different phoneme groups, trained by
separate training data for each phoneme group.

The rest of the paper is organized as follows: Section 2 describes the phoneme cluster-
ing process from the confusion matrix of the baseline phoneme classification model and
shows the resultant phoneme groups by the clustering. Section 3 explains a hierarchical
phoneme classification model that adds a phoneme group model to the baseline phoneme
classification and evaluate its performance. In Section 4, the evaluation results of the
proposed method on phoneme recognition for the TIMIT dataset are given.

2. Phoneme Clustering

This section describes the basic definition of phonemes, particularly in English, the
phoneme classes used in this paper, and the baseline phoneme classification method using
RNN. Then the pairwise misclassification rates between all the pairs of the phonemes
are obtained to build a confusion matrix, and phoneme clustering results are obtained by
grouping phonemes so that the phonemes within the group should be more confused than
the phonemes between the groups. The phoneme clustering results are used in building
the proposed hierarchical classifier in Section 3.

2.1. Phonemes

Phonemes are the set of units representing the distinctive sounds of a spoken language.
In most languages, there are about 20 to 60 units. In this paper, we adopt ARPAbet [21],
developed by the Advanced Research Projects Agency (ARPA), which exploits standard
English alphabet symbols to represent IPA (International Phonetic Alphabet) symbols [22].
Table 1 shows the mapping from ARPAbet to IPA symbols, with 11 more symbols [23] that
are used in the TIMIT dataset [24,25] for a more detailed phoneme analysis. The symbol
[h#] is not an actual phoneme but a special indicator symbol for the beginning and ending
of a sentence, so the number of additional TIMIT phonemes is 11.

The phonemes are broadly classified into consonants and vowels [26], and they are
shown in the first and second columns of Table 1. The number of vowels and consonants
used in ARPAbet are 19 and 31, so the total number of phonemes in this paper is 61.
The consonants and vowels are further divided into more detailed categories according
to the method of vocalization [27,28]. The most common types of consonants are stops,
fricatives, affricates, nasals, and semivowels [29]. Stops are generated by the constriction
and release of air in the mouth (closing-compression-release) [30], so there exists a certain
duration called “stop gap” when the air is compressed inside the mouth. The stop sounds
usually have large energies in low frequencies, roughly below 200 Hz. Fricatives have a
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looser constriction in the mouth, which allows producing some amount of friction at the
point of contact. Most of their acoustic energy occurs at higher frequencies. Fricatives
are divided into sibilants versus non-sibilants [31]. Sibilants tend to be louder than non-
sibilants, and turbulence noise is stronger in sibilants than non-sibilants. Nasals have the
same constriction as plosives except that air is allowed to pass through the nose but not
through the mouth [32]. Nasals show the abrupt loss of overall energy because the nose
is less efficient than the mouth in radiating the energy to the outside. Nasals involve a
voiced feature in the frequency domain and in addition, they have formant frequencies like
vowels.

Table 1. English phonetic symbols of the extended 2-letter ARPAbet used in the TIMIT dataset with mapping to IPA (International
Phonetic Alphabet) symbols. The number of vowels is 19 and the number of consonants is 31. The begin/end marker is ignored in the
phoneme recognition. There are 11 more special symbols used in the TIMIT dataset, so the total number of phonemes is 61.

Vowels (19) Consonants (31) TIMIT Extension (11 + 1)

ARPAbet IPA ARPAbet IPA ARPAbet IPA Symbol Description

aa A b b q P ax-h
Devoiced [@]

([@
˚

])
ae æ ch Ù r ô eng Syllabic [N]
ah 2 d d s s hv Voiced [h]
ao O dh D sh S bcl [b] closure
aw aU dx R t t dcl [d] closure
ax @ el l

