
applied  
sciences

Article

An Improved Adaptive Genetic Algorithm for
Two-Dimensional Rectangular Packing Problem

Yi-Bo Li 1, Hong-Bao Sang 1,* , Xiang Xiong 1 and Yu-Rou Li 2

����������
�������

Citation: Li, Y.-B.; Sang, H.-B.; Xiong,

X.; Li, Y.-R. An Improved Adaptive

Genetic Algorithm for

Two-Dimensional Rectangular

Packing Problem. Appl. Sci. 2021, 11,

413. https://doi.org/10.3390/

app11010413

Received: 24 November 2020

Accepted: 28 December 2020

Published: 4 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072,
China; slyb@tju.edu.cn (Y.-B.L.); bishop00929@tju.edu.cn (X.X.)

2 Canterbury School, 101 Aspetuck Ave, New Milford, CT 06776, USA; yli21@cbury.org
* Correspondence: gs08@tju.edu.cn

Abstract: This paper proposes the hybrid adaptive genetic algorithm (HAGA) as an improved
method for solving the NP-hard two-dimensional rectangular packing problem to maximize the
filling rate of a rectangular sheet. The packing sequence and rotation state are encoded in a two-
stage approach, and the initial population is constructed from random generation by a combination
of sorting rules. After using the sort-based method as an improved selection operator for the
hybrid adaptive genetic algorithm, the crossover probability and mutation probability are adjusted
adaptively according to the joint action of individual fitness from the local perspective and the global
perspective of population evolution. The approach not only can obtain differential performance for
individuals but also deals with the impact of dynamic changes on population evolution to quickly
find a further improved solution. The heuristic placement algorithm decodes the rectangular packing
sequence and addresses the two-dimensional rectangular packing problem through continuous
iterative optimization. The computational results of a wide range of benchmark instances from zero-
waste to non-zero-waste problems show that the HAGA outperforms those of two adaptive genetic
algorithms from the related literature. Compared with some recent algorithms, this algorithm, which
can be increased by up to 1.6604% for the average filling rate, has great significance for improving
the quality of work in fields such as packing and cutting.

Keywords: rectangular packing problem; optimization; hybrid adaptive genetic algorithm; heuristic;
filling rate

1. Introduction

The two-dimensional rectangular packing (2DRP) problem is often involved in the
manufacturing process of furniture, glass, metal, paper products, VLSI chip design, news-
papers paging, and so on [1,2]. Consequently, optimized algorithms designed to improve
the quality and efficiency of packing (therefore reducing the cost of the enterprises) are
the subject of many researchers’ explorations in recent years. The 2DRP problem can be
described simply as this: rectangles of different sizes are put into a large two-dimensional
rectangular container (which we call the sheet) in a certain way to maximize the filling
rate of the sheet. The 2DRP is a representative NP-hard problem [3] with complex con-
straints, which means that there is no exact method to solve the problem in polynomial
time. Thus, most researchers have devoted their efforts to fast approximate heuristics and
meta-heuristics to obtain practical solutions with higher qualities.

In recent decades, in order to solve the optimal or nearly optimal packing scheme of
the 2DRP problem in a compromise time and space, scholars have explored and studied
many methods for solving the problem. Two types of representative approaches have been
used to address the 2DRP problem: the first solves the problem directly by using differ-
ent heuristics; the second uses meta-heuristic algorithms, such as Simulated Annealing
(SA) [4], Genetic Algorithm (GA) [5], Particle Swarm Optimization (PSO) [6], Ant Colony
Optimization (ACO) [7], etc., combined with heuristic placement strategy. Recently, other

Appl. Sci. 2021, 11, 413. https://doi.org/10.3390/app11010413 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4220-8179
https://doi.org/10.3390/app11010413
https://doi.org/10.3390/app11010413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11010413
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/1/413?type=check_update&version=3


Appl. Sci. 2021, 11, 413 2 of 20

introduced algorithms include whale optimization algorithm [8], dragonfly algorithm [9],
naked mole-rat algorithm [10], moth flame optimization [11], etc.

The component in the first approach is the layout representation for packing sequence.
The bottom-left (BL) algorithm [12] proposed by Baker et al. is the earliest heuristic.
The main idea is to start from the top right corner of the container, making each item
continuously slide as far as possible downwards and then as far as possible to the left
until the item is placed in a stable position. Some BL algorithms have improved heuristic
variants such as bottom-left-fill (BLF) [13], deepest bottom-left-fill (DBLF) [14], improved
bottom-left (IBL) [15], and bottom-left decreasing (BLD) [16]. The lowest horizontal line
algorithm (LHLA) [17] proposed by Jia et al. queries the horizontal line with the lowest
height when laying out the rectangle and places the rectangle on it. However, taking
account of the lack of iterative optimization, in general, the packing quality of the heuristic
approach is poor.

In order to improve the packing quality, the key part of the second method is how
to use meta-heuristics combined with a layout representation approach to optimize the
packing sequence. Hopper et al. conducted empirical research, combining SA and GA
with BL and BLF approaches [18]. The best fit algorithm (BF) [19] proposed by Burke et al.
describes the sheet as a set of dynamic slots, places items on the lowest available slot at
each iteration step, and then combines them together. Later, Burke’s team also proposed a
simulated annealing enhancement to the BF algorithm [20]. He et al. suggested an efficient
deterministic heuristic [21] using the action space. Wei et al. investigated an adaptive
selection approach [22] without any control parameter to address the 2D rectangle packing
area minimization problem. Recently, Xia et al. proposed an adaptive genetic simulated
annealing algorithm [23] applied to the problem of packing optimization of rectangles.

In view of the premature problem of Simple Genetic Algorithm (SGA) in practical
applications, it is easy to fall into local optimal solution prematurely as well as poor local
search ability [24]. Srinivas et al. [25] proposed an Adaptive Genetic Algorithm (AGA) that
dynamically adjusts the crossover probability and mutation probability according to the
fitness of the individual. However, if the fitness of the individual is close to or equal to the
maximum fitness of the population, the crossover probability and mutation probability will
be close or equal to zero, making the evolution of genetic algorithm stagnant. Ren proposed
an improved AGA [26] for this problem. However, when the average fitness is close to
the maximum fitness of the contemporary population, it is easy to cause a large number
of individuals to have a lower crossover probability and mutation probability, which
will stagnate the evolution. This improved AGA has also been applied to many fields
such as the three-dimensional container loading problem [27] and the laminate stacking
sequence optimization [28]. In addition, the algorithm proposed by Ren is only in view
of individual fitness. This algorithm adaptively changes the crossover probability and
mutation probability from the local perspective, but the dynamic adjustment of crossover
and mutation are not considered whether they have a positive impact on the population
evolution process from the overall perspective of population evolution. According to the
evolution of later generations, the AGA [29] proposed by Jiang recorded the number of
algebras in which the fitness of the optimal individual of the population did not change and
dynamically adjusted the crossover and mutation probabilities. However, the algorithm has
two shortcomings: (1) the incremental value and decrement value of crossover probability
and mutation probability are greatly affected by fitness, and if the value range of the
fitness function is not between 0 and 1, the adaptive algorithm will no longer be applicable;
(2) although the crossover probability and mutation probability of each generation are
dynamically adjusted, the crossover probability and mutation probability of all individuals
in a certain generation are the same, and the performance is consistent for individuals with
different fitness.

In this paper, in order to overcome the shortcomings of the two kinds of adaptive
genetic algorithms, an improved method called hybrid adaptive genetic algorithm (HAGA)
is proposed to supplement Ren and Jiang’s algorithms. It is the key for HAGA to work



Appl. Sci. 2021, 11, 413 3 of 20

through the joint action of individual fitness from local perspective and the global per-
spective of population evolution. The presented algorithm not only can obtain differential
performance for individuals but also deals with the impact of dynamic changes on popula-
tion evolution to quickly find a further improved solution. First of all, through the research
and analysis of the 2DRP, a two-dimensional packing model is established to maximize the
filling rate with relevant constraints. Then, the initial population is constructed by two-
stage encoding, and the heuristic lowest horizontal line algorithm is used in the process of
placement to decode the packing solution and calculate the individual fitness. After the
termination rules of the design are satisfied in the iterative optimization process of HAGA,
the packing scheme with the largest filling rate is selected in the feasible solutions. To verify
the performance of the proposed algorithm, zero-waste and non-zero-waste instances are
tested. The computational results show that the proposed HAGA is more efficient than the
compared algorithms.

The rest of this paper is organized as follows. In Section 2, the mathematical model
of 2DRP is built. The improved method, HAGA, for the 2DRP problem is introduced in
detail in Section 3. Then, Section 4 provides the computational results and comparisons.
Finally, the conclusion of this paper is given in Section 5 with some closing remarks.

