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Abstract: Deep neural networks have shown very successful performance in a wide range of tasks,
but a theory of why they work so well is in the early stage. Recently, the expressive power of
neural networks, important for understanding deep learning, has received considerable attention.
Classic results, provided by Cybenko, Barron, etc., state that a network with a single hidden layer
and suitable activation functions is a universal approximator. A few years ago, one started to study
how width affects the expressiveness of neural networks, i.e., a universal approximation theorem for
a deep neural network with a Rectified Linear Unit (ReLU) activation function and bounded width.
Here, we show how any continuous function on a compact set of R", n;,, € N can be approximated
by a ReLU network having hidden layers with at most #;, + 5 nodes in view of an approximate
identity.

Keywords: deep neural nets; ReLU network; universal approximation theory; a feed-forward
neural network

1. Introduction

Over the past several years, deep neural networks have achieved state-of-the-art per-
formance in a wide range of tasks such as image recognition/segmentation and machine
translation (see the review article [1] and recent book [2] for more background). In spite of
their outstanding successes, many aspects of why they work so well are still not well un-
derstood. Some works to date have focused on the problem of explaining and quantifying
the expressivity of a deep neural network [3-5].

This line of research about the expressive power of neural networks, its ability to
approximate functions, dates back to at least the work of Cybenko [6], in which a fully
connected neural network with a sigmoid activation function and one single hidden
layer can approximate any continuous univariate function on a bounded domain with
an arbitrarily small error. Barron [7], Hornik et al. [8], and Funahashi [9] generalized the
sigmoid function to a large class of activation functions to get universal approximation.
However, they do not consider the number of nodes of a hidden layer; actually, the number
of nodes of a hidden layer can be exponentially increased in the input dimension.

Because the outstanding performance of deep neural networks has recently been
exhibited, there is a lot of literature concerning their expressive power theoretically. In
2011, Delalleau and Bengio [10] gave a family of functions which can be represented much
more efficiently with a deep network than with a neural network with one hidden layer.
Mhaskar and Poggio [4] provided conditions under which deep convolutional neural net-
works perform much better in function approximation than a neural network with one
hidden layer. Eldan and Shamir [11] constructed a three-layer network which cannot
be realized by any 2-layer if the number of nodes of an output layer is no more than an
exponential bound.

Actually, the Rectified Linear Units (ReLU) activation function is the most popular
choice in practical use of the neural network [12]. In this reason, most of the recent results on
the universal approximation theory is about the ReLU network [5,13-20]. Cohen et al. [13]
provided the deep convolutional neural network with the ReLU activation function that
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cannot be realized by a shallow network if the number of nodes of its hidden layer is no
more than an exponential bound.

Lu et al. [14] presented a universal approximation theorem for deep neural networks
with ReLU activation functions and hidden layers with a bounded width in 2017, since the
expressive power of depth in ReLU networks with a bounded width has received a lot of
attention. Hanin proved universal approximation theorem using convex function theory in
[15,16], and Lin and Jegelka showed this theorem for residual networks with one-neuron
hidden layers in [19].

Ohn and Kim [18] showed that the ReLU activation function can be represented by a
linear combination of piecewise linear activation function and, using this fact, extended many
results in [5,17,20] to any continuous piecewise linear activation function. However, their re-
sults are not about the bounded width.

Here, we study a universal approximation theorem for ReLU networks in view of
approximate identity by constructing a network having n;,k" + 1 hidden layers with
width of at most n;, + 5. As a measure of approximation error, we adopt the supremum
norm and L7 distance.

The remainder of the paper is organized as follows: in the next subsection, we intro-
duce some notations. Sections 2 and 3 are devoted to our theorem statement and its proof,
respectively. Finally, Section 4 offers a conclusion.

Notations

LetZy ={1,2,--- ,k}and x = (xq,x2,- -+ ,x) € R" be the input. The network architec-
ture (I, n) consists of several hidden layers | € N and a width vectorn = (ng,ny,--- ,n;41) €
N'*2 1y = n;,, [20]. A neural network with network architecture (I,n) is then any function
of the form

f(l,n) : R — R™M+1,
fan(x) = L1 oReLUoL! o ReLU o - 0 L2 o ReLU oL!(x),

where
Ll R%-1 — R™ 1:1,,l+1,

and ReLU(x) = max{x,0},
ReLU(xq,x2,- -+, %,) = (ReLU(x71),ReLU(x7), - - - ,ReLU(xy,)).

