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Abstract: A new method for musical steganography for the MIDI format is presented. The MIDI
standard is a user-friendly music technology protocol that is frequently deployed by composers
of different levels of ambition. There is to the author’s knowledge no fully implemented and
rigorously specified, publicly available method for MIDI steganography. The goal of this study,
however, is to investigate how a novel MIDI steganography algorithm can be implemented by
manipulation of the velocity attribute subject to restrictions of capacity and security. Many of today’s
MIDI steganography methods—less rigorously described in the literature—fail to be resilient to
steganalysis. Traces (such as artefacts in the MIDI code which would not occur by the mere generation
of MIDI music: MIDI file size inflation, radical changes in mean absolute error or peak signal-to-
noise ratio of certain kinds of MIDI events or even audible effects in the stego MIDI file) that could
catch the eye of a scrutinizing steganalyst are side-effects of many current methods described in
the literature. This steganalysis resilience is an imperative property of the steganography method.
However, by restricting the carrier MIDI files to classical organ and harpsichord pieces, the problem
of velocities following the mood of the music can be avoided. The proposed method, called Velody 2,
is found to be on par with or better than the cutting edge alternative methods regarding capacity
and inflation while still possessing a better resilience against steganalysis. An audibility test was
conducted to check that there are no signs of audible traces in the stego MIDI files.

Keywords: MIDI; velocity values; carrier file; stego file; capacity; steganalysis resilience; audibility;
file-size change-rate; mean absolute error; peak signal-to-noise ratio

1. Introduction

Steganography provides means for hiding information, not just making it intelligible
by encrypting it. The concealment of a message at all can be the difference between life
and death in cases when the very sending of a message (encrypted or not) is considered a
crime and a threat to the authorities. The techniques of steganography have sometimes
been criticized for serving criminals seeking to operate outside the law, but the use of it for
whistleblowers and for freedom fighters (e.g., [1]) who are in countries with authoritarian
regimes is well documented.

The technique of steganography does not by itself change a message, but merely
hides its existence in other information. This is what distinguishes steganography from
cryptography. Nevertheless, steganography is very often used in combination with cryp-
tography, by first encrypting a message and then hiding it. This combination makes a
very strong protection against revealing a secret message since upon looking for hidden
messages it may be impossible to perform cryptanalysis on all possibly hidden data found
in any of a great number of files. Thus, in effect, adding an encryption step can greatly
improve security aspects of the message exchange—the content of the communication is
not only secret but even the very existence that any kind of communication took place is
unknown. This is an additional property that can be crucial in some circumstances where
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the occurrence of encrypted messages can draw attention from the authorities. Since the
percentage of users of steganography is unknown to a much larger extent than is the case
for e.g., cryptography, it is harder to motivate its relevance [2]. This is the reason why there
are few reports on the numbers of use of such methods. However, this does not mean that
methods of steganography are not used.

Steganography may be deployed in many respects, but in modern times it usually
means involving computer files. This study focuses on musical steganography through
the MIDI format. The MIDI format is a standard music protocol used worldwide to create
music and to facilitate its accessibility.

1.1. Related Literature

Ever since 2000, the MIDI format has been subject to methods of steganography. Worth
noting are e.g., pioneer works of Inoue and Matsumoto [3] and Adli and Nakao [4]. In the
former, which was preceded by several conference papers by the same authors, three
requirements for steganography of MIDI files are established. These requirements are (1)
that MIDI music sounds the same after steganography as it did before, (2) that the stego
MIDI file should satisfy the requirements of the MIDI format, and (3) that extraction of
the hidden message from the stego MIDI file should be very difficult without the proper
stego key. The authors continue to outline a method for encoding data in MIDI files using
permutations of note events. In the latter, three methods of steganography are briefly
specified. 2009 Yamamoto and Iwakiri [5] made a short but dense paper where they present
a cunning method to implement the hidden message by LSB modifications of durations
of notes. This gives a high capacity, relatively speaking, for hiding messages compared
to the size of the carrier file. It is claimed that little performance quality is lost which
is demonstrated with a χ2-test. An ambitious study was made in Wu and Chen [6] and
just recently pursued by Liu and Wu [7] about a method which modifies the way delta-
times (i.e., the time elapsed between MIDI events) may be represented in the MIDI format.
This renders them high capacity methods which, in the latter paper, is also claimed to
be performance preserving, which means that no distortion of any kind is added to the
MIDI file upon steganography with that method. Nevertheless, it inflates the MIDI file
substantially and is thus not property preserving. Another recent contribution to the field
is Wu, Hsiang and Chen [8] where an extremely cautious variant of velocity modification
is defined by preserving the common increasing or decreasing trends in velocity among
sequences of notes with increasing and decreasing pitch. There are also many methods that
deal with steganography of files of the MP3 format, e.g., [9–12]. These methods may be
interesting to compare to from a property perspective. For instance capacity and audibility
may be considered for any music format regardless of which technique is used. Still, many
comparisons are difficult because of different formats.

