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Abstract: As contemporary emerging materials, fiber-reinforced plastics/polymers (FRP) are widely
used in aerospace automotive industries and in other fields due to their high strength-to-weight
ratio, high stiffness-to-weight ratio, high corrosion resistance, low thermal expansion and other
properties. Drilling is the most frequently used process in industrial operation for polymer composite
laminates, owing to the need for joining structures. However, it is a great challenge for operators
to drill holes in FRP materials, due to the non-homogenous and anisotropic properties of fibers.
Various damages, such as delamination, hole shrinkage, and burr and tool wear, occur due to the
heterogeneous and anisotropic nature of composite laminates. Therefore, in this study, carbon fiber
reinforced polymer (CFRP)/aramid fiber reinforced polymer (AFRP) hybrid composites (C-AFRP)
were successfully synthesized, and their drilling characteristics, including burr generation and tool
wear, were also mainly investigated. The drilling characteristics of CFRP and C-AFRP were compared
and analyzed for the first time under the same operating conditions (cutting tool, spindle speed, feed
rate). The experimental results demonstrated that C-AFRP had higher tensile strength and good
drilling characteristics (low thrust and less tool wear) compared with CFRP. As a lightweight and
high-strength structural material, C-AFRP hybrid composites have great potential applications in the
automobile and aerospace industries after the slight processing of burrs generated during drilling.

Keywords: drilling; burr formation; tool wear; carbon fiber reinforced polymer (CFRP); aramid fiber
reinforced polymer (AFRP)

1. Introduction

With the continuous development of science and technology, people no longer pursue
traditional metal materials, such as copper, iron, steel, and aluminum. Ceramics, alloys
and other composite materials have attracted attention from many researchers in recent
decades [1,2]. Especially, in recent decades, people have developed higher expectations of
materials with respect to high strength and low weight, and traditional metal materials are
far from meeting these requirements. Therefore, it is necessary to urgently develop a new
composite material with high strength that is light weight and antiseptic [2].

Composite materials are mechanical engineering materials composed of two or more
different materials with different physical forms or chemical compositions. Various con-
stituent materials can complement each other in performance and produce a synergistic
effect, so that the comprehensive performance of composite materials is better than that
of the raw materials, so as to meet various requirements [3]. Generally speaking, the
composition of composite materials includes two parts: matrix and reinforcement; the three
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dimensional region with specific characteristics between these two constituents is known as
the interphase region [4,5]. Metallic, polymer and ceramic materials are commonly used as
the matrices, while particles or crystal filaments in the form of fiber are commonly used as
the reinforcements. Various chemical compositions and microstructural arrangements are
possible in each matrix category. In general, fibers are the principal load-carrying members,
while the surrounding matrix keeps them in the desired location and orientation [1,4].
This kind of composite material, formed by high-strength fibers and moduli embedded
in or bonded to a matrix with distinct interfaces, is called a fiber-reinforced composite
(FRC). FRC can be classified into four groups, according to their matrices—metal matrix
composites (MMCs), ceramic matrix composites (CMCs), carbon/carbon composites (C/C),
and polymer matrix composites (PMCs) or polymeric composites [6]. Among these ma-
terials, fiber-reinforced plastics/polymers (FRP) are either comparable to or better than
many traditional metallic materials (e.g., steel and aluminum alloys), due to their high
strength-to-weight ratio, stiffness-to-weight ratio, fracture toughness and corrosion resis-
tance [7,8]. Three common FRP mainly include carbon FRP (CFRP), glass FRP (GFRP), and
aramid FRP (AFRP). FRP is widely used in the construction, military, marine, aerospace,
and automotive industries, and other fields based on their advantages, such as low density,
high damping ability, high strength, high thermal resistance, low thermal expansion, stabil-
ity, good corrosion resistance, etc. [8–10]. Therefore, the use of lightweight and elevated
strength composites will become the mainstream of industrial design and manufacturing
in the future. Especially in the field of aerospace and the automobile industry, the use of
lightweight and high-strength materials has greatly help to reduce fuel consumption and
improve safety.

