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Abstract: Deep neural networks have shown very successful performance in a wide range of tasks,
but a theory of why they work so well is in the early stage. Recently, the expressive power of
neural networks, important for understanding deep learning, has received considerable attention.
Classic results, provided by Cybenko, Barron, etc., state that a network with a single hidden layer
and suitable activation functions is a universal approximator. A few years ago, one started to study
how width affects the expressiveness of neural networks, i.e., a universal approximation theorem for
a deep neural network with a Rectified Linear Unit (ReLU) activation function and bounded width.
Here, we show how any continuous function on a compact set of Rnin , nin ∈ N can be approximated
by a ReLU network having hidden layers with at most nin + 5 nodes in view of an approximate
identity.

Keywords: deep neural nets; ReLU network; universal approximation theory; a feed-forward
neural network

1. Introduction

Over the past several years, deep neural networks have achieved state-of-the-art per-
formance in a wide range of tasks such as image recognition/segmentation and machine
translation (see the review article [1] and recent book [2] for more background). In spite of
their outstanding successes, many aspects of why they work so well are still not well un-
derstood. Some works to date have focused on the problem of explaining and quantifying
the expressivity of a deep neural network [3–5].

This line of research about the expressive power of neural networks, its ability to
approximate functions, dates back to at least the work of Cybenko [6], in which a fully
connected neural network with a sigmoid activation function and one single hidden
layer can approximate any continuous univariate function on a bounded domain with
an arbitrarily small error. Barron [7], Hornik et al. [8], and Funahashi [9] generalized the
sigmoid function to a large class of activation functions to get universal approximation.
However, they do not consider the number of nodes of a hidden layer; actually, the number
of nodes of a hidden layer can be exponentially increased in the input dimension.

Because the outstanding performance of deep neural networks has recently been
exhibited, there is a lot of literature concerning their expressive power theoretically. In
2011, Delalleau and Bengio [10] gave a family of functions which can be represented much
more efficiently with a deep network than with a neural network with one hidden layer.
Mhaskar and Poggio [4] provided conditions under which deep convolutional neural net-
works perform much better in function approximation than a neural network with one
hidden layer. Eldan and Shamir [11] constructed a three-layer network which cannot
be realized by any 2-layer if the number of nodes of an output layer is no more than an
exponential bound.

Actually, the Rectified Linear Units (ReLU) activation function is the most popular
choice in practical use of the neural network [12]. In this reason, most of the recent results on
the universal approximation theory is about the ReLU network [5,13–20]. Cohen et al. [13]
provided the deep convolutional neural network with the ReLU activation function that
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cannot be realized by a shallow network if the number of nodes of its hidden layer is no
more than an exponential bound.

Lu et al. [14] presented a universal approximation theorem for deep neural networks
with ReLU activation functions and hidden layers with a bounded width in 2017, since the
expressive power of depth in ReLU networks with a bounded width has received a lot of
attention. Hanin proved universal approximation theorem using convex function theory in
[15,16], and Lin and Jegelka showed this theorem for residual networks with one-neuron
hidden layers in [19].

Ohn and Kim [18] showed that the ReLU activation function can be represented by a
linear combination of piecewise linear activation function and, using this fact, extended many
results in [5,17,20] to any continuous piecewise linear activation function. However, their re-
sults are not about the bounded width.

Here, we study a universal approximation theorem for ReLU networks in view of
approximate identity by constructing a network having ninknin + 1 hidden layers with
width of at most nin + 5. As a measure of approximation error, we adopt the supremum
norm and Lp distance.

The remainder of the paper is organized as follows: in the next subsection, we intro-
duce some notations. Sections 2 and 3 are devoted to our theorem statement and its proof,
respectively. Finally, Section 4 offers a conclusion.