Aspects of capacity, robustness and transparency are mentioned in Lang et al [13].
This is an extensive inventory of the techniques for steganography in general and it even
touches upon steganalysis. A more recent survey study is given by Sumathi, Santanam and
Umamaaheswari [14] which also considers various steganography methods, not just audio.

1.2. Aspects of Steganalysis Resilience

Picture the steganalyst trying to make out whether or not a particular MIDI file is
a case of steganography or not. Then, many properties would be more revealing while
others are entirely plausible in a stego MIDI file. A few examples of this are:

A. Inflation of a MIDI file making the size grow upon steganography is an obvious
problem. Hiding the secret message in non-audio related parts of the MIDI file
does not leave any audible traces but is still among the simplest kinds of music
steganography to detect. Examples of this are Adli and Nakao [4], Wu and Chen [6]
and Liu and Wu [7].

B. In Vaske, Weckstén and Järpe [15] there are two values of the velocity throughout the
stego MIDI file. This is quite unnatural to appear in any MIDI file since the MIDI
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music is mainly entered in one of two ways: either by automatically scanning notes
which are translated to MIDI code by some software which would make only one
value of velocity (i.e., all velocity values would be identical), or the music would be
played on some MIDI keyboard and entered by some MIDI sequencer program thus
resulting in many different velocity values.

C. A few methods leave audible traces (such as clicks or chirps) in the stego file. This is
less common in steganography of MIDI files but does occur in music steganography
of other formats, such as in Szczypiorski and Zydecki [12] and Adli and Nakao [4].

The method proposed by Liu and Wu [7] is based on the technique of altering the
coding of delta times and use this encoding for permutation-based data encoding. While
the method has no performance effect it does severely inflate the file size and introduce
redundant data that does not contribute to the performance, which would most likely
trigger a steganalyst.

By Wu, Hsiang and Chen [8] a method based on the technique of adjusting the
velocities of some of the note-on events was proposed. While the goal of this strategy is
to make the adjustments in such a way that the performance effect is minimized, it still
changes the velocity values and is therefore classified as having a performance effect, even
if not registered by mere listening to the music.

In Vaske, Weckstén and Järpe [15] a method based on a simple technique of adjusting
the velocities of note-on events up or down one bit was introduced. While impossible to
register such a minuscule change for a listener it is considered to have a performance effect
and will also leave a telltale pattern of suspect artefacts.

The method proposed by Wu and Chen [6] manipulates the coding of the delta-time
events and code data directly into these events. This strategy inflates the file size according
to the authors and introduces a minuscule performance effect within a set tolerance.

In Yamamoto and Iwakiri [5] a method which manipulates the duration between
events to encode data was proposed. The authors show experimental evidence of nat-
urally occurring fluctuations which would allow the embedding to take place without
being noted as suspicious. However, the suggested strategy does introduce a minuscule
performance effect.

The LSB method suggested by Adli and Nakao [4] simply encodes the clear text
message in the LSB of the velocity of the note-on event. This strategy does introduce
a minuscule change in the performance effect, but also since no intermediate step of
processing the data exists there will be non-random patterns in the LSB of the velocity
values which could be detected.

The repeated command method proposed by Adli and Nakao [4] encodes data using
repeating commands configured in such a way that only the last command of a series will
affect the output from the interpreted MIDI file. This will inflate the file size and show up
as suspect artefacts.

In Adli and Nakao [4] a SysEx method that encodes data in non-standard commands
that would normally not contribute to the interpreted MIDI file output was proposed. This
strategy inflates the file and shows up as suspect artefacts. The authors also claim that
although output is normally not affected, in some cases there is a notable performance
effect. Since this strategy does not adhere to the MIDI file standard it would also violate
the second rule of SMF steganography, requiring that “The stego SMF flawlessly satisfies
the specification of the standard MIDI files” as described in [3].

