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Abstract: The recent introduction of the so-called Conditional Neural Networks (CDNNs) with
multiple early exits, executed atop virtualized multi-tier Fog platforms, makes feasible the real-time
and energy-efficient execution of analytics required by future Internet applications. However, until
now, toolkits for the evaluation of energy-vs.-delay performance of the inference phase of CDNN5s
executed on such platforms, have not been available. Motivated by these considerations, in this
contribution, we present DeepFogSim. It is a MATLAB-supported software toolbox aiming at testing
the performance of virtualized technological platforms for the real-time distributed execution of
the inference phase of CDNNs with early exits under IoT realms. The main peculiar features of the
proposed DeepFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the
Fog-hosted computing-networking resources under hard constraints on the tolerated inference delays;
(ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance
of the overall Fog execution platform; (iii) it allows the dynamic tracking of the performed resource
allocation under time-varying operating conditions and/or failure events; and (iv) it is equipped
with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data
rendering. Some numerical results give evidence for about the actual capabilities of the proposed
DeepFogSim toolbox.

Keywords: Conditional Deep Neural Networks with early exits; virtualized multi-tier fog execution
platforms; energy-vs.-inference delay adaptive optimization; performance modeling and evaluation;
simulation toolkits

1. Introduction

In the incoming era of 5G communication, there is a huge amount of data to be
transmitted from IoT (Internet of Things) devices to computational data centers in order to
make analytics on it. In this regard, Cisco has recently argued that, at the end of the next
year (2021), more than 50 billion IoT devices will be connected to the Internet, which are
estimated to consume about 850 Zettabytes of data per year [1]. This aspect will be further
stressed and taken to extremes by the future 6G communication technology [2]. However,
the global intra-data center traffic will remain limited up to 21 Zettabytes. This implies,
in turn, that producers/consumers of big data will progressively move from large-scale
centralized cloud-hosted data centers to a wide range of spatially distributed ones [3], also
induced by the limited bandwidth still offered by multi-hop cellular Wide Area Networks
(WANSs) [4].

In order to efficiently mine the huge Big Data streams generated by IoT devices, the
technological platforms supporting these analytics and the related algorithms should be:
(i) powerful enough to take into account the heterogeneous and possibly noisy sensing data
generated by resource-limited IoT devices; (ii) fast enough, in order to cope with the stream
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nature of the IoT data; and (iii) suitable for a distributed execution, in order to be compliant
with the spatially distributed nature of the IoT devices.

The emerging Deep Learning (DL) paradigm of the so-called Conditional Deep Neural
Networks (CDNNSs) with early exits [5-7], also known as BranchyNets [8,9], meets the
first two requirements and provides an effective means of performing real-time analytics
on structured /unstructured IoT data. As sketched in Figure la, a CDNN with early
exits is obtained by augmenting the stack topology of a baseline feedforward Deep Neural
Network (DNN) [10] with a number of local classifiers connected to associated intermediate
output branches, called the early exits. The introduction of these auxiliary classifiers allows
a fast prediction if there is enough confidence, i.e., the input data is sufficiently simple to
be classified in the first layers, while more complicated data will use more or even all the
CDNN layers, in order to provide reliable decisions. Both the reliability and associated
delay of the local classifiers” decisions increase, while moving from the bottom to the top of
the CDNN stack. Hence, CDNNs with early exits may be capable of self-tuning the right
reliability-vs.-delay tradeoff, so as to reduce both computing effort and inference delay;,
providing distributed local exit points to the running application.

