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Abstract: The objective of this study was to improve existing oscillation criteria for delay differential
equations (DDEs) of the fourth order by establishing new criteria for the nonexistence of so-called
Kneser solutions. The new criteria are characterized by taking into account the effect of delay
argument. All previous relevant results have neglected the effect of the delay argument, so our
results substantially improve the well-known results reported in the literature. The effectiveness of
our new criteria is illustrated via an example.
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1. Introduction

The issue of studying the oscillatory behavior of delay differential equations (DDEs)
is one of the most important branches of qualitative theory. The oscillation theory of DDEs
has captured the attention of many researchers for several decades. Recently, an active
research movement has emerged to improve, complement and simplify the criteria for
oscillations of many classes of differential equations of different orders; for second-order,
see [1–9]; for third-order, see [10–13]; for fourth-order & higher-order, see [14–25]; and for
special cases, see [26–38]. Fourth-order differential equations appear in models related
to physical, biological and chemical phenomena, for example, elasticity problems, soil
leveling and the deformation of structures; see, for example, [7,23,32]. It is also worth
mentioning the oscillatory muscle movement model represented by a fourth-order delay
differential equation, which can arise due to the interaction of a muscle with its inertial
load [37].

In this paper we are concerned with the study of the asymptotic behavior of the
fourth-order delay differential equation:

(a(l)(x′′′(l))α)′ + f (l, x(τ(l))) = 0, l ≥ l0. (1)

Throughout the paper, we assume α ∈ Q+
odd := {β/γ : β, γ ∈ Z+ are odd}, a ∈ C1(I0,R+),

a′(l) ≥ 0,
∫ ∞ a−1/α($)d$ < ∞, τ ∈ C(I0,R+), τ(l) < l, liml→∞ τ(l) = ∞, I$ :=

[
l$, ∞

)
,

f ∈ C(I0 ×R,R), x f (l, x) > 0 for all x 6= 0 and there exists a function q ∈ C(I0, [0, ∞))
such that f (l, x) ≥ q(l)xα.

If there exists a lx ≥ l0 such that the real-valued function x is continuous, a(x′′′)α is
continuously differentiable and satisfies (1), for all l ∈ Ix, then x is said to be a solution
of (1). We take into account these solutions x of (1) such that sup{|x(s)| : s ≥ lx} > 0 for
every lx in I∗. A solution x of (1) is said to be a Kneser solution if x(l)x′(l) < 0 for all l ≥ l∗,
where l∗ is large enough. The set of all eventually positive Kneser solutions of Equation (1)
is denoted by <. A solution x of (1) is said to be non-oscillatory if it is positive or negative,
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ultimately; otherwise, it is said to be oscillatory. The equation itself is said to be oscillatory
if all its solutions oscillate.

Below, we mention specifically some related works that were the motivation for
this paper.

Zhang et al. [25] studied the oscillatory behavior of (1) when f (l, x) := q(l)xβ. Results
in [25] used an approach that leads to two independent conditions in comparison with
first-order delay differential equations and a condition in a traditional form (lim sup(·) =
+∞). However, to use (Lemma 2.2.3, [27]), they conditioned liml→∞ x(l) 6= 0. Thus,
under the conditions of (Theorem 1, [25]), Equation (1) still has a non-oscillatory solution
that tends to zero. To surmount this problem, Zhang, et al. [38] considered—by using
(Lemma 2.2.1, [27])—three possible cases for the derivatives of the solutions, and they
followed the same approach as in (Theorem 1, [25]). However, in the case where x′ > 0,
they ensured that liml→∞ x(l) 6= 0, so they ensured that every solution of (1) is oscillatory.

By comparing with one or a couple of first-order delay differential equations, Bacu-
likova et al. [14] studied the oscillatory behavior of (1) under the conditions

f ′(x) ≥ 0 and − f (−xy) ≥ f (xy) ≥ f (x) f (y), for xy > 0.