The method proposed by Inoue, Suzuki and Matsumoto [3] encodes data by the
permutation of the order of notes in simulnotes. This strategy does not inflate the file
size nor does it have any performance effect, and the two suggested strategies of permu-
tation tries to mimic two common standards of event arrangement in the simulnotes to
avoid steganalysis.

The method purposed in this paper is to develop a balanced picture of what aspects
are more important in MIDI steganography and put the suggested method for MIDI
steganography, Velody 2, into its scientific context among alternative methods.
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2. The Proposed Method

The suggested method Velody 2 consists of encoding encrypted data at high capacity
into the velocities of the note-on events, while mimicking humanization available in tools
with MIDI support such as Ableton Live [16]. The source code of the proposed method is
publicly available at http://github.com/wecksten/Velody-2.0 as referred to in Appendix A.
It achieves the properties of being blind, high capacity and provides steganalysis resilience
of data embedding.

The effect from using this method is that it sets the velocities to values within a narrow
interval to be specified, thus removing potential mood swings in the velocity parameter of
the music. This effect is minimized by restricting the use of it for organ and harpsichord
music (which naturally is performed with close to constant velocities). Therefore, suspicion
from steganalysts is avoided regarding the audible change of velocities. Nevertheless,
the method can be used with little artificial effect on a wider range of music, as indicated
by including the piano piece Für Elise by Ludwig van Beethoven in the set of MIDI songs
in the experiment to test for audibility effects of the method. Of course, it is not restricted
to single-instrument music, but restricting it to organ and harpsichord merely means
requiring that the steganography is performed only on the velocities of these instruments
though they could be a part of a larger ensemble. An example of music for an ensemble
with multiple instruments is Cantata Cantata Gott der Herr ist Sonn und Schild by J.S. Bach
which was part of this study.

Regarding the property of performance preservation, using Velody 2 for steganogra-
phy of organ and harpsichord music should not change performance to any extent that
leads to suspicions from steganalysis. As for the property of reversibility, if the point with
this is to be able to show a MIDI file which does not contain any hidden message once
having extracted it, this can be achieved in other ways. Therefore, this property is regarded
as less important compared to the properties of steganalysis resilience and capacity for
instance.

To embed a plaintext message in a carrier MIDI file the process can be split up into
three steps: (1) data preparation, (2) data encryption, and (3) data encoding. The extraction
process of a plaintext message from a stego MIDI file is performed in a very similar
manner by reversing the order of the steps (4) data decoding, (5) data decryption, and (6)
data unboxing.

2.1. Preparation

To be able to extract just the embedded message and nothing more, the message length
needs to be known. This can be done in many ways, but assuming that most messages
will be less than 256 bytes of length one approach is to add an eight-bit message header
to indicate the message length. This approach allows for longer messages if that would
be required by stacking several blocks after one another. Assuming most messages are
less than two blocks in length this approach will have the same or less overhead than an
approach where 16 bits would be used to indicate the message length. To prepare the data
for encryption the clear text message M of length w bytes where w = |M|, M is divided into
n blocks B1, B2, . . . , Bn, where n = d w

256e. An eight-bit header Hi is introduced for each block
Bi, where Hi = |Bi| and where |Bi| is the block size in bytes. As can be seen in the Figure 1,
the prepared message P is equal to the assembly P = (S, H1, B1, H2, B2, . . . , Hn, Bn).

2.2. Encryption

The prepared message P is encrypted using a standard synchronous stream cypher
and a shared key generating the encrypted message E = F(P) which is very similar to
random data in distribution.

2.3. Encoding

The carrier MIDI file is unpacked into a stream of MIDI messages S1, S2, Sm where
each message of the type “note-on” is evaluated for data embedding. If the velocity for the

http://github.com/wecksten/Velody-2.0
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“note-on” event Si is less than 2Ne the velocity vi = velocity(Si) is replaced with a random
number between a lower bound l and an upper bound u = 2blog vic+1− 1. If the velocity for
the “note-on” event Si is greater than or equal to 2Ne the velocity is LSB encoded with the
next Ne bits from the encrypted message stream. LSB encoding is performed by clearing
the Ne least significant bits of the velocity value and then adding the Ne bit long value from
the encrypted message stream.Appl. Sci. 2021, xx, x 5 of 14
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Figure 1. Data after preparation step. Each block of the message has been assigned a header that is equal to the
following block size in bytes.

2.4. Decoding

The stego MIDI file is unpacked into a stream of MIDI messages S1, S2, Sm where each message of
the type "note-on" is evaluated for data decoding. If the velocity for the "note-on" event Si is greater
than or equal to 2Ne the velocity is LSB decoded using the Ne least significant bits. The LSB decoding is
performed by pushing the Ne least significant bits of the velocity to the decoded data stream.