However, FRP materials have various machining failures, including delamination
(separation of laminated layers), burrs, fiber pull out, fiber break, uncut fibers, melting of the
matrix, adhesion of materials to drill, and sub-surface failures, due to the non-homogeneity,
multi-phase structure and anisotropic nature of the composites [11–13]. The common
problems of finish machining and surface integrity often occur when using conventional
processing tools, such as drilling, cutting and milling to FRP. This leads to the scrapping of
a large number of workpieces, which is also one of the main reasons for the high machining
cost of CFR. Among various machining operations, drilling is the most frequently used
process in industrial operation for polymer composite laminates, owing to the need for
joining structures in various industries, such as the automotive, aerospace, marine and oil
industries. For example, the Airbus A350 aircraft (large-size CFRP composite components)
needs about 55,000 holes in the manufacturing process [13]. Some drilling damage, such
as delamination, has a negative impact on the load-carrying capacity of the structure,
which directly leads to the decrease in the durability of the material [14]. In addition,
the cutting tool is also very easy to wear in the drilling of FRP materials, because FRP
is a difficult-to-cut material, due to the non-homogenous and anisotropic properties of
carbon fiber [15–17]. The machinability of FPR materials mainly depends on the fiber
matrix interface interaction, fiber orientations, cutting directions and tool wear. Moreover,
different machining parameters, cutting tools, tool coatings, and lubrication modes have
different damage degrees on tool wear and composite laminates [18–22]. Therefore, many
researchers, in general, have sought to determine the optimum cutting parameters to avoid
the above failures [23,24].

Karpat et al. [25] found that delamination in fabric woven CFRP laminates is observed
by SEM images, which is closely related to the condition of the diamond coating. They also
pointed out that increasing the feed rate and rotational speed can protect diamond-coated
carbide bits and improve hole quality. Delamination is one of the most serious defects in
the processing of FRP materials, which is an inter-laminar or inter-ply failure phenomenon.
Delamination directly affects the mechanical properties of FPR materials and shortens
their fatigue lives, hence limiting their further applications [10]. Murphy et al. [26] have
investigated the effects of three tool types (uncoated, TiN coated and DLC coated) on tool
wear, delamination and spalling during drilling of carbon fiber-reinforced epoxy, which
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cause the rise in thrust force and torque with increasing tool wear. The coatings were
not found to be helpful in reducing tool wear or damage to composites. Durão et al. [27]
reported that adequate tool selection can minimize the delamination of CFRP and GFRP
composite materials during drilling operations, and a low feed rate can reduce axial thrust
force and is more suitable for laminated drilling. They also pointed out that the geometry
and type of the tool have an impact on feed rate, thrust force and delamination around
the hole. Davim and Reis [28] investigated the influence of cutting parameters, such as
cutting velocity and feed rate, on power, specific cutting pressure and delamination in
the drilling of CFPR materials. The authors concluded that the feed rate has a greater
influence on power and specific cutting pressure, so the delamination increases with the
feed. By changing the action point and cutting direction, Jia et al. [29] found that upward
cutting can cut fibers better than cutting from the machined side to the drill exit in cutting
CFRP, and the novel intermittent-sawtooth drill structure effectively reduces burrs and
delamination. Geng et al. [8] also reviewed the formation mechanism of delamination
drilling FPR materials and reported that the drilling-induced delamination usually occurs
at the hole entry and hole exit of the drilled hole periphery. The hole entry delamination
(peel-up delamination) is mainly related to the flute shape, helical angle, drilling torque
and drill vibration, while the hole exit delamination (push-out delamination) is mainly
related to the thrust force, interface quality of the laminates and process conditions. Many
other researchers have also studied delamination during drilling FPR materials [30–32].
By reviewing the above literature, it is found that most of the studies mainly focus on
delamination during drilling FPR materials, but the research on uncut fibers and tool wear
is still not clear, and there is a deficit in the existing knowledge of the wear mechanisms,
including factors that determine the wear resistance of the tool, especially research on
hybrid FPR materials, which is still in the exploratory stage.

At present, among the three common FRP materials, CFRP is widely used in high-
class cars, due to its excellent “weight-loss benefit”. However, due to its low energy
absorption and long production cycle time, CFRP cannot be widely used in ordinary
vehicles. Tanaka et al. [33] found that the use of hybrid CFRP materials can improve the
above shortcomings. Cheon et al. [34] also reported that carbon/aramid hybrid composites
had better stab resistance performances compared to the CFRP, especially the [C8/A8]
hybrid composite, which had the best stab resistance without penetration. To further
investigate the drillability of hybrid FPR materials, the carbon/aramid hybrid composites
(CFRP/AFRP) were successfully synthesized in this study. In addition, the burr formation
and tool wear were also comparatively analyzed in drilling CFRP and hybrid CFRP/AFRP
(C-AFRP) composites.

