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Abstract: We propose a new kind of Schrödinger cat state introduced as a superposition of spin
coherent states in the framework of noncommutative spaces. We analyze the nonclassical features
for these noncommutative deformed states in terms of the main physical parameters. The physical
importance of deformed states is that they provide a convenient description of a large set of laser
systems. As an application, we develop the Jaynes–Cummings model by considering the interaction
among atoms and cat state fields associated to deformed spin algebras. In this context, we show
the dynamical behavior of the nonlocal correlation and nonclassical properties in these quantum
systems.

Keywords: deformed coherent states; cat deformed states; noncommutative spaces; deformed su(2)
algebra; real and ideal lasers; photon antibunching; sub-Poissonian photon statistics; entanglement

1. Introduction

In almost all the areas of physics, the theory of coherent states (CSs) has been used
after Schrödinger first built quantum states which are the closest to replicate the classical
behavior [1]. Glauber was first to observe the notion of coherence linked to these physical
states [2,3]. Similar states were also reinstated by Klauder [4,5], with a widely accepted view
that the CSs are linked to the harmonic oscillators (HOs). Due to their vital characteristics,
these CSs were simplified to other quantum systems from either a mathematical or physical
perspective [6–8]. Gilmore [9] and Perelomov [10] separately presented CSs linked to any
set, not only to the Heisenberg group for an HO. An example of an occurrence of these
CSs is the spin coherent states (SCSs) connect with su(2) group. These CSs explain various
systems and have several usages in statistical mechanics, quantum optics, and physics
of condensed matter [6–8,11–13]. Moreover, the quantum groups have been used as
a mathematical explanation of deformed Lie algebras [14] that made the construction
of the deformed coherent states (DCSs) possible. The DCSs are presented as the actual
expansion of the concept of CSs. A general deformation of the Glauber CSs was created [15]
as connected to deformed quantum HOs. Similarly, deformation of the SCSs is created
as states connected to the deformed spin algebra suq(2) [16,17]. Over the last decades,
these DCSs have attracted a great attention due to their potential applications in diverse
branches of the physics [18–21]. It has been shown experimentally that the real lasers,
bunched, and antibunched lights provide photon distributions that can be sub-Poissonian
or super-Poissonian [22,23]. On the other hand, there are interesting quantitative effects,
and related states that are difficult to be prepared and detected, namely superposition
quantum states displaying interference effects [24]. Such states exhibit the surprising
results of the superposition principle. Furthermore, superposed and nonlinear CSs can be
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generated within the motion of trapped ions [25]. The lights with nonclassicality properties
are actually a popular area of research, and scientists are interested in further revealing the
fundamental truth of the quantum world.

In the Jaynes–Cummings model (JCM) [26], the interaction involving radiation and
matter is the most effective and simplest system in quantum optics which explains the
interaction of two-level atoms with an electromagnetic field. Mathematically, JCM is well
described and can as well be resolved precisely [27]. Furthermore, a recent technological
breakthrough that made the production of high-Q cavities possible with a possibility to
scientifically understand this relatively ideal system for a Rydberg atom in a supercon-
ductor cavity [28]. Therefore, much interest has been given to the investigation of JCM
and several fascinating quantum occurrences have been speculated: For example Rabi
oscillations [29], revival–collapse phenomena of atomic population inversion [30], photon
anti-bunching [31], squeezing of information entropy [32], and the atomic dipoles [33].

Quantum entanglement is the most important aspects that differentiate quantum
mechanics from the classical correlative. It is a very important aspect that carries out a
significant function in different areas of the quantum information theory, for example,
quantum key distribution [34–38], quantum computing [39] and teleportation [40–42].
Hence, the classification and the quantification of the quantum entanglement have gained
ample interest and became highly researched areas in the last few decades. To measure the
entanglement, a series of quantifiers have been suggested, for example, concurrence [43,44],
entanglement of formation [45,46] and linear entropy [47,48]. The essential question for the
quantum entanglement is to analyze if a particular state of the whole system, comprising
of more than one subsystem, is entangled or not and it is factorizable if it can be given as a
product of the subsystem states.

The aim of this manuscript is to introduce a new kind of Schrödinger cat states using
the suq(2) algebra. We investigate the nonclassical properties of these DCSs with respect
to the main physical parameters, and we consider the JCM to describe the interaction
among two-level atoms and cat state fields associated to suq(2) algebra. Finally, we study
the dynamical behavior of quantifiers of nonclassicality and nonlocal correlation for the
considered bipartite quantum system.