"
th T gcl [g] closure

axr Ä em m
"

v v kcl [k] closure
ay aI en n

"
w w pcl [p] closure

eh E f f wh û tcl [t] closure
er Ç g g y j pau Pause

ey eI hh h z z epi
Epenthetic

silence

ih I jh Ã zh Z h#
Begin/end

marker
ix 1 k k
iy i l l
ow oU m m
oy OI n n
uh U ng N
uw u nx R̃
ux 0 p p

The set of 61 phonemes are mapped to a smaller set of 39 labels [33] are shown in Table
2. In the new phoneme classes with multiple phonemes (classes 2, 5, 6, 8, 14, 15, 19, 20, 21,
28, 38, and 39), similar phonemes are grouped together because they are known to be hard
to distinguish with acoustic features. All the closure sounds, pause, and glottal plosive
([q], equivalent to IPA [P]) are all grouped together to mapped phoneme 39. They are
relatively weak, are often accompanies by other sounds, and are very hard to distinguish
by only sound signals without surrounding phonemes.

2.2. Baseline Phoneme Recognition with TIMIT Dataset

TIMIT corpus is designed to provide speech data for studies of acoustic-phonetic and
speech recognition systems [24,25]. Phonetic transcripts for all sentences are provided in
the TIMIT corpus distribution. A set of 61 phoneme labels from ARPAbet symbols are
used in the transcripts. We subsequently collapsed the set of 61 labels into a smaller set
of 39 labels in Table 2 during the scoring of performance of phoneme recognition. The
baseline monophone classifier is developed by a recurrent neural network (RNN) [34–36].
From the input speech signals, mel-frequency cepstral coefficients (MFCCs) [37,38] are
extracted from the input speech, their first and second order derivatives are computed,
and the resultant 39 dimensional vector is obtained at every 10 milliseconds analyzed by
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25-millisecond-overlapping windows. In this feature extraction process, all phonemes are
pre-processed identically. The input to the baseline RNN is the 39-dimensional MFCC
feature vectors and the number of output nodes is 39 one-hot vectors according to the
39 labels of the phonemes.

Table 2. Mapping 61 phonemes to 39 phonemes for phoneme recognition. The grouping is based on
the linguistic similarities between phonemes [33].

No ARPAbet No ARPAbet No ARPAbet No ARPAbet

1 iy 11 oy 21 ng eng 31 b
2 ih ix 12 aw 22 v 32 p
3 eh 13 ow 23 f 33 d
4 ae 14 er axr 24 dh 34 dx

5 ax ah
ax-h

15 l el 25 th 35 t

6 uw ux 16 r 26 z 36 g
7 uh 17 w 27 s 37 k
8 ao aa 18 y 28 zh sh 38 hh hv

9 ey 19 m em 29 jh 39
bcl pcl
dcl tcl

gcl

10 ay 20 n en nx 30 ch
kcl q
epi pau

h

2.3. Confusion Matrix

A confusion matrix is a table of comparison results for the predicted and actual values
to analyze intra-class and inter-class performances. It is used to evaluate the performance
of supervised learning, such as classification in machine learning [39]. After training the
baseline phoneme classification model, on a test set we evaluate phoneme classification
accuracies and create a confusion matrix. Figure 1 shows the obtained confusion matrix
from baseline phoneme classification results for 39 mapped phonemes. The y-axis is the real
labels of the given phonemes, and the x-axis is the predicted labels from the baseline RNN.
Each element of the matrix, denoted by C(i, j) where i and j are row and column numbers,
respectively, is the rate of predicting phoneme j when the actual one is i. According to the
definition of the confusion matrix, the diagonal elements (i = j) are the correct classification
rates for individual phonemes and all off-diagonal elements (i 6= j) are ratios of incorrect
classification pairs. For example, the first column of the the third row, C(1, 3), is brighter
than the nearby components with the of the exception diagonal ones. It means that the
phoneme [aw] is misclassified a lot to the phoneme [ae]. Among off-diagonal elements,
([uh], [ax]), ([uh], [ih]), ([n], [m]), and ([z], [s]) are examples of phoneme pairs with
high misclassification rates.