In this study, we first create new criteria for the nonexistence of Kneser solutions of
nonlinear fourth-order differential Equations (1). By using these new criteria, we introduce
sufficient conditions for oscillation which take into account the effect of delay argument τ(l).
All previous relevant results have neglected the effect of the delay argument, so our results
substantially improve the well-known results reported in the literature. The effectiveness
of our new criteria is illustrated via an example.

2. Main Results

Firstly, for simplicity’s sake, we assume δ0(l) :=
∫ ∞

l a−1/α($)d$ and δm(l) :=∫ ∞
l δm−1($)d$, for m = 1, 2. Moreover, we let

(H) there is a constant h > 1 such that
δ2(τ(l))

δ2(l)
≥ h for l ≥ l0.

When checking the behavior of positive solutions of DDE (1), we have—by using
(Lemma 2.2.1, [27])—three cases:

Case (1) : x′(l) > 0, x′′′(l) > 0 and x(4)(l) < 0;
Case (2) : x′(l) > 0, x′′(l) > 0 and x′′′(l) < 0;
Case (3) : x′(l) < 0, x′′(l) > 0 and x′′′(l) < 0.

Moreover, from (1), we have that
(
a(l)(x′′′(l))α)′ ≤ 0, for l ∈ I1. We note that if x ∈ <,

then x satisfies Case (3).

Lemma 1. Assume that x ∈ <. If

∫ ∞

l0

(
1

a(ν)

∫ ν

l0
q($)d$

)1/α

dν = ∞, (2)

then
lim
l→∞

x(l) = 0. (3)

Lemma 2. Assume that x ∈ < and (2) hold. Then

η := lim sup
l→∞

δ2

(∫ l

l0
q($)d$

)1/α

≤ 1. (4)
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Proof. Suppose x ∈ <. Integrating (1) from l1 to l and using that fact that x′(l) < 0, we get

−a(l)
(

x′′′(l)
)α ≥ −a(l1)

(
x′′′(l1)

)α
+
∫ l

l1
q($)xα(τ($))d$

≥ −a(l1)
(
x′′′(l1)

)α
+ xα(τ(l))

∫ l

l0
q($)d$− xα(τ(l))

∫ l1

l0
q($)d$, (5)

for all l ∈ I1. In view of (3), there is a l2 ∈ I1 such that

a(l1)
(
x′′′(l1)

)α
+ xα(τ(l))

∫ l1

l0
q($)d$ < 0,

for l ∈ I2. Thus, (5) becomes

− a(l)
(
x′′′(l)

)α ≥ xα(τ(l))
∫ l

l0
q($)d$ ≥ xα(l)

∫ l

l0
q($)d$. (6)

Now, by using the monotonicity of a1/α(l)x′′′(l), we have

x′′(τ(l)) ≥ x′′(l) ≥
∫ ∞

l

1
a1/α($)

(
−a1/α($)x′′′($)

)
d$ ≥ −a1/α(l)x′′′(l)δ0(l). (7)

Integrating (7) twice from l to ∞ and using
(

a1/α(l)x′′′(l)
)′
≤ 0, we get

− x′(l) ≥ −a1/α(l)x′′′(l)δ1(l) (8)

and
x(l) ≥ −a1/α(l)x′′′(l)δ2(l). (9)

From (9) and (6), we see that

−a(l)
(
x′′′(l)

)α ≥ −a(l)
(
x′′′(l)

)α
δα

2 (l)
∫ l

l0
q($)d$,

and so

1 ≥ δα
2 (l)

∫ l

l0
q($)d$.

Taking the limsup on both sides of the inequality, we arrive at (4). The proof is complete.