The paper is organized as follows. In Section 2 we describe the deformed spin algebra
and its properties. In Section 3, we introduce the SCSs and new kind of cat states in the
framework of deformed spin algebra. In Section 4, the physical features of these DCSs
are examined through the Mandel’s parameter. Moreover, we study the interaction of a
two-level atom with a field initially defined in deformed spin coherent states (DSCSs).
The conclusion of this paper is given in the last section.

2. Deformed Spin Algebra

Quantized universal enveloping algebras refer to some specific deformations of Lie
algebras. A considerable example is the case of deformed spin algebra (DSA), which
was firstly introduced by Sklyanin [49]. Many interesting applications were developed
in different areas of the physics using the bosonic realization in terms of the deformed
operators, and the DSA has attracted great interest in the framework of mathematical and
physical problems [50]. The generators Jq

± and Jq
z are used to generate the suq(2) algebra

with the following commutation relations,

[Jq
z , Jq
±] = ±Jq

±; [Jq
+, Jq

−] = [2Jq
z ]q, (1)

where the function “[]” expresses the deformation of the algebra. In fact, by a specific
choice of this function we have a particular deformation of the spin algebra. In the case
[y]q = y we get the non-deformed algebra, and we consider the known deformation of the
spin algebra for the following function [13,14]

[y]q =
1− qy

1− q
. (2)
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A significant property in the deformation version can be obtained for a specific values
of the parameter q. For q = 1 we recover the non-deformed algebra.

The generators Jq
± and Jq

z act on the orthonormal basis of the representation space
|j, m〉 as

Jq
z |j, m〉 = m |j, m〉 ,

Jq
±|j, m〉 =

(
[j∓m]q[j±m + 1]q

) 1
2 |j, m± 1〉

(3)

with m = j, . . . ,−j.
As commonly reported, it is possible to map the suq(2) operators to HO operators by

using the Jordan-Schwinger map [51,52] and Holstein–Primakoff realization (HPR) [53].
These realizations can be generalized, making it possible to achieve the operators of the
deformed suq(2) algebra by annihilation and creation operators of the deformed Hos. This
is a significant result as it permits the deformation of the HOs to relate with the deformation
of su(2) algebra [54]. For this study, the deformation of the HPR will be applied as:

Jq
+ = a†

q

√
[2j− N]q, Jq

− =
√
[2j− N]q aq, Jq

z = N − j, (4)

where a†
q , aq denote the deformed creation and annihilation operators. These operators act

on the Fock states |n〉 as

a+q |n〉 =
√
[n + 1]q|n + 1〉, aq|n〉 =

√
[n]q|n− 1〉, N|n〉 =

√
[n]q|n〉, (5)

and obeying the following commutation relations

aqa+q − qa+q aq = 1,
[

N, a+q
]
= a+q ,

[
N, aq

]
= −aq, for 0 < q ≤ 1. (6)

The states |n〉, n = 0, 1, . . . , comprise the complete orthonormal basis of the irreducible
representation space.

3. Deformed Schrödinger Cat Spin Coherent States

A SCS is obtained through acting a displacement operator on the slightest weight
state of the space basis [7,9]. Nevertheless, for a deformed algebra, it is not insignificant to
create such an operator as the framework of the algebra is not conserved. The DSCSs are
introduced as

|z, j〉q = Nq

(
|z|2
)

EzJq
+

q |j,−j〉 , z ∈ C , (7)

where, we considered the deformed exponential

Ex
q =

∞

∑
m=0

xm

[m]q!
, [m]q! = [m]q[m− 1]q . . . [1]q, [0]! = 1. (8)

The normalization function is given by

Nq

(
|z|2
)
=

1√
(1 + |z|2)2j

q

, (9)

where, the Newton’s deformed binomial formula is used

(x + y)n
q :=

n

∑
m=0

[nm]qxn−mym. (10)
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Here, the deformed binomial function is,

[ n
m]q =

[n]q!