2.4. Phoneme Clustering using Confusion Matrix

We clustered phonemes using the similarities defined by the sum of the off-diagonal
elements in the confusion matrix as shown in Figure 1. We use an agglomerative method
based on bottom up clustering, which starts from a unique cluster and ties up a pair
one at a time [40]. To define the distance between a phoneme pair, we use the confusion
error rates, obtained by one of the off-diagonal elements of the confusion matrix. For
a newly created phoneme cluster, the new error rate is computed by the average of the
merged phonemes. The process stops until the desired number of clusters remain. The
results of hierarchical clustering are usually presented in a dendrogram [41]. As shown in
Figure 2, the dendrogram is a tree diagram representing clusters obtained from hierarchical
clustering. The y-axis shows phoneme labels and the phonemes are hierarchically paired
with the height of the pair connection being the misclassification rate between the phonemes
in the corresponding pair. The misclassification rate range from 0.0 to 1.0 along the x-axis.
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This method is called hierarchical clustering because paired phonemes are considered
as a single phoneme after the pair is merged and all phonemes finally converge to a
single cluster. The goal of the the proposed method is to improve the performance of
phoneme recognition. Therefore, for the confusing phonemes, other classification method
that is different from the baseline phoneme classifier is applied to further distinguish the
phonemes in the same cluster.
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Figure 1. Confusion matrix from the results of the baseline phoneme classification. Each row of the
matrix represents the instances in a truth and each column represents the instances in a predicted
class.
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Figure 2. Dendrogram of clustering. The x-axis shows a similarity of the clustered nodes. The
higher the x-value, the more similar they are to each other. The y-axis is the phoneme label. This
dendrogram shows that the consonants and vowels are well distinguished.
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In Figure 2, if we backtrack the clustering path from the finally merged cluster at
the right end, all the phonemes are broadly divided into two clusters. The largest cluster
in the upper side is a set of phonemes from [th] to [zh]. The lower largest cluster
consists of phonemes from [uh] to [oy], most of which are vowel sounds. However,
[l] and [r] are consonants and more specifically, belong to voiced alveolar sounds. The
phonemes [w] and [y] are semivowels, belonging to voiced labio-velar and voiced palatal
sounds, respectively. These sounds are between vowels and consonants, so we split
the lower cluster into “Vowels” and “Mixed”, as shown in the first and second rows
of Table 3. Among vowels, the phonetic classification is somewhat grouped according
to the pronunciation position similarly to the conventional phonetic classification, but is
not accurately distinguished. This is because the pronunciation of vowels vary according
to the adjacent phonemes. All of the phonemes in the upper largest cluster are consonants.
The individual consonants have different characteristics, so we divided the consonant set into
four major groups. The lower four rows of Table 3 are the phoneme groups based on the
dendrogram in Figure 2 using a 0.6 cut-off with some additional adjustments. The first
group is a set of nasal sounds, [m], [n], and [ng]. The second one is a group of fricatives,
sounds with air friction with longer pronunciation time. Voiced sounds ([z] [zh] [v]
[dh]) and their corresponding unvoiced sounds ([s] [f] [th]) are grouped together. The
voiceless glottal fricative sound, [hh], also belongs to this group. The third is the affricates
group ([jh] [ch]), weak sounds with friction. The stop sounds such as [t], [d], [p], and
[b] are closely clustered. The clustering result is similar to the basic phonetic categories.
Our resultant clusters are analogous to the conventional linguistic categories, so we can
confirm that it provides reasonable results.

Table 3. Phoneme groups obtained by agglomerative hierarchical clustering on the TIMIT training
dataset.