Notations

Let Zk = {1, 2, · · · , k} and x = (x1, x2, · · · , xn) ∈ Rn be the input. The network architec-
ture (l, n) consists of several hidden layers l ∈ N and a width vector n = (n0, n1, · · · , nl+1) ∈
Nl+2, n0 = nin [20]. A neural network with network architecture (l, n) is then any function
of the form

f(l,n) : Rn0 → Rnl+1 ,
f(l,n)(x) = Ll+1 ◦ ReLU ◦Ll ◦ ReLU ◦ · · · ◦ L2 ◦ ReLU ◦L1(x),

where
Li : Rni−1 → Rni i = 1, · · · , l + 1,

and ReLU(x) = max{x, 0},

ReLU(x1, x2, · · · , xm) = (ReLU(x1), ReLU(x2), · · · , ReLU(xm)).

Here, we set nl+1 = 1. To this end, we define the space of network functions with the
given network architecture

F (l, n) := { f(l,n) : f(l,n)(x) = Ll+1 ◦ · · · ◦ ReLU ◦L1(x), (l, n) ∈ N×Nl+2}.

Our network of interest is ‘a feedforward neural network’ which is an artificial neural
network wherein connections between the nodes do not form a cycle. That is, in this
network, the information moves in a forward direction, from the input nodes to the output
nodes through the hidden nodes (if any).

For later discussion, we introduce the positive part f+ = max( f , 0) and negative parts
f− = max(− f , 0) of a function f . Then, f+ − f− is equal to f .

2. Main Result

Here is our universal approximation theorem for a ReLU network with a bounded
width:

Theorem 1. For any M > 0 and nin ∈ N, let f : [−M, M]nin → R be a continuous function. For
ε > 0, there exists k ∈ N such that f(l,n) ∈ F (ninknin + 1, nin, nin + 5, · · · , nin + 5, 2, 1) satisfies

sup
x∈[−M,M]n

| f (x)− f(l,n)(x)| < ε.
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To prove this theorem, we explicitly construct a ReLU network with a bounded width
in Section 3.2. In our construction, each of the first nin + 3 nodes in each hidden layer is
connected to only one node of the previous layer, and each, only for two nin + 4 and nin + 5
nodes in each hidden layer, is connected to less than four nodes of the previous layer (for
more details, see Section 3.2). This means that the non-fully connected ReLU network can
be working.

We can show that there is a feed-forward neural network that approximates any
f ∈ Lp(Rnin):

Corollary 1. Let nin ∈ N and f ∈ Lp(Rnin), 1 ≤ p < ∞. For ε > 0, there exists k ∈ N such
that f(l,n) ∈ F (ninknin + 1, nin, nin + 5, · · · , nin + 5, 2, 1) satisfies

|| f (x)− f(l,n)(x)||p < ε.

Proof. For any ε > 0, there is a continuous function fc on Rnin with compact support in
[−M, M]nin such that ∫

Rnin

| f (x)− fc(x)|pdx <
εp

2p .

Using Theorem 1, we can find k ∈ N such that a ReLU neural network architecture
(l, n) with a represented function f(l,n) satisfying

sup
x∈[−M,M]nin

| fc(x)− f(l,n)(x)| <
ε

2nin+1Mnin
.

Therefore, we have

|| f (x)− f(l,n)(x)||p ≤ || f (x)− fc(x)||p + || fc(x)− f(l,n)(x)||p < ε.

3. Proof of Theorem 1

To convey our idea more clearly, we first construct a ReLU network with nin = 1 and
k + 1 hidden layers with width at most 6. Then, we construct a ReLU network with general
nin.

3.1. One-Dimensional, Input

Let L1,temp : R → R3 and L2,temp : R3 → R with L1,temp(x) = (x − 1, x, x + 1) and
L2,temp(x1, x2, x3) = x1 − 2x2 + x3. Then, the function f(1,1,3,1) represented by L2,temp ◦
ReLU ◦L1,temp is

f(1,1,3,1)(x) = L2,temp ◦ ReLU ◦L1,temp(x)
= ReLU(x− 1)− 2 ReLU(x) + ReLU(x + 1)

=

{
0 if |x| > 1,
1− |x| if − 1 < x < 1.