2. Materials and Methods
2.1. Test Materials

CFRP and C-AFRP laminates with a stacking sequence of [0◦/90◦] having a thickness
of 6 mm and dimensions 130 mm × 130 mm were used as the workpiece materials. The
CFRP laminates were thermoplastic fabricated in an autoclave at 140 ◦C and 5.89 MPa
for 60 min by using plain woven carbon fiber prepreg (WSN-3K, SK Chemicals Co., Ltd.,
Seongnam-si, Korea). The C-AFRP laminates were thermoplastic fabricated in a vacuum
autoclave at 120 ◦C and 0.5 MPa for 90 min by using SYT45-3K carbon fiber (Zhongfu
Shenying Carbon Fiber Group Co., Ltd., Lianyungang, Jiangsu, China) and TF 100 aramid
fiber (Taekwang Industrial Co., Ltd., Seoul, Korea). Images of CFRP and C-AFRP laminates
are shown in Figure 1.
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Figure 1. Images of (a) CFRP and (b) C-AFRP.

2.2. Machine Setup and Drilling Experiment Details

A series of experiments were carried out on a bed-type computer numerical control
(CNC) machine (HISUPER-4, Hwacheon, Co., Ltd., Seoul, Korea). The CNC machine is a
3-axis model consisting of linear motors and FANUC 0-Mate controller with a maximum
spindle speed and power of 10,000 rpm and 7.5kW, respectively. The main CNC machine
specifications are displayed in Table 1. The schematic of the drilling experimental setup
is shown in Figure 2. A Kistler 9271A piezo-electric type force-torque dynamometer was
employed to measure thrust force and torque during the drilling experiment. A comple-
mentary Kistler 5017A 8-channel charge amplifier was connected to the force dynamometer
to amplify the output charge signals. All data were acquired and recorded by an A/D card
converter and was further analyzed by software on a PC computer. The tested laminate
was clamped in a jig attached to a dynamometer, which was mounted on a CNC machining
table. In order to better observe the burrs formation and tool wear, the jig was drilled with
15 mm diameter holes. Before commencing the series of experiments, the whole setup was
thoroughly calibrated.

Table 1. Computer numerical control (CNC) machine specifications.

Item Unit Specifications

Table size mm 1350 × 450
X, Y, Z axis mm 950 × 430 × 500
Rapid traverse (X, Y, Z axis) m/min 12 × 12 × 8
Spindle motor kW 7.5
Max. spindle speed rpm 10,000
Machine weight kg 5300
Electric power kVA 20

The cutting tool used for all drilling tests was an 8 mm diameter carbide drill with a
point angle of 90◦, a relief angle of 10◦, a helix angle of 30◦ and a total length of 63 mm.
The cutting tool and its specifications are displayed in Figure 3. The size of the cutting tool
was chosen since it is one of the most common sizes used to produce holes for rivets in
aerospace structures. Moreover, the smaller point angle is helpful to reduce thrust force
and is more conducive to drilling operation. Singh et al. [35] found that a 90◦ drill point
angle gives better results, as compared to 104◦ and 118◦, in drilling-induced damage while
drilling UD-GFRP composite laminates. On the other hand, the spindle speed and feed
rate are two of the most important parameters in analyzing drilling quality and are always
selected as research objects. Many researchers have pointed out that the burr formation
and the hole circularity depend on different cutting parameters [36]. In this study, 300 holes
were, respectively, drilled on CFRP and C-AFRP laminates with back support at a feed rate
of 200 mm/min and a spindle speed of 2000 rpm. Oil cooling cannot be used in drilling
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operation because it will lead to the contamination of the FRP materials. Thus, the cooling
system was developed by means of a Vortex Tube Magnet Base 2 (Seyang Mechatronics Co.,
Ltd., Gyeonggi-do, Korea) with a hot component and a cool component. The advantage
of this cooling system is that the cold air flow and temperature can easily be controlled to
obtain more homogeneous distribution of cooling by adjusting the slotted valve in the hot
air outlet.
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2.3. Thrust Force Analysis and Tool Wear Analysis