Group Phonemes of the Group
(Written in ARPAbet)

Vowels iy ih eh ae ax uw uh
ao ey ay oy aw ow er

Mixed l r w y

Consonants

Nasals m n ng

Fricatives s z zh f v th dh hh

Affricates jh ch

Stops b d g k p t dx

To confirm that the phoneme categories are well clustered, we drew a confusion matrix
with the new phoneme groups in Table 3, and it is shown in Figure 3a. The phonemes
are reordered so that all the phonemes in the same group are located adjacently. The
red-colored rectangles indicate phoneme groups, and Figure 3b is the table below the figure
is a confusion matrix with the phoneme groups as classification targets. The diagonal
ones represent that the accuracy of the group labeling is very high, which implies that the
different groups are well distinguished. In other words, the phonemes within the same
group are similar and confusing, so we focus on improving the recognition performance of
these phonemes inside the groups.
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R
ea
l

(a) Phoneme grouping in the confusion matrix.

Real

vowel 0.94 0.02 0.02 0.01 0.00 0.01

mixed 0.02 0.92 0.01 0.01 0.00 0.04

nasal 0.07 0.09 0.78 0.01 0.00 0.04

fric 0.01 0.04 0.01 0.88 0.01 0.06

affr 0.00 0.01 0.00 0.07 0.80 0.12

stop 0.05 0.05 0.01 0.04 0.01 0.85

vowel mixed nasal fric affr stop
Prediction

(b) Confusion matrix of the phoneme groups.

Figure 3. (a) The confusion matrix rearranged according to the phoneme clustering result. Each
row of the matrix represents the instances in a truth while each column represents the instances in a
predicted class. (b) Confusion matrix of phoneme groups obtained by phoneme clustering.

3. Hierarchical Phoneme Classification

This section analyzes the characteristics of clustered phoneme groups. We explain the
similarities and differences between phoneme groups, and the detailed implementation of
group-specific models. By combining the group-specific phoneme classification models, a
hierarchical phoneme classification framework is proposed. All individual group models
are implemented by deep neural networks. The neural network automatically finds and
recognizes the characteristics of speech signals. For sequential inputs such as speech
signals, modeling temporal patterns is necessary. A recurrent neural network (RNN) is
a type of neural network that can effectively learn temporal data. Therefore, phoneme
classification model in this paper is built using RNN. More specifically, bi-directional long
short-term memory (BLSTM) is adopted [8,42,43].

3.1. Overall Architecture

We propose a hierarchical phoneme classification model to improve the performance
of phoneme classification. Figure 4 shows the overall model architecture. First, phoneme is
predicted through the baseline phoneme classification model in which a whole phoneme is
learned by using the same feature extraction method without distinguished characteristics.
The baseline model was constructed using long short-term memory (LSTM) [17]. LSTM is
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an RNN cell that can avoid the problem of vanishing gradient using three gates of input,
forget, and output. A typical LSTM uses a unidirectional structure that learns only by
checking information from previous contexts. In the speech recognition, a bi-directional
structure that learns both past and future information shows good performance [42–44].
Therefore, we implemented the model with the bi-directional LSTM (BLSTM) as a baseline
system for phoneme recognition [45]. Three BLSTM layers were stacked and a fully-
connected layer is added. At the output, the phoneme is classified using the softmax
layer.

Predicted
Phoneme
Label

Phoneme
wave

baseline
phoneme clas-

sification

stops
model

affricates
model

fricatives
model

nasals
model

feature extraction 
by group 

different window 
size

(MFCC_gws)

Vowels

Consonant

feature
extraction

autocorrelation

vowel
model

mixed 
model

Mixed: [l] [r] [w] [y]

Figure 4. Overall model structure of the proposed hierarchical classification. Using the baseline phoneme classifier, phoneme-
dependent features are extracted and different phoneme group models are applied to obtain refined phoneme classification results.

The learning target of the predicted phoneme for the baseline model is the index of
the phoneme group in Table 3. Then, the speech feature is re-extracted using the optimal
window size for each phoneme group. In addition, autocorrelation is used together to
distinguish voiced and unvoiced phonemes. The extracted speech features are used as
inputs to each phoneme group model. The phoneme group model finally predicts the
phoneme.