Lemma 3. Assume that x ∈ < and (2) hold. Then there exists a lε ≥ l1 such that

d
dl

(
x(l)

δ
η−ε
2 (l)

)
≤ 0,

for any ε > 0 and l ∈ Iε. Moreover, if (H) holds, then

x(τ(l)) ≥ hη−εx(l) for l ∈ Iε. (10)

Proof. Suppose x ∈ <. Then, there is a l1 ∈ I0 such that x(τ(l)) > 0. Proceeding as in the
proof of Lemma 2, we arrive at (6) and (8). Thus, for l ≥ l2, where l2 ∈ I1 is large enough,
we have

−a(l)1/αx′′′(l) ≥ x(l)
(∫ l

l0
q($)d$

)1/α

.
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From the definition of η, for every ε > 0, there exists a l3 ≥ l2 such that

δ2(l)
(∫ l

l0
q($)d$

)1/α

> η∗ := η − ε,

for l ∈ I3. Hence, from (8), we have

d
dl

(
x(l)

δ
η∗
2 (l)

)
≤

δ
η∗
2 (l)a1/α(l)x′′′(l)δ1(l) + η∗x(l)δ

η∗−1
2 (l)δ1(l)

δ
2η∗
2 (l)

,

which with (6) gives

d
dl

(
x(l)

δ
η∗
2 (l)

)
≤ 1

δ
2η∗
2 (l)

(
−x(l)δη∗

2 (l)δ1(l)
(∫ l

l0
q($)d$

)1/α

+ η∗x(l)δ
η∗−1
2 (l)δ1(l)

)

≤ 1

δ
2η∗
2 (l)

x(l)δη∗−1
2 (l)δ1(l)

(
η∗ − δ2(l)

(∫ l

l0
q($)d$

)1/α
)
≤ 0.

Using this fact, one can easily see that

x(τ(l)) ≥ x(l)
(

δ2(τ(l))
δ2(l)

)η∗
≥ hη∗x(l).

The proof is complete.

Lemma 4. Assume that x ∈ < and (H), (2) hold. Then

hηη ≤ 1. (11)

Proof. Suppose x ∈ <. Using Lemma 3, we get that (10) holds. As in the proof of Lemma 2,
we have that (6) holds. From (6) and (10), we have

− a(l)
(
x′′′(l)

)α ≥ xα(l)hαη∗
∫ l

l0
q($)d$, (12)

which implies

−a(l)
(
x′′′(l)

)α ≥ −a(l)
(
x′′′(l)

)α
δα

2 (l)h
αη∗
∫ l

l0
q($)d$.

Taking the limsup on both sides of the latter inequality, we obtain hη∗η ≤ 1. Since ε is
arbitrary, we obtain that (11) holds. The proof is complete.

Lemma 5. Assume that x ∈ < and (H), (2) hold. Then

η̃ := lim inf
l→∞

hη

δ2(l)

∫ ∞

l
δα+1

2 ($)q($)d$ ≤
(

α

α + 1

)α+1
. (13)

Proof. Suppose x ∈ <. Proceeding as in the proof of Lemma 2, we obtain (8) and (9).
Define the function ω(l) ∈ C1([l0, ∞), R), such that

ω(l) =
a(l)(x′′′(l))α

xα(l)
.



Appl. Sci. 2021, 11, 425 5 of 11

Differentiating ω(l) and using (1), (8), (10) and the fact that x′(l) < 0, we have

ω′(l) =
(
a(l)(x′′′(l))α)′

xα(l)
− αa(l)(x′′′(l))αx′

xα+1(l)
≤ −hη∗q(l)− αδ1(l)ω(α+1)/α(l). (14)

Multiplying (14) by δα
2 and integrating the resulting inequality from l1 to l, we obtain

δα
2 (l)ω(l)− δα

2 (l1)ω(l1) +
∫ l

l1
hη∗q($)δα

2 ($)d$ ≤ −
∫ l

l1
αδα−1

2 ($)δ1($)ω($)d$

−
∫ l

l1
αδ1($)δ

α
2 ($)ω

(α+1)/α($)d$.

Using the inequality

−By + Ay(α+1)/α ≥ − αα

(α + 1)α+1
Bα+1

Aα
, A, B > 0,

with A = δ1($)δ
α
2 ($), B = δ1($)δ

α−1
2 ($) and y = −ω($), we conclude that

∫ l

l1

(
hη∗q($)δα

2 ($)−
αα+1

(α + 1)α+1
δ1($)

δ2($)

)
d$ ≤ δα

2 (l1)ω(l1)− δα
2 (l)ω(l). (15)

From (9), one can easily see that −1 ≤ ω(l)δα
2 (l) < 0, which with (15) gives

∫ l

l1

(
hη∗q($)δα

2 ($)−
αα+1

(α + 1)α+1
δ1($)

δ2($)

)
d$ < ∞.