We notice that, for a (B-spline) function g(x) = L2,temp ◦ ReLU ◦L1,temp(x) and λ > 0,
gλ(x) = λ−1g(λ−1x) is an approximate identity: for any continuous function f (x) on
[−M, M], f ∗ gλ converges to f (x) uniformly. For any ε > 0, there is λ > 0 such that
sup−M≤x≤M | f ∗ gλ(x)− f (x)| < ε/2. By mensuration by division, there is k ∈ N such that

sup
−M≤x≤M

∣∣∣∣∣ f ∗ gλ(x)−
k

∑
j=1

2M
k

f
(
−M +

2Mj
k

)
gλ

(
x−

(
−M +

2Mj
k

)) ∣∣∣∣∣ < ε/2
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and thus

sup
−M≤x≤M

∣∣∣∣∣ f (x)−
k

∑
j=1

2M
k

f
(
−M +

2Mj
k

)
gλ

(
x−

(
−M +

2Mj
k

)) ∣∣∣∣∣ < ε.

Now, for a fixed k ∈ N, we can make a network architecture (l, n) = (k+ 1, 1, 6, 6, · · · , 6, 2, 1)
with ReLU activations, input, and output dimensions 1, and k + 1 hidden layer width at
most 6, such that

sup
−M≤x≤M

∣∣∣ f (x)− f(l,n)(x)
∣∣∣ < ε.

Let L1,1 : R → R6, L1,j : R6 → R6, j = 2, · · · , k, Lk+1 : R6 → R2, and Lk+2 : R2 →
R with

L1,1(x) =



x + M
λ−1(x− (−M + 2M/k))−1
λ−1(x− (−M + 2M/k))
λ−1(x− (−M + 2M/k))+1
0
0

,

L1,j(x) =



x1

λ−1(x1 −M− (−M +
2Mj

k
))−1

λ−1(x1 −M− (−M +
2Mj

k
))

λ−1(x1 −M− (−M +
2Mj

k
))+1

x5 +
2M
kλ

f+(−M +
2M(j− 1)

k
)(x2 − 2x3 + x4)

x6 +
2M
kλ

f−(−M +
2M(j− 1)

k
)(x2 − 2x3 + x4)



for j = 2, · · · , k,

Lk+1(x) =

 x5 +
M
kλ

f+(M)(x2 − 2x3 + x4)

x6 +
M
kλ

f−(M)(x2 − 2x3 + x4)

, and

Lk+2(x) = (x1 − x2).

(The index 1 in our index (1, j) is unnecessary, but it is included because it suggests how to
generalize to input of arbitrary dimension.) We note that

L1,2 ◦ ReLU ◦L1,1(x) =



x + M

λ−1(x− (−M +
2M

k
))−1

λ−1(x− (−M +
2M

k
))

λ−1(x− (−M +
2M

k
))+1

2M
kλ

f+(−M +
2M

k
)g(λ−1x− λ−1(−M +

2M
k

))

2M
kλ

f−(−M +
2M

k
)g(λ−1x− λ−1(−M +

2M
k

))



.
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and the fifth and sixth components of L1,j are non-negative. Since for a non-negative
function h : R→ R, ReLU(h) = h, we have for α ≥ 0,

ReLU
(

h(x) + αgλ

(
x−

(
−M +

2Mj
k

)))
= h(x) + αgλ

(
x−

(
−M +

2Mj
k

))
and thus (inductively) we have

Lk+2 ◦ · · · ◦ ReLU ◦L1,1(x)

=
k

∑
j=1

2M
k

f+

(
−M +

2Mj
k

)
gλ

(
x−

(
−M +

2Mj
k

))

−
k

∑
j=1

2M
k

f−

(
−M +

2Mj
k

)
gλ

(
x−

(
−M +

2Mj
k

))

=
k

∑
j=1

2M
k

f
(
−M +

2Mj
k

)
gλ

(
x−

(
−M +

2Mj
k

))
.