3.2. Vowels and Mixed Phoneme Classification

Two models for phoneme groups, ‘Vowel’ and ‘Mixed’ are trained by using group-
specific training data. The ‘Vowel’ has 14 different labels as listed in Table 3, which is
reduced from 39 phoneme labels of the baseline classifier. Out of the TIMIT training dataset,
audio segments labeled by iy, ih, . . ., er are extracted and used in training ‘Vowel model’.
To re-train ‘Mixed model’, training subsets labeled by l, r, w, and er are used. The model
architecture is shown in Figure 5.

Predicted
Phonemes

Phoneme
wave

BLSTM 
layers

FC
layer

MFCC

Figure 5. Phoneme classification model architecture for the baseline, as well as Vowel and Mixed
groups.

3.3. Varying Analysis Window Sizes for Consonants

Consonants are short and instantaneous, and vowels are longer and more consis-
tent [46]. It would be better to shorten the analysis window size in feature extraction to
more accurately distinguish short consonants. Therefore, we empirically decided appro-
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priate analysis window lengths differently for individual phoneme groups. The baseline
phoneme recognition model extracts features using MFCC with the same conditions such
as same window and shift sizes for all phoneme. In this process, a 16 kHz sampling rate
and 25 ms hamming window is used. The window shift was set to 10 ms. However, conso-
nants are very short and strong compared to vowels. Since the properties of phonemes are
different, we compared the performance of phoneme recognition by extracting features
while changing window and shift sizes for each group. The window sizes are 5 ms, 10 ms,
15 ms, 20 ms, 25 ms, and 30 ms. ‘MFCC_gws’ in Figure 4 is the MFCC features with varying
window sizes.

3.4. Voiced and Unvoiced Consonants Classification

Several pairs of different consonants are distinguished by being voiced or unvoiced.
For voiced sounds, the glottis is closed or nearly closed, whereas for voiceless sounds it
is wide open, with the distance between the folds actually amounting to only a fraction
of a millimeter [18]. The voiced sounds carry periodic pulses generated by the glottis
vibration, while almost no periodicity but turbulent noise is observed in the unvoiced
sounds. Phonemes [b], [p], [d], and [t], all belong to the stops group in the phonetic
classification. However [b], [d] are voiced phonemes and [p], [t] are unvoiced ones.
Phonemes [z] and [s] are both fricatives, but [z] is voiced and [s] unvoiced. These pairs
of examples are usually hard to distinguish because they are generated at the almost same
place in the oral cavity area. Similarly, [p] and [b] are produced at the same place in the
mouth and the only difference is being voiced or unvoiced. If we add a feature that helps
distinguish voiced and unvoiced phonemes especially when recognizing consonants and
create a model that can classify them, the performance may be improved. Therefore, we
use autocorrelation functions to add the periodicity feature of the phoneme sound if the
found phoneme falls into consonant categories

Voiced and unvoiced sounds can be distinguished by pitch, or equivalently funda-
mental periodicity values [47]. Autocorrelation measures the similarity function of the
time lag with itself in the signal [19,20]. Due to the vibration of the vocal cords, the voiced
sound is periodic and this vibration interval is pitch. Autocorrelation is a unique case of
cross-correlation [48,49]. The cross-correlation measures the similarity of the two discrete
signals, x[n] and y[n], defined by [50]:

∞

∑
n=−∞

x[n + τ]y[n] , (1)

where τ is an integer time lag that takes values from {0,±1,±2, . . . , }. If two discrete
signals are identical, this process is defined as autocorrelation, which is given by:

ac(x, τ) =
∞

∑
n=−∞

x[n + l]x[n] . (2)

Algorithm 1 is the pseudo code for the autocorrelation computation. The array x is
the speech signal, N is the size of signal, and the autocorrelation function is denoted by ac.
Figure 6a shows the waveform of a voiced consonant phoneme [d] and its autocorrelation
computed by Algorithm 1. Likewise, Figure 6b is for an unvoiced consonant phoneme [t].
The autocorrelation of phoneme [d] shows nonzero values, while that of phoneme [t] has
almost zero, meaning that there is no significant pitch. From these results, autocorrelation
can help in distinguishing voiced and unvoiced phonemes.