The thrust force plays an important role, which is closely connected to the defects
and processing quality. It is very important to predict the thrust force at the onset of
delamination and to control the thrust force during the drilling process for a reduction
in the drilling part damage caused by delamination. Ho-cheng and Dharan [37] used
Timoshenko’s classic plate-bending theory to propose a critical thrust model for twist drills
for the first time. The critical thrust force model is expressed as [37,38]:

GICdA = FAdX − dU (1)
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where GIC is the critical crack propagation energy per unit area, dA is the increase in the
area of the delamination crack, FA is the thrust force, X is the displacement and dU is the
infinitesimal strain energy. The isotropic behavior and pure bending of the laminate are
assumed in the model. In Equation (1), one notes that

dA = π(a + da)(a + da)− πa2 = 2πada (2)

For a circular plate subject to clamped ends and a concentrated load, the stored strain
energy U is

U =
8πMX2

a2 (3)

where M is the stiffness per unit width of the fiber-reinforced material given by

M =
Eh3

12(1 − v2)
(4)

E is Young’s modulus and ν is Poisson’s ratio for the material, and the displacement
X is

X =
FAa2

16πM
(5)

Therefore, the thrust force at the onset of crack propagation can be calculated, where
E is the Young’s modulus and h is the thickness of uncut plies beneath the drill.

FA = π
√

32GICM = π

[
8GICEh3

3(1 − v2)

] 1
2

(6)

For tool wear analysis, many instruments and techniques are used to measure and
analyze tool wear. The confocal microscope accurately provides the profile information
of the worn cutting edges. The use of a scanning electron microscope (SEM) to observe
and analyze tool wear is currently one of the simplest and most effective methods. The
SEM images were used to provide the high magnification pictures of the wear pattern.
In this study, the SEM images for analysis of tool wear was photographed with a non-
contact image analyzer (VMS-2515F, Rational Precision Instrument Co., Ltd., Dongguan
City, Guangdong Province, China), as shown in Figure 4. The wear volume (per unit length)
was measured using the confocal images by subtracting the original 2D profile of the tool
from the worn 2D profile of the tool and subsequently multiplying a unit length.
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2.4. Tensile Test

The dimensions of the specimens and the experimental methods of the tensile test
were based on the ASTM D3039 standard test methods for tensile properties of polymer
matrix composite materials. As shown in Figure 5, the tensile test was carried out on an
electric motor-type Universal Testing Machine (UTM, AG-100 kNX plus, Tokyo, Japan)
with a constant head speed of 2 mm/min. To measure the strain, an extensometer was
attached to the sample, and the tensile strength and strain data were stored through a data
acquisition system connected to the tester. The tensile test was performed three times for
each sample, and the average value was defined as the final tensile strength and strain.
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3. Results and Discussion
3.1. Tensile Behaviors and Properties

Figure 6 shows the tensile test results of CFRP and C-AFRP. The results of the tensile
tests from the CFRP and C-AFRP are summarized in Table 2. From Figure 6 and Table 2, it
is observed that the C-AFRP hybrid composite has higher tensile strength, higher tensile
modulus and smaller tensile failure elongation compared to those of CFRP. The average ul-
timate tensile strength of CFRP and C-AFRP hybrid composite were 431.20 and 734.75 MPa,
respectively. The average tensile moduli of CFRP and C-AFRP hybrid composites were
21.69 and 55.68 GPa, respectively. Additionally, the strains at the breaks of the CFRP
and C-AFRP hybrid composites were approximately 2.13% and 2.13%, respectively. The
tension strength and tensile modulus of C-AFRP were, respectively, increased by 70.40%
and 1.57%, compared with that of CFRP. This may be attributed to the synergistic effect
(interaction between fiber layers) of carbon fibers and aramid fibers under the action of the
external force of the C-AFRP hybrid composite. A similar phenomenon was also observed
by Zhang et al. [39]. The material has higher tensile strength and smaller strain, which can
promote this material to maintain a smaller strain when subjected to a larger tensile force.
Therefore, the use of hybrid composites can improve the mechanical properties of pure
CFRP, to some extent. Similar conclusions were also drawn by Naresh et al. [40].
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Table 2. Tensile test results.