2. Problem Statement

Assume that there is a set of n rectangle (R = {r1, r2, . . . , rn}) items with wi × hi for
i = 1, 2, . . . , n. The task is to orthogonally place the items without overlapping in the sheet
with W × H to maximize the filling rate of the sheet, i.e., to maximize the total area of the
placed items divided by the area of the sheet. The paper addresses the 2DRP with the
following assumptions [30,31]:

(1) For any two rectangular items put in, they cannot overlap each other.
(2) When the rectangle is put into the sheet, it cannot exceed the boundary of the sheet.
(3) The side of the rectangular items must be parallel to the side of the sheet.
(4) The rectangular can be rotated 90

◦
.

Based on the problem description and assumptions, a two-dimensional rectangular
coordinate system is established with the bottom left corner of the sheet as the origin of the
coordinates, and the coordinates of the bottom left corner of the rectangle ri are (xi, yi), as
shown in Figure 1. Use variable gi to indicate whether the rectangle ri is rotated; gi = 0
means no rotation, and gi = 1 means rotation. If the rectangle ri is rotated, the width and
height of the rectangle are interchanged.

Figure 1. Coordinate system.

Therefore, the actual width and height of the rectangle placed change to wi(1− gi) +
higi and wigi + hi(1− gi) respectively, and the coordinates of the top right corner of the
rectangle are (xi + wi(1− gi) + higi, yi + wigi + hi(1− gi)). It can be seen that the rectangle
ri is represented by (xi, yi, wi, hi, gi), which can determine the accurate position of the
rectangle in the sheet.



Appl. Sci. 2021, 11, 413 4 of 20

Let θi be a decision variable, taking the value 1 or 0 accordingly as rectangle ri is or
is not placed. The filling rate F of the sheet is defined as the ratio of the total area of the
rectangles placed in it to the area of the sheet. The mathematical model of the 2DRP is
as follows:

max F =

n
∑

i=1
wihiθi

W × H
(1)

s. t.

(1) xi + wi(1− gi) + higi ≤W, yi + wigi + hi(1− gi) ≤ H
(2) max

{
xi1 − xj2, xj1 − xi2, yi1 − yj2, yj1 − yi2

}
θiθj ≥ 0

(3) (xi2 − xi1, yi2 − yi1) ∈ {(wi, hi), (hi, wi)}
(4) θi ∈ {0, 1}, gi ∈ {0, 1}
(5) 0 ≤ xi ≤W, 0 ≤ yi ≤ H.

In constraints (1)–(4), i, j applies to 1, 2, . . . , n and i 6= j. Constraint (1) implies that
the boundaries of the placed rectangles do not exceed the width and height boundaries
of the sheet. Constraint (2) means that the placed rectangles cannot overlap each other.
(xi1, yi1) and (xi2, yi2) represent the coordinates of the bottom left corner and the top right
corner of the placed rectangles, respectively. The coordinates of the top right corner can be
calculated with the coordinates of the bottom left corner and the width and height of the
actual size of the rectangle. Constraint (3) implies that the placed rectangle is parallel to the
side of the sheet and can be rotated by 90

◦
. To sum up, the 2DRP problem can be described

as figuring out the best packing solution that satisfies the constraints and maximizes the
filling rate of the sheet.

3. Improved Adaptive Genetic Algorithm

It is representative for 2DRP to combine heuristic placement strategies and meta-
heuristic algorithms such as GA. The GA usually includes SGA and various improved
genetic algorithms such as AGA. The SGA is prone to premature problems that cannot
escape the local optimal solution. Then, some adaptive genetic algorithms such as AGA [25],
AGA [26], and AGA [29] were proposed to solve this problem. However, these also have
some problems. Since the AGA [26] is an improvement to the AGA [25], this section mainly
focuses on some problems in AGA [26] and AGA [29], presenting further improved AGA
for 2DRP by combining heuristic placement strategy.

The packing sequence of rectangles and whether they are rotated are the most impor-
tant factors that affect the results of the final packing solution. This paper proposes an
improved adaptive genetic algorithm as a rectangle sequencing algorithm to determine the
packing sequence and rotation state of the rectangles, with the heuristic lowest horizontal
line algorithm used as the placement algorithm to determine the position coordinates of the
rectangle. First of all, in terms of the genetic algorithm, two-stage encoding is constructed,
i.e., the packing sequence is coded by continuous integers from 1 to n, and the rotation
state is coded with 0 and 1. The initial population is constructed through a combination
of sorting rules and random generation. The heuristic lowest horizontal line algorithm is
applied to decode, so as to provide the packing solution and calculate the individual fitness.
Then, it uses a sort-based method for selection and improved adaptive crossover and
mutation operations for evolution. The process of iterative optimization continues until
the designed termination rule is reached, and finally, the result decoded by the optimal
individual is taken as the final packing solution.

3.1. Encoding and Population Initialization

Assuming there are n rectangles {r1, r2, . . . , rn} to be packed, the chromosome adopts
a two-stage encoding method consisting of the packing sequence and placement state of the
rectangles, and the encoding length is 2n. The former n uses an integer permutation code,
and the packing sequence adopts integer numbers, which is the order of the rectangles to
be packed. The latter n uses integer coding, and the rectangle placement status is numbered



Appl. Sci. 2021, 11, 413 5 of 20

with 0 and 1, in which 1 means the placement rectangle rotates, and 0 represents that it
does not rotate. So, sn+1, sn+2, . . . , sn+i, . . . , s2n are the rotation state of n rectangles to be
packed. The overall encoding of individual chromosomes are as follows:

E = s1, s2, . . . , si, . . . , sn,︸ ︷︷ ︸
n

sn+1, sn+2, . . . , sn+i, . . . , s2n︸ ︷︷ ︸
n

where si ∈ {1, 2, . . . , n}, sn+i ∈ {0, 1}, and si 6= sj. For example, there are eight rectangles
numbered 1, 2, 3, 4, 5, 6, 7, and 8 to be loaded into the sheet, and each rectangle can be
rotated. The packing sequence and rotation status of the two-stage encoding approach for
individual chromosome are shown in Figure 2. The order of rectangular packing is 4, 2, 5,
1, 8, 6, 3, and 7, and the rectangles numbered 2, 5, 6, and 7 need to be rotated during the
packing process.

Figure 2. Individual chromosome two-stage encoding (n = 8).

The above encoding approach accurately describes the factors that affect the packing
solution. Considering that the packing sequence sorted by certain attributes tends to be
the optimal solution, the following sorting rules [32] are fully utilized to generate the
initial population in combination with random generation to speed up the algorithm when
initializing the population.

(1) Sort by area in decreasing order.
(2) Sort by width in decreasing order.
(3) Sort by height in decreasing order.
(4) Sort by perimeter in decreasing order.
(5) Sort by maximum of width and height in decreasing order.
(6) Sort by length of diagonal + width + height in decreasing order.

Figure 3 shows the initial population constructed by PS individuals. The individuals
from E1 to Eps−6 are generated randomly. The packing sequence of the remaining six
individuals is generated by the six sorting rules, and the corresponding rotation state of
the rectangles is generated randomly. The PS is set to 100 in this paper.

Figure 3. Initial population with PS individuals (n = 8).

Once the chromosome encoding sequence of the individuals in the population is
determined, the heuristic placement algorithm can be used to decode and place, and then
the individuals can be evaluated through the fitness function.

3.2. Heuristic Placement Algorithm

When using the fitness function to evaluate individuals in the population, it is neces-
sary to arrange the rectangles into the sheet according to a certain heuristic algorithm for



Appl. Sci. 2021, 11, 413 6 of 20

the packing sequence, rotation state, the width and height of rectangles, and the width and
height of the sheet to calculate the sheet filling rate and figure out the fitness.

Liu proposed the IBL algorithm [15] to solve the problem that the left side of the
BL algorithm [12] is too high and the unfilled cavity area can not be effectively used.
Although it can overcome the disadvantage of the BL algorithm, which is prone to the
waste area of the sheet, it will lead to the problem of a high right side. In contrast, the lowest
horizontal line algorithm proposed in this paper can effectively solve the shortcomings
of the BL and IBL algorithms and improve the filling rate [33]. Therefore, the placement
algorithm in this paper adopts the heuristic lowest horizontal line algorithm of Ref. [23],
and the procedure is as follows in Algorithm 1.