3.5. Consonant Group Model Architectures

As described in the previous section, we focus on making a better decision on con-
sonants rather than on vowels. Consonants show various types of energy distributions
in phoneme groups. Therefore, we implement appropriate models for individual conso-
nant phoneme groups and verify their performance. MFCC_gws is a feature extraction
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method with group different window sizes, as well as autocorrelation features added to
help distinguish voiced phonemes and unvoiced phonemes within the consonant group.
By combining the two features [51], three phoneme group models are created.

Figure 7 shows three different model configurations. Figure 7a simply concatenates
MFCC_gws and the autocorrelation vector at the input unit and passes them to a BLSTM
layer. A fully connected (FC) layer generates softmax outputs as many as the number
phoneme to generate predictions for phoneme labels. Figure 7b has individual BLSTM
layers for MFCC_gws and the autocorrelation vector, and concatenates the outputs to pass
them through an FC layer. The advantage of output concatenation over input concatenation
is that the mismatches of the different kinds of features, such as scale differences can be
automatically adapted to each other. The concatenation at the BLSTM output layers is
expected to be more reliable than Figure 7a. Figure 7c adds another BLSTM layer to the
concatenated output of Figure 7b. These three configurations are used to construct the
hierarchical phoneme classifier in Figure 4.

Algorithm 1 Autocorrelation
H]

ac← array of autocorrelation

N← length of signal x

for i← 0 to N do
sum← 0

for j← 0 to N − 1 do
sum← sum + (x[j + 1] ∗ x[j])

end for

ac[i]← sum/N

end for
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(a) Voiced phoneme [d].
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(b) Unvoiced phoneme [t].

Figure 6. Waveforms and autocorrelation functions of a voiced sound (phoneme [d]) and a unvoiced sound (phoneme [t]). Upper
floats are waveforms and lower floats are computed autocorrelation functions.



Appl. Sci. 2021, 11, 428 11 of 17

Predicted
Phoneme

Phoneme
wave

BLSTM 
layers

FC
layer

MFCC_gws

autocorrelation

concat

(a) Input concatenation.

Predicted
Phoneme

Phoneme
wave

BLSTM 
layers

FC
layer

MFCC_gws

autocorrelation

concat

BLSTM 
layers

outputs

outputs

(b) Concatenated bi-directional long short-term memory (BLSTM) and fully connected network (FCN).
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Figure 7. Various types of the consonant group models with additional autocorrelation features. (a) input features are concatenated.
(b) BLSTM outputs are cocatenated. (c) another BLSTM layer is added for the concatenated BLSTM outputs.

4. Experimental Results

This section shows the analysis results of the phoneme group characteristics described
in Section 2 and also presents comparison results of the performance of the phoneme group
model with that of the baseline model.

4.1. TIMIT Database

We have carried out speech recognition experiments on the TIMIT corpus [25], which
is designed to provide speech data for studies of acoustic-phonetic and speech recognition
systems. The speech data was recorded at Texas Instruments (TI), transcribed at the
Massachusetts Institute of Technology (MIT), and prepared for CD-ROM production by
the National Institute of Standards and Technology (NIST). The corpus includes the speech
waveforms with phonetic transcriptions. TIMIT corpus has 6300 sentences, spoken by 630
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speakers, who spoke exactly 10 sentences each. There are three types of sentences. Dialect
sentences (SA) were recorded from speakers with dialectal diversity. Phonetically-compact
(SX) and phonetically-diverse sentences (SI) were created to model different situations of
phoneme distributions. Phonetic transcripts for all sentences are provided in the TIMIT
corpus distribution. The full phoneme transcript of an example sentence is shown in
Table 4. All the numbers are in samples, so the length of the audio file in the example is
46797/16000 kHz = 2.924 s.