Hence, there is a lε ≥ l1 such that

∫ ∞

l

(
hη∗q($)δα

2 ($)−
αα+1

(α + 1)α+1
δ1($)

δ2($)

)
d$ < ε,

for any ε > 0 and l ∈ Iε. Since δ2 is decreasing, we get

ε >
1

δ2(l)

∫ ∞

l

(
hη∗q($)δα+1

2 ($)− αα+1

(α + 1)α+1 δ1($)

)
d$

>
hη∗

δ2(l)

∫ ∞

l
q($)δα+1

2 ($)d$− αα+1

(α + 1)α+1 .

Taking the limsup on both sides of the inequality, we arrive at (13). The proof is complete.

From the previous results, the following theory can be inferred.

Theorem 1. Assume that (2) holds. If one of the following conditions holds:

(C1) η > 1;
(C2) hηη > 1 and (H);
(C3) η̃ > (α/(α + 1))α+1 and (H),

then the set < is empty.

Proof. Suppose x ∈ <. Using Lemmas 2, 4 and 5, we have that (4), (11) and (13) hold.
Then we obtain a contradiction with (C1)− (C3) respectively. The proof is complete.
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Lemma 6. Assume that M > 0, L and N are constants ψ(ϑ) = Lϑ−M(ϑ− N)(α+1)/α. Then,

ψ(ϑ) = LN +
αα

(α + 1)(α+1)
Lα+1

Mα
.

Proof. It is easy to see that the maximum value of ψ on R at ϑ∗ = N + (αL/((α + 1)M))α is

max
ϑ∈R

ψ(ϑ) = ψ(ϑ∗) = LN +
αα

(α + 1)(α+1)
Lα+1

Mα
. (16)

Then, the proof is complete.

Theorem 2. Assume (H) and (2) hold. If

lim sup
l→∞

δα
2 (l)
ρ(l)

∫ l

l1

(
ρ(ζ)hαηq(ζ)− 1

(α + 1)(α+1)
(ρ′(ζ))α+1

ρα(ζ)δα
1 (ζ)

)
dζ > 1, (17)

then the set < is empty.

Proof. Suppose x ∈ <. As in the proof of Lemma 2, we have that (8) and (9) hold. From (9),
we obtain

a(l)(x′′′(l))α

xα(l)
≥ − 1

δα
2 (l)

. (18)

Thus, if we define the a generalized Riccati substitution as

w(l) := ρ(l)
(

a(l)(x′′′(l))α

xα(l)
+

1
δα

2 (l)

)
, (19)

where ω(l) ∈ C1([l0, ∞), R), then w(l) > 0 for all l ≥ l1. Differentiating ω(l), we have

w′(l) =
ρ′(l)
ρ(l)

w(l) + ρ(l)

(
a(l)(x′′′(l))α)′

xα(l)
− αρ(l)

a(l)(x′′′(l))α

xα+1(l)
x′(l)

− αδ′2(l)
δα+1

2 (l)
. (20)

From (1), we see that

(a(l)(x′′′(l))α)′ = − f (l, x(τ(l)))

≤ −q(l)xα(τ(l)). (21)

Using (8) and (21), (20) becomes

w′(l) ≤ ρ′(l)
ρ(l)

w(l)− ρ(l)q(l)
(

x(τ(l))
x(l)

)α

−αρ(l)a(l)
(

x′′′(l)
x(l)

)α+1

a1/α(l)δ1(l) +
αδ1(l)

δα+1
2 (l)

. (22)

Using Lemma 3, we have that (10) holds. Thus, (22) yields

w′(l) ≤ ρ′(l)
ρ(l)

w(l)− ρ(l)hα(η−ε)q(l)− αρ(l)a(l)
(

x′′′(l)
x(l)

)α+1

a1/α(l)δ1(l)