2.5. Decryption

The decoded message D is decrypted using a standard synchronous stream cypher and a shared
key generating the prepared message P = F(E).

2.6. Unboxing

The prepared message P = (P1, P2, . . . , Pn) is unboxed by reconstruction of the header value
Hi = Pj and then copying Hi bytes of data from the prepared message P to the clear text message
M by adding the extracted data to the end of the clear text message M = M + (Pj+1, Pj+2, . . . , Pj+Hi ).
This process is repeated until the prepared message P is out of data or the header value read from the
prepared message is equal to 0. The full clear text message is now available in M.

2.7. Aspects of authenticity

In [8], the authenticity of MIDI files is paid a lot of the focus. There, the increasing or decreasing
velocities due to increasing or decreasing pitch of tones played is preserved. That approach renders
the method a top score with regards to authenticity.

It is assumed that the MIDI music is sequenced either by some kind of automatic procedure, where
all notes are given a constant velocity throughout the whole piece or by being played by somebody,

Figure 1. Data after preparation step. Each block of the message has been assigned a header that is
equal to the following block size in bytes.

2.4. Decoding

The stego MIDI file is unpacked into a stream of MIDI messages S1, S2, Sm where
each message of the type “note-on” is evaluated for data decoding. If the velocity for the
“note-on” event Si is greater than or equal to 2Ne the velocity is LSB decoded using the Ne
least significant bits. The LSB decoding is performed by pushing the Ne least significant
bits of the velocity to the decoded data stream.

2.5. Decryption

The decoded message D is decrypted using a standard synchronous stream cypher
and a shared key generating the prepared message P = F(E).

2.6. Unboxing

The prepared message P = (P1, P2, . . . , Pn) is unboxed by reconstruction of the header
value Hi = Pj and then copying Hi bytes of data from the prepared message P to the
clear text message M by adding the extracted data to the end of the clear text message
M = M + (Pj+1, Pj+2, . . . , Pj+Hi ). This process is repeated until the prepared message P is
out of data or the header value read from the prepared message is equal to 0. The full clear
text message is now available in M.
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2.7. Aspects of Authenticity

In [8], the authenticity of MIDI files is paid a lot of the focus. There, the increasing or
decreasing velocities due to increasing or decreasing pitch of tones played is preserved.
That approach renders the method a top score with regards to authenticity.

It is assumed that the MIDI music is sequenced either by some kind of automatic
procedure, where all notes are given a constant velocity throughout the whole piece or by
being played by somebody, possibly at half-speed, which then results in all notes having
velocities in a broad interval and relatively few velocity values being exactly the same.
Therefore, the predecessor to the proposed method, Velody [15] suffers a great deal in
terms of authenticity upon inspection of the actual velocity values, since these velocities are
to equal proportions either of two velocity values. Thus, close inspection of the velocities
by a meticulous steganalyst would reveal clear deviance from both the stereotype patterns
(either all one velocity value throughout the piece or a variety of velocities).

2.8. Hypothesis Test of Audibility

A drawback of a steganography method is if the method leaves audible marks in the
music. To this end, a hypothesis test was carried out. In this test, people listened to 10
pairs of musical pieces selected from a database of classical MIDI music (please, refer to
Appendix A for a description of the database). The songs selected were

1. bach1.mid: Cantata Cantata Gott der Herr ist Sonn und Schild, part 5, BWV 79e by J.S.
Bach

2. bach2.mid: Trio Sonata no 1 for organ, part 1, BWV 525a by J.S. Bach
3. bach3.mid: Trio Sonata no 1 for organ, part 2, BWV 525b by J.S. Bach
4. bach4.mid: Toccata and Fugue in D minor for organ, BWV 565 by J.S. Bach
5. bach5.mid: Prelude and Fugue in E major and C major for organ, BWV 566 by J.S.