In order to guarantee such a distributed implementation, the technological platform
supporting the execution of a CDNN with early exits cannot rely only on a standing-alone
remote and centralized cloud data center. It should be composed, indeed, of the networked
interconnection of a number of hierarchically-organized computing nodes, which are spatially
scattered and operate nearby the IoT devices. This is the native layout of the emerging
paradigm of Fog Computing (FC) [11]. An FC technological platform (sketched in Figure 1b)
enables pervasive local access to a set of (M — 1) clusters of virtualized small-size pools of
computing resources, hierarchically-organized into tiers, which can be quickly provisioned,
dynamically scaled up/down and released on an on-demand basis. Nearby resource-limited
mobile devices may access these resources by establishing single-hop WiFi-supported com-
munication links. The Fog paradigm exploits resource virtualization for supporting a set of
virtualized services by distributing computing-plus-communication virtualized resources
along the full path from the IoT realm to the remote Cloud data center [11] and offers a
powerful paradigm for developing DL applications [12-14].

Interestingly enough, the loT-CDNN-FC convergence can allow the exploitation of
both the local exits of the implemented CDNNSs and the per-tier aggregation of the local
processing performed by the supporting FC platforms. In addition, this convergence may
also allow the acquisition and joint mining of data generated by spatially scattered IoT
device and may also enable energy and bandwidth-efficient data analytics by exploiting
the scalable nature of the CDNNs and supporting FC platforms [11].

According to these facts, to enable an energy-efficient and real-time exploitation of
the FC technological platform, we need a flexible evaluation environment for the dynamic
test of different distribution strategies of CDNNs under programmable (i.e., settable by
the user) models for the energy-delay profiles of the virtualized computing and network
blocks composing the considered FC platform of Figure 1b.

The steps to be taken for the design, training, and execution of the CDNN with early
exits of Figure 1a over the distributed Fog technological platform of Figure 1b are sketched
in Figure 2. The first four steps of Figure 2 concern the training/setup of the considered
CDNN with early exits. All these steps have been the focus of our previous contributions
in Reference [7,15], and will not be further considered in this paper. The last two steps of
Figure 2 concern the inference phase of the CDNN’s life-cycle and will be the explicit focus
of this contribution.
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Figure 1. (a) Sketch of the stack topology of a Conditional Neural Network (CDNN) with L layers and Ngg early exits;
(b) sketch of a multi-tier networked Fog platform.
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Figure 2. A sketch of the ordered steps sequence of the CDNN's life-cycle.

Motivated by these considerations, in this paper, we propose DeepFogSim, a toolkit

supporting virtualized technological platforms for the real-time distributed execution of
the inference phase of CDNNs with early exits under IoT realms.

Ol L=

In this perspective, DeepFogSim is a new software toolbox that allows:

the simulation atop a standard PC;

the dynamic optimization;

the dynamic tracking;

the comparison; and

the graphic rendering through an ad-hoc designed Graphic Use Interface (GUI),

of the energy-vs.-delay performance of the underlying Fog-based technological platform
supporting the execution of CDNNs with early exits. In particular, DeepFogSim tackles
the joint CDNN inference and dynamic resource allocation problems, under hard real-time
constraints on the overall (i.e., computing-plus-communication) execution time. Specifically,
DeepFogSim allows the users to:

1.

test their desired network topologies by customizing the simulation environment
through the setting of the 34 input parameters of the simulator package (see Table A2);
dynamically track the energy-delay network performance in the presence of abrupt
(possibly, unpredictable) changes of the simulated environment, like mobility-induced
changes of the available communication bandwidths; and

optimize the obtained performance against a number of metrics, like total consumed
energy, network consumed energy, network bandwidth, computing processing speeds,
execution delays, just to name a few.

The major peculiar features of the proposed DeepFogSim toolbox are the following:

it allows the numerical performance evaluation arising from the delay-constrained min-
imization of the overall computing-plus-network energy consumed by the execution
of the CDNN with early exits. For this purpose, the DeepFogSim toolbox relies on
a gradient-based primal-dual iterative procedure that implements a set of ad-hoc
designed adaptive (i.e., time-varying) step-sizes;

the resource allocation is performed by explicitly accounting for the virtualized nature
of the utilized Fog platform;

it allows the user to compare the energy-delay performance under a number of
user-defined optimization strategies;

it allows the display of the dynamic time-behavior of the performed resource allocation
under the time-varying simulation environment set by the user; and

it allows the rendering of the data output by the simulator in tabular, bar plot, and
colored graph formats.
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In this respect, we remark that the proposed DeepFogSim extends and complements
our previous simulator VirtFogSim. Both these toolkits allow the dynamic joint optimization
and tracking of the energy and delay performance of Mobile-Fog-Cloud systems. However,
the VirtFogSim is designed for the execution of applications described by general Directed
Application Graphs (DAGs), while the DeepFogSim aims at simulating the performance of
CDNN s with early exits on a customizable networked Fog topology.