3.2. General-Dimensional Input

To generalize our idea on input dimension 1 to general input dimension nin, the main
difficult part is how to make a ReLU network an approximate identity, for example, a kind
of a B-spline function on R2. We emphasize that we need a function with the shape of a
B-spline function, not an exact B-spline function on R2 (see Figure 1). For n = 2, we have

ReLU(x2 + (ReLU(x1 + 1)− 2 ReLU(x1) + ReLU(x1 − 1)))− 2 ReLU(x2)
+ReLU(x2 − (ReLU(x1 + 1)− 2 ReLU(x1) + ReLU(x1 − 1)))

=

{
0 if |x1|+ |x2| > 1
1− |x1| − |x2| if |x1|+ |x2| < 1.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1. g(x) Left: 1-dimension Center: 2-dimension Right: 3-dimension with range.

In general,

Lemma 1. For b ∈ R, let h(x1, b) = ReLU(x1 + b) − 2 ReLU(x1) + ReLU(x1 − b). Then,
we have

h(xn, h(xn−1, h(xn−2, · · · , h(x1, 1)))) =


0 if

n

∑
j=1
|xj| ≥ 1,

1−
n

∑
j=1
|xj| if

n

∑
j=1
|xj| < 1.
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In addition, we have∫
Rn

h(xn, h(xn−1, h(xn−2, · · · , h(x1, 1))))dx =
2n

(n + 1)!
. (1)

We notice that for

g(x) = h(xn, h(xn−1, h(xn−2, · · · , h(x1, 1)))), x ∈ Rn

(see Figure 1) and (n+1)!
2n gλ(x) =

(n+1)!
2nλn g(λ−1x), λ > 0 is an approximate identity: for a

continuous function f on [−M, M]n, (n+1)!
2n f ∗ gλ converges to f (x) uniformly. For any

ε > 0, there is λ > 0 such that

sup
x∈[−M,M]nin

∣∣∣∣ (n + 1)!
2n f ∗ gλ(x)− f (x)

∣∣∣∣ < ε

2
. (2)

Proof. We will use mathematical induction on n. We have already shown the case of n = 1.
Suppose

h(xn, h(xn−1, · · · , h(x1, 1))) =


0 if

n

∑
j=1
|xj| ≥ 1,

1−
n

∑
j=1
|xj| if

n

∑
j=1
|xj| < 1.

For simplicity, let g(x) = h(xn, h(xn−1, · · · , h(x1, 1))), x ∈ Rn. If ∑n+1
j=1 |xj| ≥ 1,

then |xn+1| ≥ 1−∑n
j=1 |xj| and thus |xn+1| ≥ g(x). For xn+1 ≥ 0,

h(xn+1, g(x)) = ReLU(xn+1 + g(x))− 2 ReLU(xn+1) + ReLU(xn+1 − g(x))
= (xn+1 + g(x))− 2xn+1 + (xn+1 − g(x))

is equal to zero. In addition, for xn+1 < 0, we can show that h(xn+1, g(x)) is also zero.
Now, we consider ∑n+1

j=1 |xj| < 1. Then, by hypothesis, g(x) = 1−∑n
j=1 |xj|. For xn+1 > 0,

we have

h(xn+1, g(x)) = ReLU(xn+1 + g(x))− 2 ReLU(xn+1) + ReLU(xn+1 − g(x))

= xn+1 + 1−
n

∑
j=1
|xj| − 2xn+1 = 1−

n+1

∑
j=1
|xj|,

since xn+1 − 1 + ∑n
j=1 |xj| < 0. Similarly, for xn+1 < 0, we have

h(xn+1, g(x)) = xn+1 + 1−
n

∑
j=1
|xj| = 1−

n+1

∑
j=1
|xj|.

Direct integral calculation follows (1).