Algorithm 1 Heuristic packing procedure

HeuristicPacking(R, sheet):
1 Initialize the lowest level line l is 0
2 while R is not empty or l is beyond the sheet H:
3 Get filling area on l and hollow area under l, the area size store 2-tuple set (AW, AH)
4 Priority to sorting hollow area in increasing order of AW for (AW, AH)
5 Prepare to place ri from R in order and rotation state
6 if ri need to rotate:
7 Exchange the width wi and height hi of ri
8 if AW ≥ wi and AH ≥ hi:
9 Place ri, update area size (AW, AH)
10 Record ri the left-bottom corner position coordinates (xi, yi),

placed state, size, rotation state, etc.
11 Remove ri from R
12 else:
13 If exist the next area:
14 Move the next area to continue placing
15 else:
16 Sort these placed ri in increasing order of yi
17 Update l and the area size (AL, AH)
18 return the placed information for R

3.3. Fitness Function and Selection Operator

Generally, the fitness function of the genetic algorithm is often determined by the
objective function. In this paper, the fitness function refers to the sheet filling rate of
the objective function, and its definition can be seen in the 2DRP mathematical model in
Section 2.

Selection operation is the process of the genetic algorithm to evaluate the survival of
the fittest. Its purpose is to keep the individuals with better fitness in the parent population
as much as possible to keep good genes. The traditional roulette [34] selection method gives
every individual the opportunity to make a copy, which does not reflect the competitiveness
of excellent individuals and cannot realize the principle of survival of the fittest by the
genetic algorithm. This paper uses an improved selection method sorted by individual
fitness [35] to replace the roulette selection method. The sort-based selection method is
described as follows:

Step1. Calculate the fitness of each individual in the population.
Step2. Sort the individuals in the population in descending order of fitness.
Step3. Divide the sorted individuals into three parts, and the first one was duplicated

into two copies.
Step4. Make a copy of the individuals in the middle.
Step5. The remaining individuals ranked behind are not copied.



Appl. Sci. 2021, 11, 413 7 of 20

3.4. Adaptive Crossover Operator and Mutation Operator

This subsection gives an improved genetic algorithm, in which the crossover prob-
ability and mutation probability can be adjusted adaptively. The crossover operation is
to randomly exchange some genes between two individuals in the population based on
the crossover probability so as to combine excellent genes to produce new and better
individuals, which is the main part of the genetic algorithm. The mutation operation is
to replace genes of an individual with other alleles under a certain mutation probability,
thereby forming a new individual, ensuring the diversity of the population and preventing
the phenomenon of premature.

Crossover probability and mutation probability are the most important parameters for
crossover and mutation operations. Their selection is the key to influencing the behavior
and performance of the algorithm and directly affecting the convergence of the algorithm.
Regarding the crossover probability, if the crossover probability is too small, the search
process will be slow and will easily cause stagnation. However, if the crossover probability
is too large, the chromosomal structure of an individual with high fitness will be quickly
destroyed and replaced. For the mutation probability, if it is too small, a new individual
chromosome structure is not easy to be generated, and the search space will become
narrower. Otherwise, if the mutation probability is too large, the genetic algorithm becomes
a purely random search algorithm, which makes it easy to fall into a local optimal solution.

The AGA [26] proposed by Ren is to adaptively change the crossover probability and
mutation probability from the local point according to individual fitness without consid-
ering whether the dynamic adjustment of crossover and mutation has a positive impact
on population evolution from the whole point of population evolution. The AGA [29]
proposed by Jiang dynamically adjusts the crossover probability and mutation probability
according to the fitness changes of the optimal individual from the whole point of the
evolution of the population offspring. However, the crossover probability and mutation
probability of all individuals of a certain generation of population are still the same, and the
performance of individuals with different fitness of the generation is consistent, so there
is no difference. Moreover, the AGA [29] is greatly affected by the contemporary opti-
mal fitness and the range of fitness function, which will limit the wide application of
the algorithm.

Inspired by Ren and Jiang, this paper proposes an improved method called hybrid
adaptive genetic algorithm (HAGA) to solve the 2DRP problem. The adaptive description
of the crossover probability is as follows:

Pc(t) = Pc2 + (Pc1 − Pc2)
1− e−ct

1 + e−ct , t ≥ 0 (2)

Pc( f ′) =

{
Pc1 −

(Pc1−Pc2)( f ′− favg)
fmax− favg

, f ′ ≥ favg

Pc1 , f ′ < favg
(3)

Pc = λPc(t) + (1− λ)Pc( f ′) (4)

where Pc1 and Pc2 are the upper bound and lower bound of Pc. In general, the recommended
parameters for these two crossover probabilities are 0.9 and 0.6 respectively [36]; i.e.,
Pc1 = 0.9 and Pc2 = 0.6. The parameter t is the cumulative number of generations in which
the optimal fitness value of the population has not changed. When the optimal fitness
value of a certain generation changes, it will be set to 0 for re-accumulation. For example,
in the process of iterative optimization, if the best fitness value lasts for ten times without
changing, the t is set to 10. The parameter c is a constant to determine the slope of the
(1− e−ct)/(1 + e−ct) function, and c = 0.2 in the experiment. f ′ is the fitness value of the
larger individuals that are ready to implement crossover; fmax is the maximum fitness
value of the current population; favg is the average fitness value of the current population.
The λ is an adjustable weight parameter with the range of 0 < λ < 1, and λ = 0.6 in
the experiment.



Appl. Sci. 2021, 11, 413 8 of 20

(1− e−ct)/(1 + e−ct) in Formula (2) has a value range of 0–1 when t is greater than
or equal to 0, which ensures that Pc(t) changes between Pc2 and Pc1. It also helps to solve
the problem for AGA [29] that is greatly affected by the contemporary optimal fitness,
representing the fitness function range with appropriately adjusting Pc1 and Pc2. It is
beneficial to combine with AGA [26]. The t is recorded after each iteration to determine
the change of Pc(t). If t becomes larger, it shows that the optimal fitness of the population
evolution has not changed, and the crossover probability needs to be increased to promote
the change of the optimal fitness. If t = 0, it reveals that the optimal fitness of the
population evolution has increased, and the crossover probability Pc(t) will drop to Pc2 for
increasing more possible solutions. Then, combining Formula (3) to increase the difference
of crossover operation for different individuals. Combining Formula (2) and Formula
(3), it works together to find a better solution from the global perspective of population
evolution and the local perspective of individual fitness. In addition, because it can increase
the crossover probability from the perspective of the population evolution process, it is
also helpful to overcome the problem that evolution is likely to stagnate when favg is close
to fmax. The effect of the adaptive mutation probability change in the latter part is similar
to this.

When carrying out crossover, the packing sequence gene string adopts the partial
matching crossover (PMX), and the rotating state gene string adopts the two-point crossover
method. An example of the crossover process is shown in Figure 4. The procedure of the
hybrid adaptive crossover algorithm is described in Algorithm 2.

Figure 4. Partial matching crossover (PMX) and two-point crossover (n = 8, r1 = 4, r2 = 6,
r3 = 11, r4 = 14 ).

Algorithm 2 Hybrid adaptive crossover algorithm

HACA(t, P, PS):
1 Initialize the parameter Pc1, Pc2, c, λ

2 Copy population P′ from the population P with PS individuals
3 Compute Pc(t) with formula (2)
4 Compute fmax, favg for P
5 for i in range(0, PS, 2):
6 Randomly select two different parents E1, E2 from P
7 Compute greater fitness f ′ from E1, E2
8 Compute Pc( f ′) with formula (3) and Pc with formula (4)
9 Generate a random number r between [0, 1] with rand() function
10 if r < Pc:
11 Generate different random numbers r1, r2 within [1, n] and r3, r4 within [n + 1, 2n]
12 Get two crossed children using the same method of Figure 4
13 Put two crossed children with Heuristic Packing Procedure
14 Update P′[i], P′[i + 1] using two crossed children
15 Add P′ to P, Sort them in decreasing order of fitness
16 Delete PS individuals with small fitness and get crossed population P
17 return crossed population P



Appl. Sci. 2021, 11, 413 9 of 20

The adaptive description of mutation probability is as follows:

Pm(t) = Pm2 + (Pm1 − Pm2)
1− e−ct

1 + e−ct , t ≥ 0 (5)

Pm( f ) =

{
Pm1 −

(Pm1−Pm2)( f− favg)
fmax− favg

, f ≥ favg

Pm1 , f < favg
(6)

Pm = λPm(t) + (1− λ)Pm( f ) (7)

where Pm1 and Pm2 are the upper bound and lower bound of Pm. In the experiment,
these two mutation probability parameters recommended are 0.1 and 0.5 respectively [36];
i.e., Pm1 = 0.5 and Pm2 = 0.1. f is the fitness value of the individual to be mutated;
fmax is the maximum fitness value of the current population; and favg is the average
fitness value of the current population. For other parameters, refer to the section on
adaptive crossover probability. Similarly, we can be aware that Formula (5) is the adaptive
mutation probability from the whole point of population offspring evolution, and Formula
(6) is the adaptive mutation probability for individual fitness from a local perspective.
The hybrid adaptive mutation probability is used to work together to dynamically adjust
the mutation probability.