The rest of the paper is organized as follows. Section 2 overviews the literature about
other simulation toolkits on Fog environment. Section 3 introduces the architecture of the
main simulated building blocks, and, then, Section 4 describes the underlying optimization
problem. Section 5 illustrates the general software architecture of the DeepFogSim toolkit,
while Section 6 shows the supported formats for the rendered data. Section 7 presents
several numerical results, and Section 8 concludes the work and provides some hints
for future developments. Finally, the DeepFogSim user interface and the full list of all
the parameters used by the simulator are described in Appendix A and Appendix B,
respectively.

2. Related Work

Although the FC paradigm is a relatively recent field of research, there are already
several tools for its software simulation [16-18]. This is because the most part of the current
contributions constitute the follow-up of some toolkits designed for the simulation of the
(more conventional) Cloud environment.

An overview of the current literature points out that the research on the develop-
ment of simulation tools for Cloud-Fog computing platforms proceeded along three main
research lines, i.e.,

1.  software for simulation of networked large-scale Cloud data centers;

2. toolkits that explicitly account for the specific features of Fog platforms for the support
of IoT-based sensor applications; and

3. software toolkits for the simulation and performance evaluation of general multi-tier
Cloud-Fog computing platforms.

Starting to overview the first more traditional research line, we point out that
CloudSim [19] is a general-purpose simulation toolkit that allows modeling and sim-
ulation of applications atop remote Cloud platforms according to the Infrastructure-as-
a-Service provisioning model. It allows the user to setup a customized modeling of the
major building blocks of conventional Cloud infrastructures. However, it shows some
deficiencies when applied to FC scenarios. Specifically, it does not allow the customized
setup of network-related parameters (like the per-link wireless access bandwidths and
the round-trip-times of Transport-layer TCP/IP connections), it relies only on Virtual Ma-
chine (VM)-based virtualization and does not allow the modeling of emerging Container
(CNT)-based virtualization, the implemented resource allocation policies are of static-type
and no support for dynamic resource tracking is provided. Similarly, the main focus of
GreenCloud [20] is on the modeling and simulation of the energy profiles of some main
computing and network components of the Cloud ecosystem. GreenCloud allows the cus-
tomized setting and simulation of the full TCP/IP protocol stacks equipping the switches
of the intra-cloud network, but it does not account for the Device-to-Cloud wireless links.
Stemming from an extension of the traditional OMNeT++ platform, the iCanCloud [21]
focuses on the simulation of Cloud-supported large ecosystems with thousands of served
devices. Hence, being scalability the main concern of this toolkit, it does not support
dynamic resource tracking and per-device performance optimization. Although based
on the virtualization, these works, differently from the proposed one, do not explicitly
consider Fog platforms.