Again, similar to the one-dimensional case, by mensuration by division, there is k ∈ N
such that

sup
x∈[−M,M]nin

∣∣∣∣∣∣∣∣∣
(nin + 1)!

2nin
f ∗ gλ(x)−

(nin + 1)!Mnin

knin ∑
j∈Znin

k

f
(
−(M, · · · , M) +

2Mj
k

)
×gλ

(
x−

(
−(M, · · · , M) +

2Mj
k

))
∣∣∣∣∣∣∣∣∣ <

ε

2
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and thus, with (2), we have for some λ > 0 and k ∈ N,∣∣∣∣∣∣∣∣∣
f (x)− (nin + 1)!Mnin

knin ∑
j∈Znin

k

f
(
−(M, · · · , M) +

2Mj
k

)
×gλ

(
x−

(
−(M, · · · , M) +

2Mj
k

))
∣∣∣∣∣∣∣∣∣ < ε.

Now, our goal is to construct a ReLU network satisfying

f(l,n)(x)

=
(nin + 1)!Mnin

knin ∑
j∈Znin

k

f
(
−(M, · · · , M) +

2Mj
k

)
gλ

(
x−

(
−(M, · · · , M) +

2Mj
k

))
.

Since we have an approximate identity (nin+1)!
2nin g, how to make the ReLU network

remains. Here, the indexing part is not difficult, but it is slightly cumbersome. Similarly to
the case nin = 1, for

(i, j) = (i, j1, j2, · · · , jnin) ∈ {1, · · · , nin} ×Znin
k \{(1, 1, · · · , 1)}

(i index for dimension and j index for mensuration by division), let

L1,··· ,1 : Rnin → Rnin+5, Li,j : Rnin+5 → Rnin+5,

Lninknin+1 : Rnin+5 → R2, and Lninknin+2 : R2 → R

with

L1,1,··· ,1(x) =



x1 + M
x2 + M

...
xnin + M
λ−1(x1 − (−M + 2M/k))− 1
λ−1(x1 − (−(M + 2M/k))
λ−1(x1 − (−(M + 2M/k)) + 1
0
0


,

Li,j(x) =



x1
...
xnin

λ−1(xi −M− (−M + 2Mji/k))− (xnin+1 − 2xnin+2 + xnin+3)

λ−1(xi −M− (−M + 2Mji/k))

λ−1(xi −M− (−M + 2Mji/k)) + (xnin+1 − 2xnin+2 + xnin+3)
xnin+4
xnin+5


for i = 2, · · · , nin,
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L1,j(x) =



x1
...

xnin

λ−1(x1 −M− (−M +
2Mj1

k
))− (xnin+1 − 2xnin+2 + xnin+3)

λ−1(x1 −M− (−M +
2Mj1

k
))

λ−1(x1 −M− (−M +
2Mj1

k
)) + (xnin+1 − 2xnin+2 + xnin+3)

xnin+4 +
(nin + 1)!Mnin

knin λnin
f+

(
−(M, · · · , M) +

2M(j− 1j)

k

)
×(xnin+1 − 2xnin+2 + xnin+3))

xnin+5 +
(nin + 1)!Mnin

knin λnin
f−

(
−(M, · · · , M) +

2M(j− 1j)

k

)
×(xnin+1 − 2xnin+2 + xnin+3)



,

(j 6= (1, 1, · · · , 1))

Lninknin+1(x)

=

 xnin+4 +
(nin + 1)!Mnin

knin λnin
f+(M, · · · , M)(xnin+1 − 2xnin+2 + xnin+3)

xnin+5 +
(nin + 1)!Mnin

knin λnin
f−(M, · · · , M)(xnin+1 − 2xnin+2 + xnin+3)

,

and Lninknin+2(x) = (x1 − x2).

Here,

1j =



(1, 0, · · · , 0) if j1 6= 1,
(k− 1, 1, 0 · · · , 0) if j1 = 1 and j2 6= 1,

...
(k− 1, k− 1, · · · , k− 1, 1

l + 1-th
, 0, · · · , 0) if j1 = j2 = · · · = jl = 1 and jl+1 6= 1,

...
(k− 1, k− 1, · · · , k− 1, 1) if j1 = · · · = jnin−1 = 1 and jnin 6= 1.