Table 4. An example of the phonetic transcripts in the TIMIT corpus. The audio file is
“dr1/rcjf0/sa1.wav” in the provided CD-ROM, and its sentence transcript is “sa1.txt” in the
same directory. The phonetic transcript file is “sa1.phn”, and full timings of phonemes are provided
as well.

File Begin End Text/Phoneme

sa.txt 0 46797

She had your dark
suit in greasy
wash water all

year.

sa1.phn

0 3050 h#
3050 4559 sh
4559 5723 ix
5723 6642 hv
6642 8772 eh
8772 9190 dcl
9190 10337 jh
. . . . . . . . .

40313 42059 y
42059 43479 ih
43479 44586 axr
44586 46720 h#

The whole corpus is divided into non-overlapping training and testing sets. We use
core test set [25] in an evaluating performance of phoneme recognition. The core test data
has a total of 24 speakers, more specifically two male and one female from each of the eight
dialect regions. The number of phoneme tokens are 177,080 in the training set and 9098
in the testing set. The number of tokens for each of the five phoneme groups is shown in
Table 5.

Table 5. Phoneme token counts of the TIMIT train and core test sets, grouped by phoneme classes.

Phoneme
Groups Fricatives Affricates Stops Nasals Vowels/Mixed

Train set 21,424 2031 22,281 14,157 75,257
Core test set 1114 95 1114 736 3955

4.2. MFCC vs Log Filter Bank Energy

We compared the performance of two commonly-used features in speech recognition.
The first one is mel-frequency cepstral coefficients (MFCCs) and the other one is log
filterbank energies. Figure 8 shows the performance differences of four phoneme groups
according to the change of window sizes. Blue lines are MFCC results and orange lines are
the results of log filter bank energy features [37,38,52]. In most cases, blue lines are below
orange lines, showing less phoneme recognition errors. Based on these results, we chose
MFCC in the phoneme group models and the overall model.
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Figure 8. The error rates using mel-frequency cepstral coefficients (MFCCs) and log filter bank energy
according to change window size. (a) shows fricatives and afficates. (b) shows stops and nasals. In
all phoneme groups, the error rate of MFCC is lower than that of log filter bank energy.

4.3. Various Window Sizes

In order to find the optimal window sizes for individual phoneme groups, we tried
various window sizes in the MFCC feature extraction. Table 6 shows performance varia-
tions by choosing different window sizes with six phoneme group models. For fricatives
and stops, 10 ms window size was the best, both 15 ms and 25 ms were the best for af-
fricates ([jh] and [ch]) and 20 ms was the best for nasal. This is because fricative and
stop sounds are very short consonants, and nasal sounds are voiced and close to vowel
sounds. Generally, consonant models showed lower phoneme error rates with smaller
window sizes because the actual vocalization length is shorter for consonants, so it is
possible to obtain more information by using a small window length. Surprisingly, for
vowel/semivowel and closes, window analysis size did not affect performance. Unlike
consonants, they have very stable characteristics over time, so a change in analysis sizes
made no difference. We used the best window sizes for each of the phoneme group models
to maximize the performance of the proposed hierarchical phoneme classification model.

4.4. Phoneme Group Model Training

The baseline model uses MFCC features only. Clustering result showed that voiced
and unvoiced phonemes are hard to distinguish. To overcome this problem, autocorrelation
feature is added in phoneme group models because it shows very different values for voiced
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and unvoiced speech signals. Table 7 shows the performance of phoneme group models.
This result shows that using autocorrelation is better than the MFCC alone. In addition,
the performance of the three models was different for each phoneme group. Since the
phoneme group has different characteristics, the optimal model structure is also different.
Based on these results, we constructed a hierarchical model using phoneme group models.