About the second and more recent research line, we cite the SIimIOT [22], which ex-
tends the (previously developed) SimIC [23] simulator by including a bottom IoT layer,
in order to allow the user to model the request of Cloud resources by a settable number
of sensor/actuator devices. Similarly, IOTSim [24] is implemented as an extension of the
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(aforementioned) CloudSim. Its goal is the simulation of FC environments in which sensor-
acquired big data streams have to be quickly processed. For this purpose, the IOTSim
platform is MapReduce-compliant, so that it implements batch processing models for the
support of delay-tolerant big-data applications. iFogSim [25] is another JAVA-based toolbox
in which implementation is an extension of CloudSim. It aims at simulating IoT-based
Fog platforms by providing a set of suitable primitives for modeling the energy-delay
performances of sensors, actuators, Fog and Cloud nodes, two service models and two
heuristic task allocation policies. More recently, MyiFogSim [26] has extended the iFogSim
simulator to support virtual machine migration policies for mobile users. Moreover,
MobFogSim [27] has currently improved MyiFogSim by taking into account for the model-
ing of device mobility and service migration in FC. A different philosophy has been pursued
by the EmuFog toolkit [28], which, instead of performing the simulation of large-scale
topologies, generates networks that can be easily emulated by specific software designed for
SDN (like MaxiNet, which extends the seminal Mininet emulation environment). Based on
the OMNeT++ framework, the FogNetSim++ toolkit [29] allows simulation of a large Fog
network with several user configurations. It also enables users to incorporate customized
mobility models and FN scheduling algorithms so as to manage handover mechanisms.
The goal of the Edge-Fog toolkit [30] is to distribute different processing tasks on the
available Cloud resources. The assignment of the processing tasks to different cloud nodes
is pursued by a customized cost function that jointly optimizes the processing time and net-
working costs. The Python-based simulator YAFS (Yet Another Fog Simulator) [31] aims at
designing discrete-event Fog applications. It also allows the users to incorporate strategies
for placement, scheduling and routing. The software toolkit EdgeCloudSim [32] is designed
for the simulation and performance evaluation of general multi-tier Cloud-FC platforms. It
provides the user with a software environment for the setting and dynamic simulation of
the profiles of WLAN/WAN networks, wireless network traffic, device mobility, Fog nodes
and Cloud nodes. A comprehensive comparative analysis between iFogSim, MyiFogSim,
EdgeCloudSim, and YAFS simulators is provided in Reference [33]. In a similar manner,
PureEdgeSim [34] allows the evaluation of the performance related to Cloud, Edge, and
Mist computing environments by taking account of a number of resource management
strategies. It shows a high scalability, since it is suitable for thousands of devices and it
supports the devices heterogeneity. The toolkits of this second group consider distributed
FC environments and resource management techniques. However, unlike the proposed
work, they do not allow the dynamic tracking of the performed resource allocation under
time-varying operating conditions and/or failure events affecting the underlying Fog
execution platform.

Regarding the third research line, we start with the FogTorch toolkit [35]. It is a
Java-based software simulator that allows the development of network models supporting
the Quality of Service (QoS)-aware deployment of multicomponent IoT applications atop
Fog infrastructures. The FogBus simulator [36] offers a platform independent interface to
IoT applications. It also allows users to run multiple applications at a time and to manage
network resources. In addition, FogBus takes care of security of sensitive data by applying
Blockchain, authentication and encryption techniques. FogDirSim simulator [37] allows
the user to analyze and compare different application management policies according to a
set of user-defined performance indexes (like delay time, energy consumption, resource
usage, etc.). It also allows us to model random resource fluctuations and infrastructure
failures. FogWorkFlowSim [38] is a general-purpose toolkit that is developed to model and
simulate the workflow scheduling in IoT, Edge, and FC environments. After the execution
of the user submitted workflow, FogWorkFlowSim is capable of automatically evaluating
and comparing the performance of different computation offloading and task scheduling
strategies with respect to time delay, energy and cost performance. Our previous simulator,
VirtFogSim [39], is a MATLAB-supported software toolbox that allows the dynamic joint
optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud sys-
tems for the execution of applications described by general Directed Application Graphs
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(DAGs). Specifically, it allows the joint dynamic energy-aware optimization of the place-
ment of the application tasks and the allocation of the needed computing-networking
resources under hard constraints on the allowed overall execution times, and it also allows
the dynamic tracking of the performed resource allocation under time-varying operational
environments. Although this group of toolkits tackles the joint optimization of energy and
delay performance of IoT-Fog-Cloud environments, differently from DeepFogSim, they do
not support the execution of CDNNSs.