We stack in such a way that the index i is increased, and then the second index j1 is
increased, and then j2, and so on:

(1, 1, 1, · · · , 1), (2, 1, 1, · · · , 1), (3, 1, 1, · · · , 1), · · · , (nin, 1, 1, · · · , 1),
(1, 2, 1, · · · , 1), (2, 2, 1, · · · , 1), · · · , (nin, 2, 1, · · · , 1),

...
(1, k, 1, · · · , 1), · · · , (nin, k, 1, · · · , 1),
(1, 1, 2, 1 · · · , 1), · · · , (nin, 1, 2, 1 · · · , 1),

...
(1, k, 2, 1, · · · , 1), · · · , (nin, k, 2, 1, · · · , 1),
(1, 1, 3, 1, · · · , 1), · · · , (nin, 1, 3, 1, · · · , 1),

...
(1, k, k, 1, · · · , 1), · · · , (nin, k, k, 1, · · · , 1),
(1, 1, 1, 2, 1 · · · , 1), · · · , (nin, 1, 1, 2, 1 · · · , 1),

...
(1, k− 1, k, k, k · · · , k), · · · , (nin, k− 1, k, k, k · · · , k),
(1, k, k, k, k · · · , k), · · · , (nin, k, k, k, k · · · , k)
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(which means that the index i is the first one where we increase) and, if we omit the index i,
then

(1, 1, 1, · · · , 1), (2, 1, 1, · · · , 1), (3, 1, 1, · · · , 1), · · · , (k, 1, 1, · · · , 1),
(1, 2, 1, · · · , 1), (2, 2, 1, · · · , 1), · · · , (k, 2, 1, · · · , 1),

...
(1, k, 1, · · · , 1), (2, k, 1, · · · , 1), · · · , (k− 1, k, 1, · · · , 1), (k, k, 1, · · · , 1),
(1, 1, 2, · · · , 1), (2, 1, 2, · · · , 1), · · · , (k− 1, 1, 2, · · · , 1), (k, 1, 2, · · · , 1),

...
(1, k, · · · , k, k− 1, k), · · · , (k− 1, k, · · · , k− 1, k), (k, · · · , k− 1, k),
(1, k, k · · · , k, k), · · · , (k− 1, k, k, · · · , k, k), (k, k · · · , k, k).

(3)

In the second terms of the nin + 4 and nin + 5-th components of L1,j, j 6= (1, 1, · · · , 1)

f±

(
−(M, · · · , M) +

2M(j− 1j)

k

)
(xnin+1 − 2xnin+2 + xnin+3),

we want the value at the previous step and thus j− 1j is the exact previous one step of j.
We want to notice the nin + 1, nin + 2, and nin + 3-th components of a function

f1,nin ,nin+5,nin+5(x) represented by L2,1,1,··· ,1 ◦ ReLU ◦L1,1,1,··· ,1(x) are

λ−1
(

x2 −M−
(
−M +

2M
k

))
− h
(

λ−1
(

x1 −
(
−M +

2M
k

))
, 1
)

λ−1
(

x2 −M−
(
−M +

2M
k

))
λ−1

(
x2 −M−

(
−M +

2M
k

))
+ h
(

λ−1
(

x1 −
(
−M +

2M
k

))
, 1
)

,

and thus nin + 1, nin + 2, and nin + 3-th components of a function f2,nin ,nin+5,nin+5,nin+5(x)
becomes