[n]q![n−m]q!
for n ≥ m. (11)

Using these formulations, the generalized spin coherent is written as:

|z, j〉q =
(
(1 + |z|2)2j

q

)− 1
2

j

∑
m=−j

(
[

2j
j+m]q

) 1
2
z(m+j)|j, m〉. (12)

To examine the physical features of the deformed states, we display the basis states
|j, m〉 as a function of the Fock states |n〉 (|j, m〉 ∼ |n〉). To do this, we use the deformation
of HPR given in Equation (4). Applying this realization, we obtain the change of variable
n = j + m, which When used in Equation (11), gives the following deformed states

|z, j〉q =
(
(1 + |z|2)2j

q

)− 1
2

2j

∑
n=0

(
[
2j
n ]q

) 1
2 zn|n〉. (13)

The Klauder’s criteria for the DSCSs are widely studied in [55]. The realization of the
suq(2) quantum algebra with respect to the deformed HO operators has originated loads
of studies in different areas. The DSCSs have been employed to explain a sizeable group of
quantum systems made from different potentials, for example, Morse, Pöschl-Teller and
infinite potentials.

Let us now introduce the deformed Schrödinger cat spin states and study their sta-
tistical properties of photons. Here, we consider superposition of two DSCSs, which are
often called su(2) Schrödinger cat states, and discuss the physical properties of the photon
statistics. We define su(2) Schrödinger cat states as

|z, j, Φ〉q = N
(
|z|2, j, Φ

) [
|z, j〉q + eiΦ| − z, j〉q

]
, (14)

where 0 ≤ Φ ≤ 2π is an adjustable angle and the normalization constant Nq
(
|z|2, j, Φ

)
is obtained from the normalization condition q〈z, j, Φ|z, j, Φ〉q = 1,

Nq

(
|z|2, j, Φ

)
=

1√
2

1 +

(
1− |z|2

)2j
q

(1 + |z|2)2j
q

cos Φ

−
1
2

. (15)

The deformed cat spin states exhibit a richer structure than the non-DSCSs. We ex-
amine the physical features of these states by evaluating the Mandel’s parameter [56].
This parameter is given by

Mp =
〈(∆N)2〉 − 〈N〉

〈N〉 , (16)

where 〈N〉 is the mean photon number and 〈(∆N)2〉 is the photon number variance.
This parameter depends on z, j, q and Φ. Let’s start with the non-deformed case that cor-
responds to the CSs defined by Equation (13). Figure 1, displays the graph of Mandel’s
Mp parameter in terms of |z| for specific values of the parameters q and j. We can see from
the first graph that Mp < 0 for various values of the physical parameters. Interestingly,
the parameter Mp decreases with |z| and approaches the value −1 as |z| becomes signifi-
cantly large. This shows that the DSCSs are always sub-Poissonian and they are closest to
classical states (photon states with Poissonian distribution) in the case of q = 1 with small
values of j.
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Figure 1. The parameter Mp of the spin coherent states (SCSs) in the context of suq(2) algebra, given by Equation (11),
as function of |z| for specific values of the deformed parameter q and j. (a) is for j = 1, (b) is for j = 2, (c) is for j = 4,
and (d) is for j = 6. Black (solid line) corresponds to q = 1 which displays the case of SCSs, blue (dashed line) corresponds
to q = 0.3, and red (dotted-dashed line) corresponds to q = 0.8. The values of the parameter Mp are always negative in
terms of |z|, q and j, displaying a sub-Poissonian distribution of photons.

In what follows, we consider the deformed Schrödinger cat states corresponding to
Equation (14) and show their statistical properties. Figure 2 displays the variation of the
Mandel’s MP parameter as a function of |z| for various values of q and Φ with j = 2.
The Mandel’s parameter is significantly affected by the value of the phase Φ. We see from
the Figure 2a,c, corresponding to the cases Φ = 0 and Φ = π/4, the deformed Schrödinger
cat states exhibit super-Poissonian and sub-Poissonian distributions. We mention an
interesting property of the states, where the Mandel’s parameter depends on the values
of the deformed parameter q at |z| = 0. For the other cases where Φ = π/2 and Φ = π,
as shown in Figure 2b,d, the Mandel’s parameter of the deformed cat states satisfies Mp < 0
providing the same distribution of the photons as in the case of the DSCSs.
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Figure 2. The parameter Mp of the SCSs in the context of suq(2) algebra, defined in Equation (13), in terms of |z| for specific
values of the deformed parameter q with j = 2. (a) is for Φ = 0, (b) is for Φ = π/2, (c) is for Φ = π/4, and (d) is for Φ = π.
Black (solid line) corresponds to q = 1 which displays the case of ordinary SCSs, blue (dashed line) corresponds to q = 0.3,
and red (dotted-dashed line) corresponds to q = 0.8. The parameter Mp is negative or positive depending of values of the
physical parameters, exhibiting sub-Poissonian and super-Poissonian distribution of photons.