When mutating, the packing sequence gene string adopts the exchange mutation
method, and the rotating state gene string takes the two-point basic position mutation
method. An example of the mutation process is shown in Figure 5.

Figure 5. Exchange mutation and two-point basic position mutation (n = 8, r1 = 2, r2 = 6,
r3 = 11, r4 = 15).

The procedure of the hybrid adaptive mutation algorithm is described in Algorithm 3.
In Algorithms 2 and 3, P represents the population in the genetic algorithm; PS means the
size of the population, i.e., the number of individuals in the population; The parameter
t is obtained by comparing the fitness of the best individual in the previous and next
generations in the population evolution process. If the optimal individual fitness of the
previous generation and the next generation are equal, t = t + 1; otherwise, t is reset to 0.

In summary, Algorithm 2 plays a role of constructing the hybrid adaptive crossover
algorithm (HACA) and Algorithm 3 structures the hybrid adaptive mutation algorithm
(HAMA), which are two main parts of HAGA. From the local aspect of individual fitness
and the whole evolution of later generations’ population, the crossover probability and
mutation probability can be adjusted adaptively to quickly find a further improved solution.

3.5. Termination Rules

The improved adaptive genetic algorithm we proposed shows a convergence trend in
the process of searching and optimizing the solution space. For the iterative optimization
calculation of 2DRP problem, there are the following termination rules:

(1) After the iterative calculation reaches a certain level, the optimal fitness value has
no obvious change in the continuous T iterations, and the calculation can be stopped in
advance. For example, the T is set to 150 in this paper, which means the calculation is
terminated if the optimal fitness value does not change through 150 continuous iterations;

(2) Set the desired packing rate in advance. In the process of calculating, the pre-set
filling rate is reached, and the calculation can be terminated early. For the expected filling



Appl. Sci. 2021, 11, 413 10 of 20

rate, if the theoretical filling rate is known before the experiment, e.g., the theoretical filling
rate of the C benchmark instances proposed by Hopper is 100% [18], it can be set to the
theoretical value; otherwise, the user’s expected value can be set according to actual needs;

(3) Set the maximum number of iterations in advance. If the algorithm does not termi-
nate prematurely, when the genetic algebra reaches the maximum number of iterations,
the calculation is terminated, and the packing solution and filling rate are obtained.

The combination of the above three termination rules can not only fully optimize
within the maximum number of iterations but also terminate the iterative optimization
of the algorithm early when the expected value or fitness value is reached and there is
no obvious change, which is beneficial to reduce the calculation time of the algorithm.
When the iterative optimization of the algorithm is terminated, the packing solution
corresponding to the chromosome with the largest fitness value is the optimal packing
solution, and the corresponding filling rate is calculated.

Algorithm 3 Hybrid adaptive mutation algorithm

HAMA(t, P, PS):
1 Initialize the parameter Pm1, Pm2, c, λ

2 Copy population P′ from the population P with PS individuals
3 Compute Pm(t) with formula (5)
4 Compute fmax, favg for P
5 for i in range(PS):
6 Get parent E1 from P and compute its fitness f
7 Compute Pm( f ) with formula (6) and Pm with formula (7)
8 Generate a random number r between [0, 1] with rand() function
9 if r < Pm:
10 Generate different random numbers r1, r2 within [1, n] and r3, r4 within [n + 1, 2n]
11 Get mutated child using the same method of Figure 5
12 Put mutated child with Heuristic Packing Procedure
13 Update P′[i] using mutated child
14 Add P′ to P, Sort them in decreasing order of fitness
15 Delete PS individuals with small fitness and get mutated population P
16 return mutated population P

3.6. Related Discussion

The proposed algorithm firstly overcomes the problem that is greatly affected by
the contemporary optimal fitness and fitness function range for AGA [29] to expand its
application; especially, the fitness function range is not between 0 and 1. Moreover, this al-
gorithm not only obtains the differential performance of a certain generation of individuals
by combining AGA [26] but also handles the impact of dynamic changes on population
evolution to find adaptively an improved solution. However, the presented algorithm is
not perfect in this paper; it has the following drawbacks:

(1) There are some parameters that need to be controlled, including Pc1, Pc2, Pm1, Pm2,
λ, and c. The Pc1, Pc2, Pm1, and Pm2 may be obtained through existing experience. It is
necessary to do sets of comparative experiments to establish consistent parameters λ, c to
obtain good benefits.

(2) From Formulas (2) and (5), if t = 0, it can be concluded that Pc(t) suddenly
drops to the minimum of crossover probability and mutation probability Pc2 and Pm2.
In the early stage of evolution, the optimal individual is easy to change frequently; that is,
there are more times where t = 0, which leads to lower crossover probability and mutation
probability that are not beneficial to rapid population evolution.

We can set up a series λ and c to determine the appropriate parameters through many
experiments. In addition, it is possible for t = 0 to make continuous descent changes for
different evolutionary periods.



Appl. Sci. 2021, 11, 413 11 of 20

4. Computational Experiments

In this section, to evaluate the effectiveness of the proposed improved method, HAGA,
four computational experiments are designed and implemented. The rectangle packing
instances, which include zero-waste and non-zero-waste datasets, are used for testing.
The first three benchmark instances as zero-waste are the J instances (J1− J2) proposed by
Jakobs [37], the C instances (C11−C73) proposed by Hopper et al. [18], and the N instances
(N1− N13) proposed by Burke et al. [19]. The scale and optimization difficulty of these
three benchmark instances increase sequentially. The optimal solution for each instance is
known beforehand, in which the total area of the given items is equivalent to the area of the
sheet, resulting in a 100% filling rate. So, they all theoretically have a 100% filling rate but
are not balanced dimensionally. However, considering that non-zero-waste problems often
occur in real application, the non-zero-waste datasets, including 4 instances (cgcut1-cgcut3)
given in Ref. [38], 13 instances (gcut1-gcut13) in Ref. [39], 12 instances (ngcut1-ngcut12) in
Ref. [40], and 10 instances (beng1-beng10) in Ref. [41], are used for further testing.

The SGA, AGA [26], AGA [29], and HAGA involved in the experiment are imple-
mented in Python language programming and calculated on an Intel Core i5 CPU at
2.5 GHz with 8 GB memory. We tested the effects of SGA and AGA [26] for each individual
fitness proposed by Ren, AGA [29] for the evolutionary process proposed by Jiang, and the
HAGA proposed in this paper. Then, a comparison of HAGA with some recent algorithms
is provided. In order to balance the calculation accuracy and efficiency of the test algorithm,
the number of iterations NIND is set to 2000, and the calculation result is the average of
twenty operations.

4.1. Computational Experiment for Zero-Waste Instances
4.1.1. Computational Experiment for J Instances

We know that Ref. [42] divides the J benchmark instances into two groups of problem
instances, which are called J1 and J2. The size of the large rectangular sheet is 40× 15.
The number of items in the first group is 25, and the number of items in the second group
is 50. For more detailed information on the instances, refer to the original paper published
by Jakobs [37].

In this subsection, we compare the performance of the proposed HAGA with SGA,
AGA [26], and AGA [29] on the J instances. The AGA [26] is an adaptive genetic algo-
rithm that dynamically adjusts the crossover probability and mutation probability for each
individual. The AGA [29] is an adaptive genetic algorithm that dynamically adjusts the
crossover probability and mutation probability for the evolution process. In the compara-
tive experiment, the crossover probability and mutation probability in SGA are 0.9 and 0.1,
respectively. The parameters Pc1, Pc2, Pm1 and Pm2 of the AGA [26] remain consistent with
that in this paper, and the parameter c in AGA [29] also remains consistent with this paper.
The computational results are shown in Table 1, where F represents the filling rate of the
sheet. Figures 6 and 7 show the rectangular packing layouts corresponding to the optimal
solution obtained by the HAGA.

Table 1. Comparison of the filling rate (%) and calculation time (s) on the J instances.

Instances n Sheet
SGA AGA [26] AGA [29] HAGA

F/% Time/s F/% Time/s F/% Time/s F/% Time/s

J1 25 40× 15 100 10.71 100 8.37 100 7.69 100 5.59
J2 50 40× 15 99.65 27.18 99.875 24.53 99.90 25.11 99.917 23.3

Average 99.825 18.95 99.94 16.45 99.95 16.4 99.96 14.45



Appl. Sci. 2021, 11, 413 12 of 20

 
Figure 6. Full packing layouts on 1J  instance. 