Bach
6. bach6.mid: Prelude in D major for organ, BWV 568 by J.S. Bach
7. scarlatti1.mid: Sonata Allegrissimo in C major for harpsichord, K 100 by D. Scarlatti
8. scarlatti2.mid: Sonata Allegro in A major for harpsichord, K 101 by D. Scarlatti
9. scarlatti3.mid: Sonata Allegro in G major for harpsichord, K 102 by D. Scarlatti
10. beethoven.mid: Bagatelle no 25 in A minor, "Für Elise" for piano by L. van Beethoven

The experiment was presented at a web page (see Figure 2) where all 10 pairs of
musical pieces were playable via buttons embedded into the page. For each pair of songs,
there was one called File 1 and another called File 2. One of these was the original song
and the other was the same song but modified through Velody 2 with a message hidden
inside. For each pair, the listener was instructed to guess which of the files that were
steganography by indicating this using radio buttons. Each pair consisted of two MIDI
songs converted to flac-format to be playable more independently on different computers.
Thus, the test was solely devoted to finding out audible differences between the original
song and the corresponding stego song. It did not involve the inspection of eventlists or
any other kind of analysis. The number of respondents who contributed to this experiment
was 30. At the top of the page, apart from declaring their name, each participant should
write a 7 character code which ensured that they had been given instructions about what
to do and which also served to reduce the risk of the same person taking the test multiple
times and being able to differentiate between groups of respondents in retrospect.
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Figure 2. The experiment was carried out by encouraging people to listen to pairs of MIDI songs
played by pressing buttons in a web form and indicating utilizing radio buttons which of the two
alternatives included steganography.

2.9. Relevance of Power of a Hypothesis Test

If there was a detectable difference in the songs after steganography had been per-
formed, this would be indicated by increasing the probability π of correctly guessing which
song included steganography, i.e., making this probability > 1

2 . If, on the other hand, there
were no signs of steganography manipulation at all, that probability π would be equal to 1

2 .
Now, a hypothesis test could only prove the alternative, which in this case would be that
π > 1

2 as opposed to the null hypothesis π = 1
2 . The claim that there is no audible effect of

Velody can never be proved by a hypothesis test. If the null is accepted this just means that
effect could not be proved.

However, one might hypothesize, if there were audible effects due to the steganogra-
phy method these effects would have to be so large that they resulted in a rejection of the
null hypothesis. With a larger number of respondents this ability to prove an effect also
if π was just a little larger than 1

2 , i.e., a large number of respondents would increase the
power of the test.

2.10. Robustness

Another aspect of importance is robustness as considered by e.g., Lang et al [13].
Currently, the proposed method, Velody 2, is not implemented with any support for
improving the robustness of the method. Including the hidden message with redundancy
in the carrier would not contribute to robustness since MIDI file would not play and there
would not even be an eventlist in the case of as much as one bit failing. However, one
could just send the stego MIDI file with redundancy, i.e., sending the same stego MIDI
file multiple times. In addition, the receiver could be assumed to have many alternative
addresses so the transmission could still be made to many different addresses. This
way of increasing robustness is claimed to lead to minimal suspicion. Still, this is rather
recommended behaviour than a part of the Velody 2 method.
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3. Results

The results are divided into those regarding security aspects, mainly steganalysis
resilience aspects such as whether there are no audible revealing footprints of the steganog-
raphy and other changes which may catch the attention of an alert steganalyst, and capacity
aspects, such as embedding capacity, the number of bits per event and file-size change rate,
following the definitions by Liu and Wu [7].

3.1. Steganalysis Resilience

The Velody 2 method proposed in this paper is based on a slight extension of a velocity
LSB embedding algorithm, but where the strategy to embed the data tries to mimic the
output of “Humanization” available in midi tools such as Abelton. The strategy does not
inflate the file size and has a minuscule performance effect. However, it has been shown in
a statistical experiment that the performance effect introduced is most likely not possible
to detect for a human listener. A summary of these methods and their resilience in these
respects is summarized in the Table 1.

Table 1. Summary of properties regarding resilience to steganalysis and to what extent these are satisfied by the different
methods considered.

Method Inflation Performance Effect Other Suspect Artifacts

Liu and Wu [7] x - x
Wu, Hsiang and Chen [8] - x -

Vaske, Weckstén and Järpe [15] - x x
Wu and Chen [6] x x -

Yamamoto and Iwakiri [5] - x -
Adli and Nakao:LSB [4] - x x

Adli and Nakao:Repeated command [4] x - x
Adli and Nakao:SysEx [4] x x x

Inoue, Suzuki and Matsumoto [3] - - -
Velody 2 (the proposed method) - x -

From this table, the method in Inoue, Suzuki and Matsumoto [3] comes out best since
it has no performance effect at all, it leaves a minimal amount of artificial traces while
still not contributing to inflation. Other good methods are Liu and Wu [7], Wu, Hsiang
and Chen [8], Yamamoto and Iwakiri [5] and Velody 2, the proposed method which are
considered to suffer from only one of the shortcomings. Depending on which of these
properties are more important these methods could be differently preferable.