Here, we set 1,1 = 1. To this end, we define the space of network functions with the
given network architecture

F(mn) :={fiun) ¢ fun)(x) = L'*1o...oReLUoL!(x), (I,n) € N x N'*2},

Our network of interest is ‘a feedforward neural network” which is an artificial neural
network wherein connections between the nodes do not form a cycle. That is, in this
network, the information moves in a forward direction, from the input nodes to the output
nodes through the hidden nodes (if any).

For later discussion, we introduce the positive part f. = max(f,0) and negative parts
f— =max(—f,0) of afunction f. Then, f; — f_ is equal to f.

2. Main Result

Here is our universal approximation theorem for a ReLU network with a bounded
width:

Theorem 1. Forany M > O0and n;, € N, let f : [—M, M]"in — R be a continuous function. For
€ > 0, there exists k € N such that f( ) € F(niyk"in +1,njp, iy +5,- -+, iy +5,2,1) satisfies

sup  |f(x) = fun)(x)| <e.
xE[—M,M]"
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To prove this theorem, we explicitly construct a ReLU network with a bounded width
in Section 3.2. In our construction, each of the first n;;, + 3 nodes in each hidden layer is
connected to only one node of the previous layer, and each, only for two n;, +4 and n;, +5
nodes in each hidden layer, is connected to less than four nodes of the previous layer (for
more details, see Section 3.2). This means that the non-fully connected ReLU network can
be working.

We can show that there is a feed-forward neural network that approximates any
f € LP(R"in):

Corollary 1. Let n;,;, € Nand f € LP(R"n),1 < p < oco. For € > 0, there exists k € N such
that f n) € F(nigk™» +1,ni, iy +5,- -+, niy +5,2,1) satisfies

11F () = fan ()lp <e.
Proof. For any € > 0, there is a continuous function f. on R"i» with compact support in

[—M, M]"n such that
eP
P
/ () = feolPdx < .

Using Theorem 1, we can find k € N such that a ReLU neural network architecture
(I,n) with a represented function f(; ) satisfying

€
sup | fe(x) = fiun) (0| < 577
e[ MM ¢ (Im) i +1 Mf1in

Therefore, we have

£ ) = fam) Gy < TIFO) = fe(G)lp + [ fe(x) = frim O]y <e.
O

3. Proof of Theorem 1

To convey our idea more clearly, we first construct a ReLU network with n;, = 1 and
k + 1 hidden layers with width at most 6. Then, we construct a ReLU network with general
Niy.

3.1. One-Dimensional, Input

Let LUfmP : R — R3 and L2/ : R3 — R with LY"P(x) = (x —1,x,x + 1) and
L21¢MP (x1,x,x3) = X1 — 2% + x3. Then, the function f(1131) represented by L*>"" o
ReLU oLlfemp is

faas1)(x) = L¥" o ReLU oLM"P (x)
= ReLU(x — 1) — 2ReLU(x) + ReLU(x + 1)
[0 if |x]>1,
_{ 1—|x] if —1<x<l.

We notice that, for a (B-spline) function g(x) = L>#"F o ReLU oL!¢""P(x) and A > 0,
gr(x) = A71g(A71x) is an approximate identity: for any continuous function f(x) on
[—M, M], f % gx converges to f(x) uniformly. For any € > 0, there is A > 0 such that
SUP_pr<r<m |f * 81 (x) — f(x)| < €/2. By mensuration by division, there is k € N such that

S O R )

sup <e€/2

—M<x<M
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and thus

sup <e.

k
2M 2 2M
= (s (e ()
—M<x<M j=1
Now, fora fixed k € N, we can make a network architecture (I,n) = (k+1,1,6,6,---,6,2,1)
with ReLU activations, input, and output dimensions 1, and k + 1 hidden layer width at
most 6, such that

sup |f(x) = fm ()] <.