 
Figure 7. Full packing layouts on 2J  instance. 

 

Figure 6. Full packing layouts on J1 instance.
 

Figure 6. Full packing layouts on 1J  instance. 

 
Figure 7. Full packing layouts on 2J  instance. 

 

Figure 7. Full packing layouts on J2 instance.

From the results shown in Table 1, it can be seen that the average calculation time of
the three adaptive genetic algorithms of AGA [26], AGA [29], and HAGA are 16.45 s, 16.4 s,
and 14.45 s respectively, which is less than that of the SGA. It shows that the adaptive
genetic algorithm can accelerate the convergence speed of the algorithm by dynamically
adjusting the crossover probability and mutation probability. The average filling rate of
the adaptive genetic algorithm is higher than that of SGA, which shows that the adaptive
genetic algorithm can address the problem that SGA may fall into a local optimal solution.
Next, by comparing three adaptive genetic algorithms, we can realize that they have
almost the same average filling rate on the J instances, but the average time consumed
for HAGA is 2 s, which is less than AGA [26] and 1.95 s less than AGA [29]. The results
show that the HAGA can overcome the shortcomings of the two types of adaptive genetic
algorithms including AGA [26] and AGA [29] through the joint effect of the local aspects of
individual and the overall aspects of evolution, and the convergence speed of the algorithm
is accelerated to show the effectiveness of the proposed algorithm.

4.1.2. Computational Experiment for C Instances

The number of items per instance for C benchmark instances ranges from 16 to 197.
According to the area of the sheet, these instances can be classified into seven groups with
three instances each. For detailed information on the C instances, refer to Hopper et al. [18].
The experimental comparison results are shown in Table 2.



Appl. Sci. 2021, 11, 413 13 of 20

Table 2. Comparison of the filling rate (%) and calculation time (s) on the C instances.

Instances n Sheet
SGA AGA [26] AGA [29] HAGA

F/% Time/s F/% Time/s F/% Time/s F/% Time/s

C11 16 20× 20 100 2.41 100 2.14 100 2.16 100 1.64
C12 17 20× 20 100 2.49 100 2.33 100 2.43 100 1.7
C13 16 20× 20 100 2.28 99.65 2.14 100 2.1 100 1.62
C21 25 40× 15 100 10.83 100 8.55 100 7.79 100 5.54
C22 25 40× 15 100 9.03 100 7.87 100 7.41 100 5.22
C23 25 40× 15 100 9.19 100 7.58 100 7.23 100 5.37
C31 28 60× 30 100 13.41 100 11.82 100 10.72 100 8.92
C32 29 60× 30 100 13.73 100 11.54 100 10.94 100 9.12
C33 28 60× 30 100 12.81 100 10.81 100 10.66 100 8.86
C41 49 60× 60 100 22.52 100 21.94 100 21.07 100 19.8
C42 49 60× 60 100 23.28 100 21.55 100 20.9 100 19.17
C43 49 60× 60 100 22.37 100 21.87 100 21.32 100 20.14
C51 73 60× 90 99 338.13 100 46.23 100 70.11 100 41.82
C52 73 60× 60 100 57.46 100 42.53 100 40.27 100 38.31
C53 73 60× 60 99.62 327.17 100 44.07 100 68.44 100 42.19
C61 97 80× 120 98.69 483.98 100 127.85 100 106.97 100 100.85
C62 97 80× 120 100 243.48 100 53.43 100 132.54 100 54.78
C63 97 80× 120 100 386.6 100 111.63 100 187.37 100 105.42
C71 196 160× 240 98.43 1686.13 98.94 1643.48 99.08 1603.96 99.52 1551.02
C72 197 160× 240 98.67 1825.58 98.97 1779.65 99.23 1748.54 100 1501.37
C73 196 160× 240 98.34 1672.37 98.82 1619.88 98.94 1572.38 100 1335.34

Average 99.65 341.2 99.83 266.61 99.87 269.3 99.98 232.29

It can be inferred from the results in Table 2 that as the scale n of the problem instances
becomes larger and larger, the difficulty of the algorithm convergence increases, and some
instances cannot achieve a 100% filling rate. The HAGA can obtain a 100% filling rate for
all instances except for C71, but AGA [26] fails to obtain a 100% filling rate for C13, C71,
C72, and C73. The scale of the C13 instance is not large, but the 100% filling rate is not
obtained because the algorithm fell into a possible local optimal solution during a certain
test. In addition, the AGA [29] fails to obtain a 100% filling rate for C71, C72, and C73. It is
obvious that the HAGA is better than AGA [26] and AGA [29].

Then, by comparing SGA and the adaptive genetic algorithm, it can be realized that
AGA [26], AGA [29], and HAGA save 74.59, 71.9, and 108.91 s respectively in comparison
to SGA. The average filling rate of the adaptive genetic algorithm is generally higher
than that of SGA, which shows that the adaptive genetic algorithm can overcome the
“premature” phenomenon to which SGA is prone. Through the analysis of the results of
the three adaptive genetic algorithms, it can be found that the HAGA uses 34.32 s and
37.01 s less than AGA [26] and AGA [29] in the average calculation time, and it increases
the average filling rate by 0.15% and 0.11%, respectively. This shows that the improved
method, HAGA, can speed up the convergence of the algorithm and relatively increase the
filling rate of the sheet.

4.1.3. Computational Experiment for N Instances

The N benchmark instances were generated by Burke et al., and optimal solutions
were also known beforehand. It includes 13 groups of test instances, and the number of
items to be packed increases from 10 in the first group to 3152 in the thirteenth group.
For detailed information on N instances, refer to Burke et al. [19]. The comparison results
of our experiments are shown in Table 3. It should be noted that the ‘-’ in N13 means that
no experimental calculation has been performed.

We can recognize from the results shown in Table 3 that SGA can only obtain a 100%
filling rate for N1–N3 instances with a small scale. Both AGA [26] and AGA [29] fail to
obtain a 100% filling rate in five instances, and HAGA fails to obtain a 100% filling rate
in three instances N10~N12. Comparing the N5 and C41–C43 instances of almost the



Appl. Sci. 2021, 11, 413 14 of 20

same scale, you will find that the N5 instance consumes a lot more time than the C41–C43
instances. For example, the calculation time of AGA [26] is 22.37 s on the C43 instance, but
it takes 33.98 s on the N5 instance. These indicate that solving N instances is more difficult
than solving the C instances, but the HAGA is still better than the two types of adaptive
methods AGA [26] and AGA [29] to solve the 2DRP problem.

Then, by comparing SGA and the adaptive genetic algorithm, we figure out that
AGA [26], AGA [29], and HAGA reduce the time by 90.46, 114.08, and 154.49 s, respectively
compared with SGA, and the average filling rate of the adaptive genetic algorithm is
generally higher than that of SGA. We compare the computational results of the three
adaptive genetic algorithms again, and it can be seen that the HAGA saves 64.03 s and
40.41 s in the average calculation time than AGA [26] and AGA [29], and it increases
the average filling rate by 0.1% and 0.05%, respectively. Therefore, it further shows that
the HAGA can better improve the convergence speed and filling rate for 2DRP, thereby
improving the packing efficiency and quality.

4.2. Computational Experiment for Non-Zero-Waste Instances

The 38 non-zero-waste instances including cgcut1-cgcut3, gcut1-gcut13, ngcut1-ngcut12,
and beng1-beng10 are evaluated to further verify the effectiveness of the HAGA. These
datasets have been used by other authors to verify the performance of the algorithm. Al-
though some of the area of the stock sheet is wasted in these instances, the optimal solution
of problem can be known from Ref. [43]. It should be noted that the filling rate needs to be
obtained through the (1− trim loss)× 100 formula conversion for the trim loss indicator
in Ref. [43]. The data can be downloaded from http://people.brunel.ac.uk/~mastjjb/jeb/
info.html.