4. Interactions of a Two-Level Atom with a Field in the Framework of su2(2) Algebra

We consider an atomic system relating to a single field state described as the super-
position of DSCSs. Let |e〉 and |g〉 represent the upper state and lower state of the atom.
The interaction Hamiltonian is expressed as

ĤI = }µ
(

Jq
−|e〉〈g|+ Jq

+|g〉〈e|
)

, (17)

where µ represents the atom–field coupling constant and Jq
−(Jq

+) is the lowering (raising)
operator in the quantized field.

We assume that the two-level atom is firstly made in the upper state and the quantized
field in the deformed cat spin coherent states (DCSCSs) in the context of HPR. The principle
of linear superposition is the core of quantum mechanics via the control of the features of the
single states that make them less or more pronounced. Considering the initial state of the
bipartite system as a product state of quantum subsystems |ψ(0)〉AF = |ψ(0)〉A ⊗ |ψ(0)〉F.
The wave function of the atom–field system is expended with respect to the states |g, n+ 1〉
and |e, n〉. The atom–field state at subsequent time t is given as

|ψ(t)〉AF =
∞

∑
n=0

[
Ae, n|e, n〉+ Ag, n+1|e, n + 1〉

]
, (18)
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where the coefficients Ag, n+1(t) and Ae, n(t) are the probability amplitudes of the atom,
which satisfy the two coupled differential equations obtained from the Schrödinger equation

i
d
dt

Ae, n(t) = g
√
[2j− N]q

√
[n + 1]qAg, n+1(t)

i
d
dt

Ag, n+1(t) = g
√
[2j− N]q

√
[n + 1]qAe, n(t)

The values of Ag, n+1(0) and Ae, n(0) are obtained from the preliminary requirements.
According to the two-level atom dynamics, the probabilities are significant when the
two-level atom is in the excited state, and these possibilities are defined by |Ag, n+1|2 and
|Ae, n|2 for t > 0. On this point, a measurable inversion population W was described as the
difference on the probability when the atomic system is in the ground and excited state.
Since the Hamiltonian operator of the atom is proportional to the operator |g〉〈g| − |e〉〈e|,
the population inversion is precisely the atomic energy and it is expressed as

W = −Tr[σzρA]

=
∞
∑

n=0

(
|Ae, n|2 − |Ag, n+1|2

)
. (19)

To quantify the entanglement for state of the atom–field system, the von Neumann
entropy is introduced, which is utilized as proper measure of the disorder and purity of a
quantum state. In this work, we are going to examine the purity for the subsystem state
acquired from the bipartite state expressed in Equation (17), ρ̂AF(t) = |ψ(t)〉AF AF〈ψ(t)|,
by making a trace over one of the subsystem space. If t = 0, the bipartite system is in a
pure state and therefore the subsystems possess the same entropy function throughout at
subsequent times, i.e., S = SA(t) = SF(t). To obtain the entanglement evolution for the
bipartite system state, the quantum entropy of one subsystem was evaluated. Applying
Equation (17) and SF(t) = −Tr(ρ̂F ln ρ̂F) the degree of entanglement is obtained as a
function of the factors Ce, n and Cg, n+1:

SF(t) = −
[
∆+

F ln
(
∆+

F
)
+ ∆−F ln

(
∆−F
)]

, (20)

where

∆±F =
1
2

(
1±

√
(〈β|β〉 − 〈γ|γ〉)2 + 4|〈β|γ|2

)
, (21)

with 〈β|β〉 = ∑∞
n=0 |Ae, n|2, 〈γ|γ〉 = ∑∞

n=0 |Ag, n+1|2 and 〈β|γ〉 = 〈γ|β〉∗ = ∑∞
n=0 A∗e, n+1

Ag, n+1. The von Neumann entropy changes from SV = 0 for separable states to SV = 1 for
maximally entangled states.