—M<x<M

Let LM : R — RS, L1 : R® — R®,j =2,... k L1 : R® — R?, and LF2 : R? —
R with

x+M

A x— (=M +2M/k))—
Ll’l(x) — A_l(x - (_M+2M/k))

AN x = (=M +2M/k))+1 |’

0

0

X1 )

A - M- (~M+ 2

A - M- (~M+ 2
Lj = i =2 ...
LY (x) = A x = M — (= M+21}\<4]))+1 for j=2,---,k

2M 2M(j—1
x5+ﬁf+(—M+ (;{ ))(x2—2x3+x4)
x6+—M (M+%l;1))(xz—2x3+x4)

kA
X5 + af+(M)(x2 —2x3 + xy)
LF1(x) = Iy , and
Xe + af_(M)(xz —2x3 + Xx4)
L2 (x) = (x1 — x2).

(The index 1 in our index (1, j) is unnecessary, but it is included because it suggests how to
generalize to input of arbitrary dimension.) We note that

x+M
Al x— (= M+¥))—1
Al x— (= M+¥))
LPoRelUoLM (x) = | )y M+¥>>+1
=M+ Zg - A M+ 2)
M+ Zg - M+ 2E)



Appl. Sci. 2021, 11, 427 50f11

and the fifth and sixth components of L!/ are non-negative. Since for a non-negative
function h : R — R, ReLU(h) = h, we have fora > 0,

ReLU(h(x)—ng/\(x_ < M+211\(/I])>> Ih(x)+vch(x— ( M+2]]\:I]))

and thus (inductively) we have

L*26... oReLU oL (x)

—Zf+( £ 20 g (e (- 20

£ (e B (049
£ (B (e 20)

3.2. General-Dimensional Input

To generalize our idea on input dimension 1 to general input dimension n;;,, the main
difficult part is how to make a ReLU network an approximate identity, for example, a kind
of a B-spline function on R?. We emphasize that we need a function with the shape of a
B-spline function, not an exact B-spline function on R? (see Figure 1). For n = 2, we have

ReLU(xs + (ReLU(x; +1) — 2ReLU(x1) + ReLU(x1 — 1))) — 2ReLU(x2)
+ReLU(x — (ReLU(xy + 1) — 2ReLU(xy) + ReLU(x; — 1)))

0 if  Jxp|+|ap >1

1= = [x2| if x|+ [xo <1

08

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 1. g(x) Left: 1-dimension Center: 2-dimension Right: 3-dimension with range.

In general,

Lemma 1. For b € R, let h(x1,b) = ReLU(x1 + b) — 2ReLU(x1) + ReLU(x1 — b). Then,
we have

n
0 if ) %l >1,
j=1
n n
=Y Ixl i Yyl <1
= =

h(xn,h(xn_l/h(xnfz/ o /h(xlil)))) =
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In addition, we have

[ o b1, h 2, e, 1)) = (nil), 1)

We notice that for
g(X) = h(xfl/h(xn—llh(xnle e /h(xlrl))))/ X € Rn

(see Figure 1) and "H) sr(x) = (grf)}n)!g(/\_lx), A > 0is an approximate identity: for a
continuous function f on [-M, M]", (";ﬂl)! f * g\ converges to f(x) uniformly. For any

€ > 0, thereis A > 0 such that

(n+1)!
o 2

sup
XE[—M,M]"in

*&a () = f(¥)] <

N @

Proof. We will use mathematical induction on n. We have already shown the case of n = 1.
Suppose

n

h(xn/h(xn—lf T /h('xl/]‘))) = n n
=Y Ix if ) |yl <1

j=1 j=1

For simplicity, let g(x) = h(xy, h(x,—1,---,h(x1,1))), x € R". If ):]r-l:ll lxj| > 1,
then |x, 11| >1— 7:1 |xj| and thus |x,,; 1] > g(x). For x,,11 >0,

h(xn41,8(x)) = ReLU(xy41 + g(x)) — 2ReLU(xy41) + ReLU (x40 — g(x))
= (%1 +8(x)) = 2% 41 + (41 = 8(%))

is equal to zero. In addition, for x,.1; < 0, we can show that h(an, g(x)) is also zero.
Now, we consider Z”H |xj| < 1. Then, by hypothesis, g(x) = 27:1 |xi|. For x,41 > 0,
we have

h(x1,8(0)) = ReLU(xy11 + 8(x)) — 2ReLU(x41) + ReLU(x41 — §(x))
n+1

=Xp+1+1— Z |x]| —2xp1=1— Z |x/‘
j=1 j=1

since x,4+1 — 1+ Z” 1 |x | < 0. Similarly, for x,, .1 < 0, we have

n+1

n
h(xny1,8(x)) = Xyp1 +1— Z |xj| =1- Z |xj|-
=1 =1

Direct integral calculation follows (1). O

Again, similar to the one-dimensional case, by mensuration by division, there is k € N
such that

i + 1 i + 1) M 2Mj
it g - Lot DM (e + 20
sup jez, <

€
n; 1 E
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and thus, with (2), we have for some A > 0and k € N,

f(x),(”min% Zf< --,M)+2ij)