Table 4 reports the comparison results of AGA [26], AGA [29], and HAGA for non-zero-
waste instances. From Table 4, we can observe that the number of instances in which HAGA,
AGA [26], and AGA [29] obtained the optimal filling rate is 22, 20, and 21, respectively. The
HAGA obtains the optimal filling rate except for cgcut3 on the cgcut1-cgcut3 instances,
ngcut6, ngcut9, and ngcut11 on the ngcut1-gcut12 instances, and beng10 on the beng1-
beng10 instances. The worst performance of HAGA is that it only obtains the optimal filling
rate on gcut1 and gcut3 for the gcut1-gcut13 instances. The filling rate of HAGA is not
lower than that of AGA [26] except for five instances (gcut5, gcut9, gcut11, gcut12, ngcut11).
Similarly, the filling rate of HAGA is not lower than that of AGA [29] except for six instances
(gcut2, gcut7, gcut9, gcut10, ngcut12, beng10). By comparing the computational results of
the three adaptive genetic algorithms, it can be observed that the HAGA saves 19.5 s and
15.8 s in average calculation time compared with AGA [26] and AGA [29], and it improves
the average filling rate by 0.2% and 0.06%, respectively. The computational results show
that the HAGA is still effective for non-zero-waste instances.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html


Appl. Sci. 2021, 11, 413 15 of 20

Table 3. Comparison of the filling rate (%) and calculation time (s) on the N instances.

Instances n Sheet
SGA AGA [26] AGA [29] HAGA

F/% Time/s F/% Time/s F/% Time/s F/% Time/s

N1 10 40× 40 100 1.57 100 1.23 100 1.3 100 0.94
N2 20 30× 50 100 6.89 100 4.65 100 4.23 100 3.37
N3 30 30× 50 100 14.31 100 11.72 100 10.86 100 9.46
N4 40 80× 80 99.75 56.63 100 20.59 100 19.55 100 16.9
N5 50 100× 100 99.4 77.01 100 33.98 99.93 60.8 100 27.61
N6 60 50× 40 99.64 152.57 100 135.93 100 123.56 100 41.2
N7 70 80× 100 99.45 207.05 99.86 184.59 99.95 158.22 100 114.96
N8 80 100× 80 99.16 227.67 99.89 190.09 100 92.47 100 47.28
N9 100 50× 150 98.76 323.84 100 224.58 100 183.23 100 131.4
N10 200 70× 150 98.63 1582.76 99.09 1454.21 99.28 1433.97 99.23 1378.05
N11 300 50× 150 98.39 2998.58 98.76 2728.4 98.87 2713.61 99.08 2724.25
N12 500 100× 300 97.67 7170.08 98.02 6743.56 98.26 6648.27 98.54 6469.66
N13 3152 640× 960 - - - - - - - -

Average 99.24 1068.25 99.64 977.79 99.69 954.17 99.74 913.76

Table 4. Comparison of the filling rate (%) and calculation time (s) on the non-zero-waste instances.

Instances n W H Opt. AGA [26] AGA [29] HAGA

F/% Time/s F/% Time/s F/% Time/s

cgcut1 16 10 23 97.8261 97.8261 2.4 97.8261 2.23 97.8261 1.31
cgcut2 23 70 63 98.5034 98.5034 6.33 98.5034 7.19 98.5034 4.17
cgcut3 62 70 636 99.9551 95.5931 291.99 95.5034 297.26 96.3971 293.18
gcut1 10 250 1016 64.3945 64.3945 1.09 64.3945 0.94 64.3945 0.27
gcut2 20 250 1133 96.9331 90.1407 78.9 91.7602 74.17 91.5223 72.21
gcut3 30 250 1803 90.4384 90.4384 117.58 90.4384 119.25 90.4384 111.95
gcut4 50 250 2934 99.7148 93.3675 217.78 94.1787 220.15 94.8336 212.34
gcut5 10 500 1172 93.0546 85.7871 33.64 87.1279 36.93 84.3447 33.86
gcut6 20 500 2514 98.0157 93.2039 70.29 93.5469 71.78 94.3003 69.82
gcut7 30 500 4641 86.3948 84.1737 117.04 84.7101 119.29 84.5164 119.01
gcut8 50 500 5703 98.3855 94.121 225.67 94.4197 219.42 94.7485 215.17
gcut9 10 1000 2022 99.9916 95.1696 33.89 94.2799 41.33 92.6305 34.77

gcut10 20 1000 5356 99.9884 91.2531 73.14 91.9732 77.88 91.6382 71.28
gcut11 30 1000 6537 99.9927 94.7406 112.19 93.6346 116.25 93.9769 113.58
gcut12 50 1000 12522 99.9999 92.012 216.88 92.3138 210.78 91.4614 227.23
gcut13 32 1000 4772 99.9966 94.5067 143.68 94.2138 150.77 96.1827 127.13

ngcut1 10 10 23 82.6087 82.6087 1.18 82.6087 0.87 82.6087 0.26
ngcut2 17 10 30 92.3333 92.3333 3.89 92.3333 3.27 92.3333 2.34
ngcut3 21 10 28 98.9286 98.9286 4.25 98.9286 4.66 98.9286 2.99
ngcut4 7 10 20 81.0000 81.0000 0.69 81.0000 0.5 81.0000 0.16
ngcut5 14 10 36 98.0556 98.0556 48.57 98.0556 50.41 98.0556 45.2
ngcut6 15 10 29 100.000 93.7034 61.22 94.3448 53.94 94.8276 53.59
ngcut7 8 20 20 43.7500 43.7500 0.39 43.7500 0.34 43.7500 0.2
ngcut8 13 20 32 98.9063 98.9063 45.8 98.9063 43.32 98.9063 5.97
ngcut9 18 20 49 99.3878 95.9147 61.62 96.1224 63.4 97.3061 31.49
ngcut10 13 30 80 71.6667 71.6667 0.64 71.6667 0.6 71.6667 0.29
ngcut11 15 30 50 98.8667 92.3333 51.73 91.0667 46.99 91.3067 37.85
ngcut12 22 30 87 87.9693 85.6705 81.68 87.4866 76.49 87.9693 40.19

beng1 20 25 30 98.8000 98.8000 4.83 98.8000 4.67 98.8000 3.19
beng2 40 25 57 99.6491 99.6491 21.58 99.6491 22.49 99.6491 16.42
beng3 60 25 84 99.5238 99.5238 84.97 99.5238 73.34 99.5238 49.58
beng4 80 25 107 99.9252 99.9252 30.63 99.9252 34.04 99.9252 20.39
beng5 100 25 134 99.4030 99.4030 196.13 99.4030 228.56 99.4030 116.13
beng6 40 40 36 98.6111 98.6111 10.84 98.6111 14.92 98.6111 12.6
beng7 80 40 67 99.7388 99.7388 53.03 99.7388 42.23 99.7388 24.97



Appl. Sci. 2021, 11, 413 16 of 20

Table 4. Cont.

Instances n W H Opt. AGA [26] AGA [29] HAGA

F/% Time/s F/% Time/s F/% Time/s

beng8 120 40 101 99.6782 98.9697 184.26 98.8132 193.07 99.6782 123.85
beng9 160 40 126 99.3651 98.8396 1063.11 99.3651 880.52 99.3651 735.11
beng10 200 40 156 99.6314 98.6238 1197.35 98.7903 1206.47 98.7342 1178.83

Average 91.6365 130.29 91.7819 126.6 91.8369 110.76

4.3. Compare the Results with Other Algorithms

We compare the proposed algorithm with the algorithms in Ref. [43–45]. A hybrid sim-
ulated annealing algorithm (HSA) proposed by Leung et al. [43] uses a greedy strategy and
simulated annealing to obtain an improved solution. A least-waste-first heuristic algorithm
(LWF) proposed by Wei et al. [44] presents a least wasted first heuristic algorithm to find
the desirable solution. An iterative bidirectional heuristic placement (IBHP) proposed by
Shiangjen et al. [45] combines the constructive heuristic algorithms of bidirectional heuristic
placement (BHP) and iterated local search (ILS) with a shift strategy to improve the solution.
Considering that Ref. [44] lacks some test instances, the results of LWF and HSA are taken
directly from Ref. [43]. The HSA and LWF in C++ programming language were run on
a Dell GX270 with 2.60 GHz CPU and 512 MB memory. The IBHP in C programming
language was performed on an Intel Core i5 CPU at 2.90 GHz with 4 GB of RAM running
on the Ubuntu 12.04 operating system. The comparisons of the average filling rate and
the average calculation time between LWF, HSA, IBHP, and HAGA are shown in Table 5.
The ‘-’ in Table 5 means that the results are not reported by the corresponding algorithm.

Table 5. Comparison of results in least-waste-first heuristic algorithm (LWF), hybrid simulated
annealing algorithm (HSA), iterative bidirectional heuristic placement (IBHP), and hybrid adaptive
genetic algorithm (HAGA).