λ−1
(

x3 −M−
(
−M +

2M
k

))
− ḡ
(

λ−1
(
(x1, x2)−

(
−(M, M) +

2M(1, 1)
k

)))
λ−1

(
x3 −M−

(
−M +

2M
k

))
λ−1

(
x3 −M−

(
−M +

2M
k

))
+ ḡ
(

λ−1
(
(x1, x2)−

(
−(M, M) +

2M(1, 1)
k

)))
,

where ḡ(x1, x2) = h(x2, h(x1, 1)). Thus, a function fnin ,nin ,nin+5,··· ,nin+5(x) represented by
L1,2,1,··· ,1 ◦ · · · ◦ ReLU ◦L1,1,··· ,1(x) is equal to
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x1 + M
...

xnin + M

λ−1(x1 −M− (−M +
2M

k
))− (xnin+1 − 2xnin+2 + xnin+3)

λ−1(x1 −M− (−M +
2M

k
))

λ−1(x1 −M− (−M +
2M

k
)) + (xnin+1 − 2xnin+2 + xnin+3)

(nin + 1)!Mnin

knin λnin
f+

(
−(M, · · · , M) +

2M(1, · · · , 1)
k

)
×g
(

λ−1x− λ−1
(
−(M, · · · , M) +

2M(1, · · · , 1)
k

))
(nin + 1)!Mnin

knin λnin
f−

(
−(M, · · · , M) +

2M(1, · · · , 1)
k

)
×g
(

λ−1x− λ−1
(
−(M, · · · , M) +

2M(1, · · · , 1)
k

))



,

since, for a non-negative function h, ReLU(h(x)) = h(x). Then, the nin + 4 and nin + 5-th
components of fl,n(x) represented by L1,j̄ ◦ · · · ◦ ReLU ◦L1,1,1,··· ,1(x) are

∑
j<j̄

(nin + 1)!Mnin

knin λnin
f+

(
−(M, · · · , M) +

2Mj
k

)
×g
(

λ−1x− λ−1
(
−(M, · · · , M) +

2Mj
k

))
∑
j<j̄

(nin + 1)!Mnin

knin λnin
f−

(
−(M, · · · , M) +

2Mj
k

)
×g
(

λ−1x− λ−1
(
−(M, · · · , M) +

2Mj
k

))


,

where j ≤ j̄ means when we give the well order to j in ordering like in (3) (for example,
(3, 1, 1, · · · , 1) ≤ (1, 2, 1, · · · , 1)).

Therefore, we have

Lknin+2 ◦ ReLU ◦Lknin+1 ◦ ReLU ◦L(nin ,k,··· ,k) ◦ · · · ◦ L2,1,1,··· ,1 ◦ ReLU ◦L1,1,··· ,1(x)

=
(nin + 1)!Mnin

knin ∑
j∈Znin

k

f+

(
−(M, · · · , M) +

2Mj
k

)
gλ

(
x−

(
−(M, · · · , M) +

2Mj
k

))

− (nin + 1)!Mnin

knin ∑
j∈Znin

k

f−

(
−(M, · · · , M) +

2Mj
k

)
gλ

(
x−

(
−(M, · · · , M) +

2Mj
k

))

=
(nin + 1)!Mnin

knin ∑
j∈Znin

k

f
(
−(M, · · · , M) +

2Mj
k

)
gλ

(
x−

(
−(M, · · · , M) +

2Mj
k

))
.

4. Conclusions

The universal approximation theorem is the mathematical theory of artificial neural
networks and the classic one states that a feed-forward network with a hidden layer
and some activation function can approximate continuous functions on compact subsets.
Here, we show that, for a given continuous functions on compact subsets, the ReLU
network with ninknin + 1 hidden layers of at most nin + 5 nodes and proper weights can
approximate to the function using the approximate identity. To show this, we explicitly give
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connection and weights. Our construction is rather partially rather than fully connected;
especially, each of the first nin + 3 nodes in each hidden layer is connected to only one node
of the previous layer. This means that actually we don’t need a fully connected network.

Actually, we are interested in the relation between the parameter k and error bound ε
because, if we know this, we can estimate how many hidden layers should be constructed
to get the allowable error. Thus, the error estimate depending on the parameter k is our
next research line.
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