JEZ ™ <e.
2M;j
ol Con e 2)

Now, our goal is to construct a ReLU network satisfying

f(l )(X)
B 0 2o o 28)

]€Z m

Since we have an approximate identity ("’2",,; L! g, how to make the ReLU network

remains. Here, the indexing part is not difficult, but it is slightly cumbersome. Similarly to
the case n;, = 1, for

(irj) = (i/jlszl' o /j”in) € {1/' v /nin} X Zzin\{(llll' t /1)}

(i index for dimension and j index for mensuration by division), let

LUl R — RS L0 RS RIS

LM . L on;
Lk RS 5 R2, and LMK 42 R2 5 R

with
x1+M
X+ M

LI () — x,ﬁn1 +M

(x) AN xy = (=M +2M/k)) —
ANy = (—(M+2M/k))
A (xy — (= (M +2M/k)) + 1
0
0

~

X1

'xnin

) )\_1 (xi -M- (_M + ZM]l/k)) - (xnin+1 - 2x1’lin+2 + xnin+3)

Ll'j(x) =
AN x; = M — (=M +2Mj; /k))

AN x = M — (=M +2Mjj; /K)) + (X, 41 — 2%, 12 + Xy 13)
x”i11+4

xnin+5
for i=2,- Ny,
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X1

xnin

Ay - M= (M4 2Mh

2Mj
AN = M- (-M+ =)

1, . .
L ](X)— )L_l(X]—M—(—M‘I‘ZM]l

(nin + 1)!Mnm
k"in )\nin
X (xn,'n-i-l - zxnm+2 + xnm+3))

xnin +4 +

M + 1)1 Min
xn,vn+5+( in+1)

X (xnm-i-l — 2Xp;, 42 + xnin+3>
G7#@11---,1))
[ Mink"in +1(x)
(nin + 1)!M”in

k )) - (xnjn+1 - 2xﬂi;1+2 + xnin+3)

)) A+ (X, 41 — 2%, 42 + Xy 43) |7

fo (0 + 220

Jein AMin fﬁ (_(M, o ,M) . k

2M(j —1]-)>

2M(j —1]-)>

it +4 + kMin AMin f+ M, ’M)(xnirﬂLl - 2x”in+2 + x”lin+3)
B M + 1) LM ’
5 + (mknT)”mf_ (M’ a ’M)(x”in+1 o 2x"in+2 + x"i;1+3)
and LMk m+2(x) = (x; — xp).
Here,
(1,0,---,0) if j1#1,
(k—1,1,0---,0) if j=1and j, #1,
=9 k-1,k-1,---,k—=1, 1 ,0,---,0) if jj=jo=---=jj=1and jiq #1,
[+ 1-th
(k—1,k—1,--- ,k—1,1) if j1=--=jy,—1=1and j,, #1.

We stack in such a way that the index i is increased, and then the second index j; is

increased, and then j,, and so on:

(1/1/1/"'/1)/(2/1/1/"'/1)/ (3/1111"‘11)1 Tty

(1/2/1/"'/1)/(2/2/1/"'/1)/ Tty
(1,k,1,...,1), S,
(1/1/2/1...,1), cee,
(1/k/2/1/"'/1)/ g
(1/1/3/1/"'/1)/ Tty
(llk/klll"'ll)/ Tty
(1/1/1/211"'/1)/ Tty
(Lk—1,kkk--- k),