Instances
LWF HSA IBHP HAGA

F/% Time/s F/% Time/s F/% Time/s F/% Time/s

J1-J2 - - - - - - 99.96 14.45
C11-C73 99.4444 36.79 99.8078 41.27 99.9273 - 99.98 232.29
N1-N12 99.748 29.83 99.9113 35.23 99.97 - 99.74 913.76
cgcut1-
cgcut3 95.9151 33.42 96.5341 40.00 97.0895 - 97.5755 99.55

gcut1-
gcut13 90.6318 42.89 89.5653 60.02 89.6397 - 89.6145 108.36

ngcut1-
ngcut12 85.5559 2.76 85.1418 25.01 85.3714 - 86.5549 18.38

beng1-
beng10 99.3778 6.07 99.3312 6.05 99.4326 - 99.3429 228.12

From Table 5, it can be observed that the average filling rate of HAGA on the C11-C73,
cgcut1-cgcut3, and ngcut1-ngcut12 instances is 99.8%, 97.5755%, and 86.5549%, respectively,
which outperforms LWF, HSA, and IBHP. Compared with LWF for these instances, the
average filling rate of HAGA can be increased by 0.5356%, 1.6604%, and 0.999%, respec-
tively. The maximum average filling rate can be improved by 1.6604% on cgcut1-cgcut3
for LWF. The average filling rate of HAGA is better than HSA except for N1-N12. Com-
pared with IBHP for C11-C73, cgcut1-cgcut3, and ngcut1-ngcut12 instances, the average
filling rate of HAGA can be increased by 0.0527%, 0.486%, and 1.1835%, respectively.
Therefore, the HAGA achieved better quality for C11-C73, cgcut1-cgcut3, and ngcut1-
ngcut12 instances within reasonable time, with the elimination of equipment and language
differences.



Appl. Sci. 2021, 11, 413 17 of 20

However, the average filling rate of HAGA on the N1-N12, gcut1-gcut13, and beng1-
beng10 instances is worse than LWF and IBHP. For example, the average filling rate of
HAGA is only 0.23%, 0.0252%, and 0.0897% lower on these instances for IBHP, respectively.
Overall, the HAGA is relatively superior to these three algorithms within a reasonable
duration of computational time, especially on the C11-C73, cgcut1-cgcut3, and ngcut1-
ngcut12 instances.

In order to observe the performance of different changes of the proposed algorithm,
we just run the proposed algorithm on the N1-N12 instances. We first set c = 0.1 and
perform the experiments with λ = {0, 0.3, 0.6, 0.9, 1}. For each λ, the calculation result
is the average of twenty operations for each instance. Figure 8 with the y-axis repre-
senting the average filling rate reports the results of different λ. From Figure 8, we can
observe that λ = 0.6 is better. Now, we fix λ = 0.6 and perform the experiments with
c = {0.05 , 0.1, 0.2, 0.4, 0.8, 1.6}. Similarly, Figure 9 shows the computational results of
different c. From Figure 9, we can observe that c = 0.2 is better.

Figure 8. The effect of HAGA parameter λ.

Figure 9. The effect of HAGA parameter c.

Furthermore, from Figures 8 and 9, it can be seen that the change of parameters has a
greater impact on the performance of HAGA as the scale of the instance increases. How-
ever, the parameter changes for different problems may achieve better results. In addition,
if λ = 0, the algorithm just changes to AGA [26] from the local perspective of the individual
fitness; if λ= 1, the algorithm happens to be an adaptive genetic algorithm that changes
from the overall perspective of the population evolution. We can see that the proposed
algorithm, HAGA, has better performance. According to the results of parameter changes,
we can establish a consistent parameter setting for HAGA to obtain good benefits.



Appl. Sci. 2021, 11, 413 18 of 20

5. Conclusions

In this paper, in order to better solve the 2DRP problem, we analyzed the respective
shortcomings of the current two types of adaptive genetic algorithms in detail and pro-
posed an improved method named hybrid adaptive genetic algorithm (HAGA). In the
process of providing the solution, the crossover probability and mutation probability of
chromosomes are adaptively adjusted according to the collective effect of individual fitness
and population evolution process. When using HAGA, the initial population is constructed
through a combination of sorting rules and random generation, and operators with better
performance are fully used for selection, crossover, and mutation. The heuristic lowest
horizontal line algorithm is used as the positioning algorithm to place rectangles. Through
continuous iterative optimization of the algorithm, the final packing layout and sheet filling
rate are obtained.

The proposed improved method is compared with other representative algorithms.
The computational experiments on a wide range of benchmark instances from zero-waste
to non-zero-waste problems are implemented. The computational results show that HAGA
outperforms the comparison of two adaptive genetic algorithms. Compared with some
recent algorithms, the results reveal that HAGA is relatively better than HSA, LWF, and
IBHP, especially on the C11-C73, cgcut1-cgcut3, and ngcut1-ngcut12 instances. Moreover,
in view of observing the performance of different changes, the experiments were designed
a series of λ and c parameters to determine the consistent parameter settings for HAGA.
The presented algorithm, which works adaptively through the two perspectives of indi-
vidual and population evolution, can also be applied to cutting, the Travelling Salesman
Problem (TSP), Vehicle Routing Problem (VRP), etc. In the future, the focus of research is
to further improve the calculation speed and filling rate of the algorithm for 2DRP problem
and strive to find a satisfactory solution for larger scale and difficult benchmark instances.

Author Contributions: Conceptualization, Y.-B.L. and X.X.; methodology, H.-B.S. and Y.-B.L.; soft-
ware, H.-B.S. and X.X.; validation, H.-B.S. and Y.-B.L.; data curation, Y.-R.L. and X.X.; writing—
original draft, Y.-R.L. and H.-B.S.; writing—review and editing, H.-B.S. and Y.-B.L.; supervision,
Y.-B.L. and X.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Key Research and Development Program of China
(No.2018YFF0212201).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The test source data comes from an existing data set. The test source
data can be downloaded from http://people.brnel.ac.uk/~mastjjb/jeb/info.html or related literature.
The test source data does not belong to us. The experimental result data is calculated by applying the
algorithm of this paper to the test source data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, M.; Tang, X.; Zeng, Z.; Liu, S. An efficient heuristic algorithm for two-dimensional rectangular packing problem with

central rectangle. J. Ind. Manag. Optim. 2020, 16, 495. [CrossRef]
2. He, K.; Ji, P.; Li, C. Dynamic reduction heuristics for the rectangle packing area minimization problem. Eur. J. Oper. Res. 2015,

241, 674–685. [CrossRef]
3. Chen, M.; Wu, C.; Tang, X.; Peng, Z.; Liu, S. An efficient deterministic heuristic algorithm for the rectangular packing problem.

Comput. Ind. Eng. 2019, 137, 106097. [CrossRef]
4. Leung, T.W.; Chan, C.K.; Troutt, M.D. Application of a mixed simulated annealing-genetic algorithm heuristic for the two-

dimensional orthogonal packing problem. Eur. J. Oper. Res. 2003, 145, 530–542. [CrossRef]
5. Bortfeldt, A. A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. Eur. J. Oper. Res. 2006,

172, 814–837. [CrossRef]
6. Bansal, J.C.; Deep, K. A modified binary particle swarm optimization for knapsack problems. Appl. Math. Comput. 2012,

218, 11042–11061. [CrossRef]
7. Zhu, Y.; Luo, Y.; Tan, K.C.; Qiu, X. An intelligent packing programming for space station extravehicular missions. IEEE Comput.

Intell. Mag. 2017, 12, 38–47. [CrossRef]

http://people.brnel.ac.uk/~mastjjb/jeb/info.html
http://doi.org/10.3934/jimo.2018164
http://doi.org/10.1016/j.ejor.2014.09.042
http://doi.org/10.1016/j.cie.2019.106097
http://doi.org/10.1016/S0377-2217(02)00218-7
http://doi.org/10.1016/j.ejor.2004.11.016
http://doi.org/10.1016/j.amc.2012.05.001
http://doi.org/10.1109/MCI.2017.2742759


Appl. Sci. 2021, 11, 413 19 of 20

8. Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale optimization algorithm.
Soft Comput. 2018, 22, 1–15. [CrossRef]

9. Khalilpourazari, S.; Khalilpourazary, S. Optimization of time, cost and surface roughness in grinding process using a robust
multi-objective dragonfly algorithm. Neural Comput. Appl. 2020, 32, 3987–3998. [CrossRef]

10. Salgotra, R.; Singh, U. The naked mole-rat algorithm. Neural Comput. Appl. 2019, 31, 8837–8857. [CrossRef]
11. Kaur, K.; Singh, U.; Salgotra, R. An enhanced moth flame optimization. Neural Comput. Appl. 2020, 32, 2315–2349. [CrossRef]
12. Baker, B.S.; Coffman, E.G., Jr.; Rivest, R.L. Orthogonal packings in two dimensions. SIAM J. Comput. 1980, 9, 846–855. [CrossRef]
13. Fırat, H.; Alpaslan, N. An effective approach to the two-dimensional rectangular packing problem in the manufacturing industry.