In attempting to make a steganography method resilient it is important to leave as
few traces of manipulation of the carrier upon performing the data hiding according to the
method.

For instance drastically changing properties such as Mean Absolute Error (MAE),
Peak Signal-to-Noise Ratio (PSNR) or file-size change-rate (Fr) in the information hiding
process are shortcomings in that method in respect of steganalysis resilience. In Table 2
some values of these entities for a few methods are given. Here, it turns out that Velody 2
(the proposed method) and the method in Inoue, Suzuki and Matsumoto [3] are preferable
with respect to file-size change-rate. Values of MAE and PSNR could not be compared
since no such values were found for the other methods in the literature.



Appl. Sci. 2021, 11, 39 9 of 13

Table 2. Table of Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR) and file-size change-rates (Fr) for the
methods considered. The file-size change-rates are as defined by Liu and Wu [7] and briefly explained in the text. Values
within parentheses are standard errors.

Method MAE PSNR Fr

Velody 2, 4 bits 6.27 (0.36) 24.64 (0.43) 0.00% (0.00%)
Velody 2, 5 bits 12.52 (0.81) 18.71 (0.50) 0.00% (0.00%)
Velody 2, 6 bits 25.37 (1.88) 12.62 (0.55) 0.00% (0.00%)

Wu, Hsiang and Chen [8] unknown 24.99 2 (0.60) small
Liu and Wu [7] unknown unknown 40.47% 1

Inoue, Suzuki and Matsumoto [3] unknown unknown 0.00% (0.00%)
1 According to Liu and Wu [7]. 2 This is WSNR which is different to PSNR but still a variant of a Signal-to-Noise Ratio.

3.2. Audibility

There were 30 respondents to the audibility form which consisted of telling which of
two alternatives of the same song was steganography for 10 different MIDI songs. The 10
songs were as listed in Section 2.8 and the results of this experiment are illustrated in the
bar charts in Figure 3.
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Figure 3. Barplots of the distribution of guesses divided into the 10 songs in the audibility experiment. A total of 30
respondents guessed each and every of the 10 pairs of songs about which one was steganography. The bars show the
number of incorrect guesses in turquoise and the number correct guesses in orange for each pair of songs.

We tested the hypothesis that the suggested method left audible traces a test of
whether the probability π = P (a respondent cannot tell apart the stego MIDI file from
the carrier MIDI file) exceeds 0.5 against the null hypothesis that the probability π = 0.5
(corresponding to the respondent choosing one of the alternatives entirely at random).

Letting each guess be coded as 0 if it is wrong and 1 if it is right, a binomial test is
an obvious possibility since the sum S of correct guesses over all pairs of MIDI songs and
all respondents is a sum of 0-1-variables which, assuming independence between songs
and respondents and that all guesses are correct with equal probability π, is binomially
distributed with parameters N and π. 30 respondents were signing up for the experiment
and 10 pairs of songs making n = 300. In total, 153 correct guesses made the p-value of the
binomial test

P(S > 153 |H0) =
N

∑
k=154

(
N
k

)
πk(1− π)N−k

∣∣∣∣N = 300
π = 0.5

= 0.3431

which is well and truly above than any reasonable level of significance, i.e., there are no
indications of standing a better chance of guessing which of the songs is steganography
after listening to both MIDI carrier and stego MIDI file.

The more common test for this kind of question is a χ2-test. Letting each song
constitute a class, the number of correct guesses for each class was calculated. Under the
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assumption of independence between guesses and that each song was guessed to be
steganography correctly with probability π the total number X of correct guesses for one
respondent could be subjected to a χ2-test of whether X is binomially distributed with
parameters n = 10 and π = 0.5 or not. After merging classes so that the expected number
of observations in each class exceeded 2, there were 5 classes and the test statistic turned
out 5.8252 rendering a high p-value of 0.8171.

So, what does it mean that the null hypothesis X ∈ Bin(10, 0.5) can not be rejected?
Certainly, it does not prove that X ∈ Bin(10, 0.5) and that π = 0.5 which corresponds to
that respondents can not tell the stego MIDI file apart from the carrier file, only that no
deviance in the distribution of X from Bin(10, 0.5) can be found. How large would that
deviance have had to be for the hypothesis test to prove it? That question is answered
by looking at the power of the test as illustrated in Figure 4. From these curves, it is
clear that for deviances of π about 0.08 from the null hypothesis value 0.5 the power is
clearly greater than 0.95 meaning that the test most likely would have shown a significant
difference in this case. For telling even smaller deviances from 0.5 with that great power a
larger sample size is needed.