Sample No. Tensile
Strength(MPa)

Tensile
Modulus(GPa)

Tensile
Strain(%)

CFRP

1 431.78 21.68 2.08
2 425.66 21.96 2.08
3 436.17 21.43 2.23
Average value 431.20 ± 4.31 21.69 ± 0.22 2.13 ± 0.07

C-AFRP

1 737.73 56.05 1.27
2 705.31 55.38 1.26
3 761.21 55.61 1.33
Average value 734.75 ± 22.92 55.68 ± 0.28 1.29 ± 0.03

3.2. Burr Formation

The carbon fiber composites drilling is prone to produce many unique features, such
as cracks, uncut fibers, fiber pull-out and delamination. Additionally, these uncut fibers are
called burr. In general, burr often formed on the exit surface of drilled holes after the drilling
process. The burr shape is irregular, and it cannot be removed easily using a punching
process, due to the withdrawal in the feed direction of a drill bit [41,42]. Jeong et al. [43]
reported that the burr cannot be completely removed in the drilling process, even through
the repeated optimization of drilling parameter, it can reduce the burr formation. Although
the burr formed during the drilling process usually does not have a negative impact on
the mechanical properties of the carbon fiber composite parts, the complete removal of
them requires some additional machining operations, resulting in an increase in processing
costs. In this study, CFRP and C-AFRP were drilled using an 8 mm diameter carbide
drill with a point angle of 90◦, while the spindle speed and feed rate were 2000 rpm and
200 mm/min, respectively. The burr is generated on the exit side of the hole in the drilling
of CFRP and C-AFRP, as shown in Figure 7. It can be clearly observed in Figure 7 that more
burrs are generated by drilling C-AFRP than that of drilling CFRP, and the clear yield and
necking phenomena of aramid fibers are also observed. In addition, on the whole, more
or larger burrs are formed as the number of drilling holes increases. The reason may be
attributed to the bending-dominated failure mode governing the chip separation in this
circumference region, and the high-fiber recession to cutting edges in the laminate bottom.
Both of these coupled effects on carbon and aramid fibers drilling lead to the evidence that
many irregular-fractured fibers are generated [44]. Moreover, other researchers also found
that large burr defects are formatted by the tensile force during the cutting process, and
few burr defects are found when the fiber is in a shear stress state. Ji et al. [45] reported
that the angle between the cutting direction and the fiber orientation plays an important
role in burr formation—the vibration of workpiece and the rise of outlet temperature are
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the other reasons—and, secondly, the vibration of the workpiece and the increase in the
outlet temperature are another reason.
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3.3. Thrust Force

Since the thrust force directly affects the quality of the machined hole in the drilling
of polymer composite materials, it is essential to study the generation and mechanism of
thrust force. This is because the thrust force plays a key role in determining the degree
of delamination damage [44,46]. Delamination occurs when the thrust exceeds the inter-
layer bond strength of the laminate under the continuous cutting motion at the hole exit.
Therefore, in order to restrain the delamination damage, it has great significance to predict
the thrust force at the beginning of the delamination and to control the thrust force during
the drilling process. The total thrust force is divided into three components in the drilling
of polymer composite materials: (i) thrust force generated by the cutting lips; (ii) thrust
force generated by the chisel edge cutting action; (iii) extrusion force generated by the
chisel edge extrusion action [47]. Figure 8 illustrates the effects of the number of holes
drilled on the thrust force. A total of 300 holes was, respectively, drilled on CFRP and
C-AFRP, using an 8 mm diameter carbide drill with a point angle of 90◦, a 2000 rpm spindle
speed and a 200 mm/min feed rate. As shown in Figure 8, it can be clearly seen that the
thrust force produced by drilling CFRP is obviously higher than that of drilling C-AFRP.
The average thrust force is 321.76 N for CFRP and 78.51 N for C-AFRP. This shows that
different composite materials have a strong influence on the thrust force. In the process of
drilling composite materials, the mechanical strength of the composite material in the feed
direction depends on the mechanical strength of the resin. On the other hand, as shown in
Figure 8, the thrust seems to increase with the number of holes, which is consistent with
other research results [48]. This may mainly contribute to tool wear, which increases with
the number of holes drilled. In addition, the thrust force is also related to the geometry
of the tool, feed rate, spindle speed, and other factors. Therefore, selecting a suitable bit,
such as twist drill, properly reducing the feed rate and increasing the spindle speed, is
conducive to reducing the thrust force. In particular, the high cutting temperature caused
by high-speed drilling softens the epoxy matrix and reduces the thrust force, which is
beneficial to the drilling of the polymer composite materials [44].
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3.4. Tool Wear