Comput. Ind. Eng. 2020, 148, 106687. [CrossRef]
14. Araujo, L.J.P.; Panesar, A.; Ozcan, E.; Atkin, J.; Baumers, M.; Ashcroft, I. An experimental analysis of deepest bottom-left-fill

packing methods for additive manufacturing. Int. J. Prod. Res. 2019, 58, 6917–6933. [CrossRef]
15. Liu, D.; Teng, H. An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles. Eur. J. Oper. Res. 1999,

112, 413–420. [CrossRef]
16. Burke, E.K.; Kendall, G.; Whitwell, G. A new placement heuristic for the orthogonal stock-cutting problem. Oper. Res. 2004,

52, 655–671. [CrossRef]
17. Yang, J. Two-dimensional irregular parts packing with genetic algorithm. J. Comput. Des. Comput. Graph. 2002, 14, 467–470.
18. Hopper, E.; Turton, B.C.H. An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem.

Eur. J. Oper. Res. 2001, 128, 34–57. [CrossRef]
19. Hopper, E. Two-Dimensional Packing Utilising Evolutionary Algorithms and Other Meta-Heuristic Methods. Ph.D. Thesis,

University of Wales, Cardiff, UK, 2000.
20. Burke, E.K.; Kendall, G.; Whitwell, G. A simulated annealing enhancement of the best-fit heuristic for the orthogonal stock-cutting

problem. INFORMS J. Comput. 2009, 21, 505–516. [CrossRef]
21. He, K.; Huang, W.; Jin, Y. An efficient deterministic heuristic for two-dimensional rectangular packing. Comput. Oper. Res. 2012,

39, 1355–1363. [CrossRef]
22. Wei, L.; Zhu, W.; Lim, A.; Chen, X. An adaptive selection approach for the 2D rectangle packing area minimization problem.

Omega 2018, 80, 22–30. [CrossRef]
23. Xia, Y.C.; Chen, Q.L.; Song, R.K. Packing of rectangles using adaptive genetic simulated annealing algorithm. Comput. Eng. Appl.

2018, 54, 229–232.
24. Xu, H.J.; Tan, H.S.; Hu, X.M. Research of packing method based on AGA and concentrated surplus rectangle area strategy. Appl.

Res. Comput. 2016, 33, 3235–3239.
25. Srinivas, M.; Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. 1994,

24, 656–667. [CrossRef]
26. Ren, Z.W.; San, Y. Improved adaptive genetic algorithm and its application research in parameter identification. J. Syst. Simul.

2006, 1, 41–43.
27. Xiang, X.; Yu, C.; Xu, H.; Zhu, S.X. Optimization of heterogeneous container loading problem with adaptive genetic algorithm.

Complexity 2018, 2018, 2024184. [CrossRef]
28. An, H.; Chen, S.; Huang, H. Laminate stacking sequence optimization with strength constraints using two-level approximations

and adaptive genetic algorithm. Struct. Multidiscip. Optim. 2015, 51, 903–918. [CrossRef]
29. Jiang, J.; Yin, S. A Self-Adaptive Hybrid Genetic Algorithm for 3D Packing Problem. Glob. Congr. Intell. Syst. IEEE 2012, 76–79.

[CrossRef]
30. Bortfeldt, A. A reduction approach for solving the rectangle packing area minimization problem. Eur. J. Oper. Res. 2013,

224, 486–496. [CrossRef]
31. Deng, J.K.; Wang, L.; Yin, A.H. A quasi-human global optimization algorithm for solving the two dimensional rectangle packing

problem. Comput. Eng. Sci. 2018, 40, 331–340.
32. Wei, L.; Oon, W.C.; Zhu, W.; Lim, A. A skyline heuristic for the 2D rectangular packing and strip packing problems. Eur. J. Oper.

Res. 2011, 215, 337–346. [CrossRef]
33. Wei, P.; Liu, B. The rectangular packing and optimization on parallel genetic algorithm. Modul. Mach. Tool Autom. Manuf. Tech.

2011, 1, 78–82.
34. Huang, K.M. Analysis and improvement on roulette wheel method of genetic algorithm. Comput. Eng. Appl 2009, 45, 60–63.
35. Guo, H.; Zhou, Y. An algorithm for mining association rules based on improved genetic algorithm and its application. Int. Conf.

Genet. Evol. Comput. IEEE 2009, 117–120. [CrossRef]
36. Dong, D.W.; Yan, Y.H.; Zhao, Y. Adaptive genetic simulated annealing algorithm in optimal layout of rectangular parts. N. A.

Mech. Eng. 2013, 24, 2499–2504.
37. Jakobs, S. On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 1996, 88, 165–181. [CrossRef]
38. Christofides, N.; Whitlock, C. An algorithm for two-dimensional cutting problems. Oper. Res. 1977, 25, 30–44. [CrossRef]
39. Beasley, J.E. An exact two-dimensional non-guillotine cutting tree search procedure. Oper. Res. 1985, 33, 49–64. [CrossRef]
40. Beasley, J.E. Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res. Soc. 1985, 36, 297–306. [CrossRef]
41. Bengtsson, B.E. Packing rectangular pieces—A heuristic approach. Comput. J. 1982, 25, 353–357. [CrossRef]

http://doi.org/10.1007/s00500-016-2442-1
http://doi.org/10.1007/s00521-018-3872-8
http://doi.org/10.1007/s00521-019-04464-7
http://doi.org/10.1007/s00521-018-3821-6
http://doi.org/10.1137/0209064
http://doi.org/10.1016/j.cie.2020.106687
http://doi.org/10.1080/00207543.2019.1686187
http://doi.org/10.1016/S0377-2217(97)00437-2
http://doi.org/10.1287/opre.1040.0109
http://doi.org/10.1016/S0377-2217(99)00357-4
http://doi.org/10.1287/ijoc.1080.0306
http://doi.org/10.1016/j.cor.2011.08.005
http://doi.org/10.1016/j.omega.2017.09.002
http://doi.org/10.1109/21.286385
http://doi.org/10.1155/2018/2024184
http://doi.org/10.1007/s00158-014-1181-0
http://doi.org/10.1109/gcis.2012.34
http://doi.org/10.1016/j.ejor.2012.08.006
http://doi.org/10.1016/j.ejor.2011.06.022
http://doi.org/10.1109/wgec.2009.15
http://doi.org/10.1016/0377-2217(94)00166-9
http://doi.org/10.1287/opre.25.1.30
http://doi.org/10.1287/opre.33.1.49
http://doi.org/10.1057/jors.1985.51
http://doi.org/10.1093/comjnl/25.3.353


Appl. Sci. 2021, 11, 413 20 of 20

42. Peng, B.T.; Zhou, Y.W. Recursive heuristic algorithm for the 2D rectangular strip packing problem. J. Softw. 2012, 23, 2600–2611.
[CrossRef]

43. Leung, S.C.H.; Zhang, D.; Zhou, C.; Wu, T. A hybrid simulated annealing metaheuristic algorithm for the two-dimensional
knapsack packing problem. Comput. Oper. Res. 2012, 39, 64–73. [CrossRef]

44. Wei, L.; Zhang, D.; Chen, Q. A least wasted first heuristic algorithm for the rectangular packing problem. Comput. Oper. Res. 2009,
36, 1608–1614. [CrossRef]

45. Shiangjen, K.; Chaijaruwanich, J.; Srisujjalertwaja, W.; Unachak, P.; Somhom, S. An iterative bidirectional heuristic placement
algorithm for solving the two-dimensional knapsack packing problem. Eng. Optimiz. 2018, 50, 347–365. [CrossRef]

http://doi.org/10.3724/SP.J.1001.2012.04187
http://doi.org/10.1016/j.cor.2010.10.022
http://doi.org/10.1016/j.cor.2008.03.004
http://doi.org/10.1080/0305215X.2017.1315571

	Introduction 
	Problem Statement 
	Improved Adaptive Genetic Algorithm 
	Encoding and Population Initialization 
	Heuristic Placement Algorithm 
	Fitness Function and Selection Operator 
	Adaptive Crossover Operator and Mutation Operator 
	Termination Rules 
	Related Discussion 

	Computational Experiments 
	Computational Experiment for Zero-Waste Instances 
	Computational Experiment for J  Instances 
	Computational Experiment for C  Instances 
	Computational Experiment for N  Instances 

	Computational Experiment for Non-Zero-Waste Instances 
	Compare the Results with Other Algorithms 

	Conclusions 
	References