+
αδ1(l)

δα+1
2 (l)

.
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Hence, from the definition of w, we obtain

w′(l) ≤ −ρ(l)hα(η−ε)q(l) +
ρ′(l)
ρ(l)

w(l)− α
1

ρ1/α(l)

(
w(l)− ρ(l)

δα
2 (l)

)1+1/α

δ1(l)

+
αδ1(l)

δα+1
2 (l)

. (23)

Using inequality (16) with

L :=
ρ′(l)
ρ(l)

, M := α
δ1(l)

ρ1/α(l)
, N :=

ρ(l)
δα

2 (l)

and ϑ := w, we obtain

ρ′(l)
ρ(l)

w(l) ≤ α
1

ρ1/α(l)

(
w(l)− ρ(l)

δα
2 (l)

)1+1/α

+
1

(α + 1)(α+1)
(ρ′(l))α+1

ρα(l)δα
1 (l)

+
ρ′(l)
δα

2 (l)
,

which, with (23), gives

w′(l) ≤ −ρ(l)hα(η−ε)q(l) +
1

(α + 1)(α+1)
(ρ′(l))α+1

ρα(l)δα
1 (l)

+
ρ′(l)
δα

2 (l)
+

αδ1(l)
δα+1

2 (l)

or

w′(l) ≤ −ρ(l)hα(η−ε)q(l) +
1

(α + 1)(α+1)
(ρ′(l))α+1

ρα(l)δα
1 (l)

+
d
dl

(
ρ(l)
δα

2 (l)

)
. (24)

By integrating (24) from l1 to l, we obtain

w(l)− w(l1) ≤ −
∫ l

l1

(
ρ(ζ)hα(η−ε)q(ζ)− 1

(α + 1)(α+1)
(ρ′(ζ))α+1

ρα(ζ)δα
1 (ζ)

)
dζ

+
ρ(l)
δα

2 (l)
− ρ(l1)

δα
2 (l1)

.

From (19), we are led to

∫ l

l1

(
ρ(ζ)hα(η−ε)q(ζ)− 1

(α + 1)(α+1)
(ρ′(ζ))α+1

ρα(ζ)δα
1 (ζ)

)
dζ

≤ −ρ(l)
a(l)(x′′′(l))α

xα(l)
+ ρ(l1)

a(l1)(x′′′(l1))
α

xα(l1)

≤ −ρ(l)
a(l)(x′′′(l))α

xα(l)
.

In view of (18), we get

∫ l

l1

(
ρ(ζ)hα(η−ε)q(ζ)− 1

(α + 1)(α+1)
(ρ′(ζ))α+1

ρα(ζ)δα
1 (ζ)

)
dζ ≤ ρ(l)

δα
2 (l)

or
δα

2 (l)
ρ(l)

∫ l

l1

(
ρ(ζ)hα(η−ε)q(ζ)− 1

(α + 1)(α+1)
(ρ′(ζ))α+1

ρα(ζ)δα
1 (ζ)

)
dζ ≤ 1.

Taking limit supremum, we obtain a contradiction with (17). This completes the proof.
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Corollary 1. Assume (H) and (2) hold. If one of the following conditions holds:

lim sup
l→∞

δα
2 (l)

∫ l

l1
hαηq(ζ)dζ > 1 (25)

or

lim sup
l→∞

δα−1
2 (l)

∫ l

l1

(
hαηq(ζ)δ2(ζ)−

1

(α + 1)(α+1)
δ1(ζ)

δα
2 (ζ)

)
dζ > 1 (26)

or

lim sup
l→∞

∫ l

l1

(
hαηq(ζ)δα

2 (ζ)−
αα+1

(α + 1)(α+1)
δ1(l)
δ2(l)

)
dζ > 1, (27)

then the set < is empty.

Proof. By choosing ρ(l) = 1, ρ(l) = δ2(l) or ρ(l) = δα
2 (l), the condition (17) in Theorem 2

becomes as (25), (26) or (27), respectively.