(1/k/k/k/k"'/k)/ ttty

(nin/ 1/ 1/ v /1)/
(ninlzl ]-/ e /1)/

(nin/k/ 1/ T /1)/
(nin/ 1/2/1 e /1)/

(nin/krzr 1/ e /1)/
(nin/ 1/3/ 1/ e /1)/

(nii’llklkl 1/ e /1)/
(nin/ 11 11211 v /1)/

(nip, k— 1,k kk--- k),
(nin/k/k/k/k' te /k)
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(which means that the index i is the first one where we increase) and, if we omit the index i,

then
(111111"'/1)1 (2r1r11"'r1)r (311/1/"'r1)1"'1 (klllll"'ll)/
(1/2/1/"'/1)/ (2/2/1/"'/1)/ g (klzlll"'/l)/
(]-/k/]-/"'/]-)/ (zlklll"'/]-)/ ttty (k_llklll"'/l)/ (k/klll"'ll)/ (3)
(1/1/2/."/1)/ (2/1/2/"'11)/ Tty (k_1/1/2/"'/1>/ (krllzl"'/l)/
(l,k,"',k,k_l,k), Tty (k_lrk/"'/k_l/k)/ (k/"'/k_llk)/
(Lkk--- k), k=1,kk--- kK, (kk--- kk).

In the second terms of the n;, + 4 and n;,, + 5-th components of L'4,j # (1,1,---,1)

2M( - 1)
f+ <—(M, e, M)+ k]> (xnin+1 —2xp, 42 + xnin—i-S)r

we want the value at the previous step and thus j — 1; is the exact previous one step of j.
We want to notice the n;, + 1, n;,, + 2, and n;, + 3-th components of a function
finyni,+5m;,+5(X) represented by L2V o ReLU oLV /A (x) are

A g —M— —M+¥ —h<A1<x1—(—M+224>>,1)
A - M- —M+¥

A g —M— —M+¥ +h<A1<x1—<—M+2£/I>>,1),

and thus n;, + 1, n;, + 2, and n;,, + 3-th components of a function f5 ., .. +5n;,+51;,+5(X)

becomes
A v —M— —M+$
AT s =M - _M‘l’% +g'<)\_1<(x1,x2)—<—(M,M)+2M§c1’1)>)>,

where $(x1,x2) = h(xp,h(x1,1)). Thus, a function f,. u. u. +5... n, +5(X) represented by
LV21do. .. oReLU oLV 1(x) is equal to
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x1+M

'x”in + M
_ 2M
AN =M= (=M + ) = (g1 = 2,42+ X, 13)

Aoy =M= (=M + %))

_ 2M
AN =M= (=M + ) (g1 = 2,42 + X, 13)

Ny + 1)1 M"in 2M(1,---,1
i+ (0 ¢ HE )

xg()\lx_)\l <—(M,- M)+ ZM(kal))>

iy + 1) M"in 2M(1,---,1
Wf—<—(M/'“IM)+()

xg()\lx—)\l<—(M/.../M)f_m(1'k’”'1))>

since, for a non-negative function i, ReLU(/(x)) = h(x). Then, the n;, + 4 and n;, + 5-th
components of f; ,(x) represented by L o - - - o ReLU o L1171 (x) are

Z (niy + 1)!Mﬂmf+ (—(M,- -, M)+ 2NI]>

LT Jcin A\ Min .
j<j |
Xg<A1X_A1<—(M,---,M)+2kM’>>
My + 1)1 Min i ,
wa(—(M,“' ,M)+k1>

j<i

xg<A1x—A1<—(M,- o, M)+ 2kM’>>

where j < j means when we give the well order to j in ordering like in (3) (for example,
(371/1/' o /]-) S (1/2/1/' o /1))
Therefore, we have

LF1int2 o ReLU o LFin*1 o ReLU oLMinr k) o . .. o [241/1 o ReLU o LM (x)

]'EZ:in

= LDy o+ 2 Y (s (e i+ B,

jez, ™

4. Conclusions

The universal approximation theorem is the mathematical theory of artificial neural
networks and the classic one states that a feed-forward network with a hidden layer
and some activation function can approximate continuous functions on compact subsets.
Here, we show that, for a given continuous functions on compact subsets, the ReLU
network with n;,k"i» + 1 hidden layers of at most n;, + 5 nodes and proper weights can
approximate to the function using the approximate identity. To show this, we explicitly give
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connection and weights. Our construction is rather partially rather than fully connected;
especially, each of the first 11, + 3 nodes in each hidden layer is connected to only one node
of the previous layer. This means that actually we don’t need a fully connected network.

Actually, we are interested in the relation between the parameter k and error bound e
because, if we know this, we can estimate how many hidden layers should be constructed
to get the allowable error. Thus, the error estimate depending on the parameter k is our
next research line.
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