Power curve of the binomial test Power curve of the χ2-test

0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

π π

Figure 4. To the left: Power curve of the binomial test of deviance from the value 0.5 of the parameter π = P (a respondent
cannot tell apart the stego MIDI file from the carrier MIDI file.). To the right: Power curve of the χ2-test of deviance from
the binomial distribution with parameters n = 10 (since there are 10 questions in the experiment) and π. For both tests,
the power depends on the sample size, i.e., the number of respondents in this case. Here, the sample size was 30 as indicated
by the red curves, but had it been 10 the curves would have been as indicated in green and had it been 100 the curves would
have been as indicated in blue.

3.3. Capacity

For evaluation of steganography methods, Liu and Wu [7] define several variables
related to capacity, i.e., the number of bits that can be encoded into the carrier MIDI file
referred to as embedding capacity Nc, the total number of embedded bits divided by the
size of the carrier MIDI file before encoding referred to as the embedding rate Er, the total
number of embedded bits divided by the total number of events in the carrier MIDI file
referred to as the number of bits/event Ne, and the absolute change of the carrier MIDI file
before and after encoding divided by the size before encoding referred to as the file-size
change rate Ft. Following their initiative, the suggested method is evaluated according
to these key performance indicators and parameters and compared to the corresponding
values of other methods. It is assumed that the full embedding capacity is used for encoding.
See Table 3 for a comparison of a selection of steganography methods. As Table 3 shows,
the Velody 2 strategy does not limit the number of available events until the Ne approaches
6 bits/event, and even then the reduction is small.
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Table 3. Table of averages of capacity properties: the number of embedded secret bits Nb, number of bits per event Ne

and embedding rate Er as defined by Liu and Wu [7] and briefly explained in the text. Values within parentheses are
standard errors.

Method Notes Available Nb Ne Er

Velody 2, 4 bits 2267 (474) 2267 (474) 9067 (1896) 4.00 (0.00) 6.43% (0.30%)
Velody 2, 5 bits 2267 (474) 2267 (474) 11,333 (2370) 5.00 (0.00) 8.03% (0.37%)
Velody 2, 6 bits 2267 (474) 2227 (467) 13,364 (2804) 5.91 (0.05) 9.48% (0.40%)

Wu, Hsiang and Chen [8] 4536 (1999) 753 (371) 919 (387) 0.55 (0.12) 1.11% (0.22%)

Liu and Wu [7] unknown unknown 492 1.95 (0.01) 7.29% 1

Inoue, Suzuki and Matsumoto [3] unknown unknown 3120 (274) unknown 4.01% 2

1 According to Liu and Wu [7]. 2 According to Inoue, Suzuki and Matsumoto [3].

It can also be seen that the Er is high compared to other techniques. While the Velody
2 strategy most likely does not outperform the work of Wu, Hsiang and Chen [8] when it
comes to the deviation in average velocity, this is of little practical effect since it according
to the statistical experiment seems hard to detect this when listening and that there exist
tools that creates exactly this type of deviation as a part of the music production process.
The suggested strategy from Liu and Wu [7] achieves a fairly good Ne, but this comes at the
cost of a low Er value due to the file size expansion introduced by the strategy. The method
proposed by Inoue, Suzuki and Matsumoto [3] achieves a good Er value with no inflation,
performance effects, or obvious artefacts. However, the optimal performance of this elegant
strategy is still outperformed by the averaged performance of the Velody 2 method.

4. Discussion and Conclusions

A novel MIDI steganography method, called Velody 2, is presented. Its capacity turns
out to be on par with the highest capacity methods available in the literature while still
leaving few traces of manipulation, such as small values of Mean Absolute Error (MAE)
and Peak Signal-to-Noise Ratio (PSNR). It also has no inflation and an experiment was
carried out verifying that there are no signs of audible traces.

Regarding many methods suggested in the literature, the MIDI code shows artificial
patterns that would not be likely, or even possible, to produce by generating the MIDI file
merely by automatic sequencing from sheet music or input of a MIDI song by playing on
a keyboard and possibly modifying it slightly afterwards. Examples of such artefacts are
extra data not occurring normally in a MIDI song (as is the case with the padding in Liu
and Wu [7]), simultaneous note events (so-called simulnotes) that may occur in any order
without sounding different and neither causing inflation but where the sequencer always
put these events in a certain order and deviance from that pattern should arouse suspicion
(in Inoue, Suzuki and Matsumoto [3]), and only two values of velocities (as in Vaske,
Weckstén and Järpe [15]). Such artificial giveaways are perfect signals to a steganalyst
searching for indications of suspect MIDI steganography.