The numerical results of the population inversion when the field is initially in a DCSCS
have been displayed against the dimensionless time gt in Figures 3a and 4a for different
values of the deformed parameter q with |z| = 1 and Φ = 0. Figures 3a and 4b is for
j = 1 and j = 2, respectively. The temporal evolution of the population inversion exhibits
oscillations with probability amplitudes that depend on the values of q. Interestingly,
the deformed parameter may be considered as an essential factor to control the inhibition
decay of the excited state. Figure 5a indicates that the increase in the spin number j,
the atomic population reveals the same structure but with fast oscillations during the
time evolution.
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Figure 5. The dynamics of the different quantum quantifiers for specific values of the deformed parameter q with |z| = 1,
j = 6, and Φ = 0. (a) is for the atomic inversion, (b) and (d) are for the Mandel’s parameter, and (c) is for the von Neumann
entropy. Blue (solid) line corresponds to q = 1, black (dotted-dashed) line corresponds to q = 0.3 and red (dashed) line
corresponds to q = 0.8.

The temporal evolution of the Mandel’s parameter is displayed in Figures 3b and 4b
against the dimensionless time gt for j = 1 and j = 2, respectively, considering different
values of the deformed parameter q with |z| = 1 and Φ = 0. In general, the parameter
Mp exhibits oscillations that depend on the values of the spin number j and the values of
the Mp are very sensitive to the deformed parameter q during the dynamics. For small
values of spin, the Mandel’s parameter takes negative values as the deformed parameter
gets farther from one, exhibiting sub-Poissonian distribution. For the undeformed case,
q→ 1 , we can see that the photon statistics seem to be fluctuated around super-Poissonian
and sub-Poissonian distributions during the time evolution. On the other hand, when the
spin number increases, the Mandel’s parameter tends to get positive values for different
times, exhibiting super-Poissonian distribution of photons (see Figure 5b,d).

For an atomic system initially prepared in the upper level, the dynamical behav-
ior of the nonlocal correlation in the atom–field system is analyzed when the quantized
field is specified by a deformed spin cat state. This quantum correlation between the
two-level atom and the field is generated through the interaction during the evolution.
Figures 3c and 4c show the dynamics of the von-Neumann entropy against the dimension-
less time µt for j = 1 and j = 2, respectively, with respect to the values of the deformed
parameter q with |z| = 1 and Φ = 0. It seems that the von Neumann entropy makes oscil-
latory behavior and its value depends on the choice of the parameter q. This means that
this kind of fields may help to control the degree of the entanglement for the considered
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JCM during the time evolution, where for some values of q, the entropy tends to attain
its maximal value. On the other hand, the figures indicate that with increasing the spin
number, the entropy exhibits very rapid oscillatory and for large values of the spin number
j (see Figure 5c), the entropy behaves similarly to the case of superposition of the optical
coherent states [42]. Finally, in Figure 6, we show the dynamical behavior of the different
quantifiers for different values of the physical parameters with Φ = π/2. It is clear that
control of the quantifiers during the time-evolution can be made by a suitable choice of the
phase parameter Φ defined in the deformed cat spin states.
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Figure 6. The dynamics of the different quantum quantifiers for specific values of the deformed parameter q with |z| = 1,
j = 1, and Φ = π/2. (a) is for the atomic inversion, (b) is for the Mandel’s parameter and (c) is for the von Neumann
entropy. Blue (solid) line corresponds to q = 1, black (dotted-dashed) corresponds to q = 0.3 and red (dashed) corresponds
to q = 0.8.

5. Summary

In this manuscript, we have proposed a new kind of Schrödinger cat states introduced
as a superposition of SCSs in the framework of noncommutative spaces. We have examined
the nonclassical features of these noncommutative deformed states in terms of the main
parameters of the physical parameters. We have suggested an appropriate quantum system
for generating high amount of entanglement by a convenable control of the involved
parameters. We have studied the dynamical behavior of the correlation and nonclassical
properties for an atom–field system, where the field is initially described by a deformed
cat spin state. In fact, we have shown in detail the dynamical behavior of the atomic
population, Mandel’s parameter, and entanglement in the bipartite system in terms of the
deformation parameter, spin number, and phase parameter. It is known that the study
of the physical properties of the interaction between the atomic and field is an important
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subject in quantum information and in optics. From that perspective, the obtained results
show that this interaction in the presence of deformed cat spin states provide structures
that are much richer than the non-deformed ones. A useful future study is the examination
of the effect of decoherence in the presence of the deformed optical states for the case of
open quantum system.
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