4.5. Performance of the Hierarchical Classification

We implemented a hierarchical phoneme classification model that combines all the
phoneme group models with the optimal window sizes for the corresponding phoneme
groups and evaluated the performance. We used the Adam optimizer, which adaptively
adjusts the learning rate of the backpropagation learning algorithm for the artificial neural
networks [53]. The initial learning rate of the Adam optimizer is set to be 10−4, and
gradually lowered as the learning proceeds. Batch size 512 is used during training of
each phoneme group model. Dropout [54] with a probability of 0.2 is added across the
BLSTM layers. Table 8 represents the performance of the overall model. Compared with
the baseline, models with different window sizes for phoneme groups had an improved
performance. In addition, the overall model using the phoneme group model combining
MFCC and autocorrelation showed better performance.

Table 6. The results of overall model using MFCC with varying window sizes.

Baseline
Analysis Window Sizes

5 ms 10 ms 15 ms 20 ms 25 ms 30 ms

Vowels 0.700 - - - - - -
Mixed 0.919 - - - - - -
Nasals 0.568 0.565 0.553 0.564 0.579 0.557 0.568

Fricatives 0.724 0.710 0.739 0.738 0.737 0.735 0.736
Affcicates 0.632 0.632 0.642 0.653 0.590 0.653 0.642

Stops 0.628 0.657 0.682 0.651 0.647 0.626 0.620

Group
avg 0.695 0.697 0.706 0.704 0.695 0.698 0.698

Integrated 0.730 0.732 0.738 0.735 0.735 0.731 0.731

Table 7. The results that different window sizes in MFCC and MFCC with autocorrelation and a
three feature ensemble model.

MFCC/Autocorrelation Combinations

Phoneme Group Specific Input Concat Concat BLSTM Concat BLSTM

Groups Window Sizes + FCN + BLSTM +
FCN

Nasals 0.742 0.757 0.742 0.757
Fricatives 0.844 0.847 0.834 0.827
Affricates 0.768 0.737 0.779 0.747

Stops 0.796 0.781 0.806 0.778
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Table 8. The results that baseline and integration phoneme group model.

Overall Model

Phoneme Baseline Group MFCC

Groups Phoneme Specific and
Autocorrealation

Classification Window Size Combination Model

Vowels 0.700 0.700 0.700
Mixed 0.919 0.919 0.919
Nasals 0.568 0.579 0.590

Fricatives 0.724 0.739 0.754
Affcicates 0.632 0.653 0.653

Stops 0.628 0.682 0.688

Group avg 0.695 0.712 0.717
Integrated 0.730 0.740 0.743

5. Discussion

In this paper, we proposed a hierarchical speech recognition model based on phoneme
clustering. The proposed model first classifies the entire phoneme by a baseline phoneme
classifier without considering phoneme characteristics. Then the retrained phoneme group
models are used using the initial phoneme classification results. A confusion matrix of
baseline phoneme classification was used to group each phoneme with similar charac-
teristics. The confusion matrix shows which phonemes are not well distinguished. An
analysis of phoneme characteristics in the TIMIT database revealed the differences of the
phonemes in terms of lengths and autocorrelation values, so they were used in constructing
phoneme group-specific models. We extracted features using different window size and
window shift optimized for each phoneme group, and used autocorrelation as a feature as
well as MFCC to improve the performance of the phoneme group models. The results of
the experiment of the four consonant phoneme group models showed that the phoneme
groups have different characteristics, and thus, the suitable models are different. The hier-
archical phoneme classification model consisting of the baseline model and the phoneme
group model was evaluated. The result shows that the phoneme specific feature extraction
method and classification model have an improved performance of phoneme classification
and speech recognition. One drawback of the proposed hierarchical classification method
is that it does not improve the vowel classification performance because the proposed
autocorrelation features and varying window sizes only help consonant classification. The
MFCC is well suited to vowel classification and almost optimal classification performance
is achieved, so very little improvement is expected.
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