In the suggested method, velocities are scattered randomly within a narrow interval
to be specified. This would have been the result of having played a piece on a keyboard or
humanized using a midi software that supports randomization of the velocities. Of course,
the mean level is constant and not drifting as is the case in a majority of MIDI music. Still,
for harpsichord and organ music this poses no problem at all, and even if this is a strong
restriction MIDI music is abundant within this subgroup. An audibility hypothesis test
was carried out to see if there were audible traces in the stego MIDI files compared to the
carrier files. However, the p-values here were 0.3431 (binomial test) and 0.8171 (chi-square
test) meaning that no signs of steganography could be detected. If the music is entered by
playing the piece on a keyboard this is also likely to cause starting time and duration of
notes to be slightly fluctuating. Thus, if the velocities are scattered while starting times
and duration are not this might be considered as an unrealistic artefact of the method.
However, this is not at all unrealistic taking into account that the composer could well have
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quantized the notes after having made the keyboard recording, a very common kind of
facility in many MIDI sequencer programs. Thus, the notes would be perfectly according
to the measures and bars but velocity differences would remain.

Another aspect of footprint is the file-size change-rate (Fr). For Velody 2 this is 0, i.e.,
there is no change of the file-size at all. This makes it optimal in this respect together with
the methods of Inoue, Suzuki and Matsumoto [3] and slightly better than Wu, Hsian and
Chen [8]. In addition statistical estimators such as the Mean Absolute Error (MAE) and
the Peak Signal-to-Noise Ratio (PSNR) of the various kinds of MIDI events in the music
may be interesting from a steganalysis perspective. When having to check a vast material
of MIDI music for suspect features, a steganalyst is unlikely to be able to go through each
MIDI song’s event list to check for revealing footprints such as those mentioned above,
unless it is possible to fully automate. Instead, the search is likely to build on summarizing
characteristics such as the MAE and PSNR of different MIDI events, and these could
systematically be retrieved in an automatized process. Thus, steganography methods
which stand out in such a listing are likely to be scrutinized for further indications of
steganography. In the proposed method, averages of MAE, ranging from 6.27 to 25.37,
and PSNR, ranging from 12.62 to 24.64, were calculated. Corresponding values for other
methods have to be calculated to compare methods. This, however, remains as a task for
future studies.

It could be argued that most likely a steganography method that creates output that
has the reversibility property, thus where the carrier MIDI file can be restored from the
stego MIDI file, is by definition not providing plausible deniability. The reason for this is
that since the carrier MIDI file can be recreated from the stego MIDI file there has to be
extra information available in the file that can be removed.

Veoldy 2 was not developed with robustness in mind. Therefore it does not include
any steps to increase its properties in the aspects of robustness. Such development remains
as a possibility for future studies.

To further investigate resilience to steganalysis the steganography methods could
be submitted to the most common steganalysis tools. This has been done for audio
steganography [17] and possibly other kinds of steganography [18] and investigating how
successful the procedures are in these papers is an important step to properly finding out
the ability of steganography methods to withstand the attempts made by steganalysts.
Suggestions for improvements for future experiments include increasing the number of
respondents as well as increasing the share of respondents that have training in playing
and listening to music. The experiment itself could be improved by generating a large pool
of carrier MIDI files and related stego MIDI files from which each experiment randomly
generates a unique set of questions. This would reduce the opportunity of collusion leading
to test bias.
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Appendix A

Data and source code is available at https://github.com/wecksten/Velody-2.
The respondents in the audibility experiment were: E. Spennare, T. Holtzberg, P.

Wärnestål, M. Dougherty, A. Galozy, A. Olsson, M.R. Bouguelia, J. Johansson, O. Andersson,
M.A. Rasool, O. Engelbrektsson, F. Johansson, S. Nilsson, M. Blom, T. Svane, J. Elmlund, A.

https://github.com/wecksten/Velody-2
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Alabdallah, S. Lindberg, M. Cooney, A. Stefanescu, L. Wandel, K. Eldemark, M. Menezes,
E. Gustafsson, N. Benamer, K. Raats and V. Prgomet. Thank you all! Without you the
experiment could not have been carried out.
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