Drill wear is a serious problem in the drilling of holes, as it is necessary to prevent the
damage of cutting tools and workpieces. The non-homogenous and anisotropic properties
of fiber composite materials lead to a high wear effect on the cutting tool, resulting in the
difficult drilling of these materials and delamination damage [42]. Therefore, it has great
significance for the study of tool wear to evaluate tool life, durability, cutting performance,
etc. In general, tool wear shows the tribological properties and physical characteristics
at the tool–work interfaces in the real cutting process. For tool wear analysis, a total of
300 holes was, respectively, drilled on CFRP and C-AFRP using an 8 mm diameter carbide
drill with a point angle of 90◦, a 2000 rpm spindle speed and a 200 mm/min feed rate.
Figure 9 displays SEM images of the carbide drill after drilling 30 and 300 holes for CFRP
and C-AFRP. As shown in Figure 9, the tool wear mainly occurs on the flank side, so this
kind of wear is also called flank wear. This typically wear leads to a rapid dulling of the
cutting edges. After drilling 300 holes, some edge chipping and severe flank wear (see
illustrations) were found on the cutting lip and the flank face, respectively. Moreover, it
can be clearly observed that the tool wear caused by drilling CFRP is significantly more
serious than drilling C-AFRP in Figure 9. This may be related to the high wear-resistance
properties of CFRP [49]. The existence of hard carbon fibers in CFRP leads to excessive
tool wear. Generally, the mechanism of tool wear in drilling of composite laminates can
be attributed to abrasive wear, adhesion and chipping. This abrasive wear is also called
mechanical wear. As the main tool wear factor in drilling of composite laminates, it is
mainly caused by the strong wear resistance of carbon fibers [50]. The specific tool wear in
the drilling of CFRP and C-AFRP, according to hole number, is shown in Figure 10. The
flank wear of the carbide drill began after 30 holes with the slightly faster progress up
to 90 holes, and then the wear progress becomes slightly steadier from 120 holes until
300 holes. In the initial stage of drilling, because the surface roughness of the carbide drill
is high in the early coupling stage, their actual contact area suffers high pressure and severe
friction, resulting in faster tool wear in the initial stage. Then, after drilling nearly 90 holes,
the carbide drill passes the rapid wear stage and reaches the normal wear stage, which
indicates that the tool-working friction pair that controls the chip removal process is in a
stable state. Similar conclusions were also reported by [44]. Xu et al. [44] also proposed to
evaluate the failure degree of tool wear—that is, the average flank wear land width greater
than 0.25 mm is failure. However, the average flank wear land width in this experiment is
much lower than 0.25mm—that is, the tool has not failed.
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4. Conclusions

In this paper, the drilling characteristics of carbon fiber-reinforced polymer (CFRP)
and aramid fiber-reinforced polymer (AFRP) hybrid composites (C-AFRP) have been exper-
imentally investigated. This work investigated the impact of a number of consecutive holes
drilled on burr formation and tool wear in the drilling of CFRP and C-AFRP composites by
using an 8 mm diameter carbide drill with a point angle of 90◦, a relief angle of 10◦, a helix
angle of 30◦ and a total length of 63 mm. The following conclusions can be drawn:
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• The C-AFRP hybrid composites were successfully synthesized for the first time, and
their drilling characteristics, including burr formation and tool wear, were investigated,
compared with CFRP.

• The tensile properties of the CFRP were improved with the mixing of carbon and
aramid fibers. The average ultimate tensile strength of C-AFRP hybrid composites
was increased by about 70%, compared to CFRP.

• The thrust force and tool wear caused by drilling C-AFRP hybrid composites were
significantly less than those by drilling CFRP. However, the only disadvantage is that
drilling C-AFRP composites produced more burrs than drilling CFRP. Therefore, it is
necessary to focus on reducing burr formation during the drilling of C-AFRP hybrid
composites in the future.
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