3. Discussion and Applications

Depending on the new criteria for the nonexistence of Kneser solutions, we introduced
new criteria for oscillation of (1). When checking the behavior of positive solutions of
DDE (1), we have three Cases (1)–(3). In order to illustrate the importance of the results
obtained for Case (3), we recall an existing criterion for a particular case of (1) with α = β:

Theorem 3 (Theorem 2.1 with n = 4, [25]). Assume that α = β,

lim inf
l→∞

∫ l

τ(l)
q($)

τ3α($)

a(τ($))
d$ >

6α

e
(28)

and there exists a ρ ∈ C1(I0,R+) such that

lim sup
l→∞

∫ l

l0

(
δα

0 ($)q($)
(

λ

2!
τ2($)

)α

− αα+1

(α + 1)(α+1)
1

δ($)a1/α($)

)
d$ = ∞, (29)

for some λ ∈ (0, 1). Then every solution of (1) is oscillatory or tends to zero.

From the previous Theorems, we conclude under the assumptions of the Theorem
that every positive solution x of (1) tends to zero, and hence x satisfies Case (3). Therefore,
conditions (28) and (29) ensure (3) without verifying the extra condition (2). In view of
Theorems 1 and 3, we obtain the following:

Corollary 2. Assume that (28) and (29) hold for some λ ∈ (0, 1). If (C1), (C2) or (C3) holds,
then (1) is oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1). Thus, we have three cases.
From Theorem 3, we find (28) and (29) contradicts Case (1) and Case (2) respectively.

For Case (3), using Theorem 1, if one of the conditions (C1)–(C3) holds, then we
obtain a contradiction. The proof is complete.

Corollary 3. Assume that (28) and (29) hold for some λ ∈ (0, 1). If (25), (26) or (27) holds,
then (1) is oscillatory.

Proof. Suppose the x is a nonoscillatory solution of (1). Thus, we have three cases.
From Theorem 3, we find (28) and (29) contradict Case (1) and Case (2) respectively.

For Case (3), using Corollary 1, if one of the conditions (25)–(27) holds, then we obtain
a contradiction. The proof is complete.
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We state now an Example:

Example 1. We have the fourth-order DDE(
eαl x′′′(l)

)′
+ q0eαl xα(τ0l) = 0, (30)

where l ≥ 1, τ0 ∈ (0, 1− 1/e) and q0 > 0. Note that a(l) = eαl , q(l) = q0eαl , τ(l) = τ0l. It is
easy to conclude that δm(l) = e−l for m = 0, 1, 2. Then, we see that (28) and (29) are satisfied for
all q0 > 0.

For condition (C1), we have

η =
( q0

α

)1/α
> 1. (31)

By using the fact that ey > ey for y > 0, we get

δ2(τ(l))
δ2(l)

= e(1−τ0)l > e(1− τ0)l ≥ e(1− τ0) := h > 1,

for l ≥ 1. Hence, Conditions (C2) or (C3) reduce to( q0

α

)1/α
(e(1− τ0))

(q0/α)1/α

> 1 (32)

and

q0(e(1− τ0))
(q0/α)1/α

>

(
α

α + 1

)α+1
, (33)

respectively.
Thus, by Corollary, if (31), (32) or (33) holds, then (30) is oscillatory.

Remark 1. To the best of our knowledge, the known related sharp criterion for (30) based on
(Theorem 2.1, [38]) gives

q0 >

(
α

α + 1

)α+1
. (34)

Note firstly that our criteria (32) and (33) essentially take into account the influence of delay
argument τ(l), which has been neglected in all previous results of fourth-order equations.
Secondly, in the case where α = 1 and τ0 = 1/2, we have

Condition (31) (32) (33) (34)
Criterion q0 > 1.00 q0 > 0.786 q0 > 0.233 q0 > 0.250.

Condition (33) supports the most efficient and sharp criterion for oscillation of Equation (30).

4. Conclusions

We worked on extending and improving existing oscillation criteria for DDEs of the
fourth order for the nonexistence of Kneser solutions. The new criteria that we proved are
characterized by taking into account the effect of the delay argument.
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