A summary of the mentioned simulators and their main targets is reported in Table 1.

Table 1. Available toolkits for the simulation of Fog-based ecosystems.

Simulator

Main Target

Available at

CloudSim [19]

Allows the modeling and simulation of applications atop remote Cloud
platform according to the IaaS model.

https://github.com/cloudslab/cloudsim

GreenCloud [20]

Offers a detailed fine-grained modeling of the energy consumed by
data centers for Cloud applications.

https:/ /greencloud.gforge.uni.lu/

iCanCloud [21]

Aims at modeling and simulating Cloud systems, in order to predict
the trade-offs between cost and performance.

https:/ /www.arcos.inf.uc3m.es/old/icancloud /Home.
html

Aims at modeling an inter-cloud facility wherein multiple clouds col-

SimIOT [22] laborate with each other for distributing service requests. -
IOTSim [24] Is\/l[l;p%serésuj:fnsgsgsS(;;T;frt\i?i?or?fn{;{sblg data processing using https:/ /github.com/kalwasel /IoTSim-Osmosis
. . Provid deli d simulation tools f t tech- . . .
iFogSim [25] nfgl‘i‘esejrzgr ‘Ia(:;‘gE*glges;‘;‘E FC mmvironments e MANAgEMENtIEEY hitps:/ /github.com/Cloudslab/iFogSim

. . Extends the iFogSim simulator to support virtual machine migration e . e
MyiFogSim [26] policies for mobile users. https:/ /github.com/marciocomp/myifogsim
MobFogSim [27] Extends iFogSim to enable modeling of device mobility and service https:/ /github.com/diogomg /MobFogSim

migration in FC.

EmuFog [28]

Helps to generate networks that can be emulated by the MaxiNet soft-
ware, a distributed version of the popular Mininet.

https:/ /github.com/emufog/emufog

FogNetSim++ [29]

Simulates distributed FC environments by providing built-in modules
to support the required communication protocols.

https://github.com/rtqayyum/fognetsimpp

Edge-Fog [30]

Generates a network of resources, supports task allocation, and config-
uration parameters.

https://github.com/nitindermohan/EdgeFogSimulator

Is a Python-based software to analyze FC ecosystems regarding the

YAFS [31] placement of resources, cost deployment, network design. https://github.com/acsicuib/YAFS
. Provides a simulation environment for Edge Computing scenarios to e ) .
EdgeCloudSim [32] experiment with both computational and networking resources. https://github.com/CagataySonmez/EdgeCloudSim
Allows to evaluate the performance of resources management < o . .
PureEdgeSim [34] strategies in terms of network usage, latency, resources utilization, httpa//g,1‘§hub.c0m/Charafeddmelvlechahkh/
- PureEdgeSim
energy consumption.
FogTorch [35] Allows to develop models supporting the QoS-aware deployment of https:// github.com /di-unipi-socc/FogTorch

multicomponent IoT applications atop Fog infrastructures.

FogBus [36]

Implements an end-to-end Edge-Cloud integrated environment for
supporting users in running multiple applications at a time and service
providers to manage their resources.

https:/ /github.com/Cloudslab/FogBus

FogDirSim [37]

Permits to compare different application management poli-
cies and to consider random variations and failures of the
underlying infrastructure.

https:/ /github.com/di-unipi-socc/FogDirSim

FogWorkFlowSim [38]

Allows the performance evaluation of resource and task management
strategies in FC under simulated user-defined workflow applications.

https:/ /github.com/ISEC-AHU /FogWorkflowSim

VirtFogSim [39]

Allows the dynamic joint optimization and tracking of the energy and
delay performance of Mobile-Fog-Cloud systems for the execution of
applications described by DAGs.

https:/ /github.com/mscarpiniti/ VirtFogSim

DeepFogSim [Proposed]

Is the first tool for the simulation of the performance of the minimum-
energy optimized execution of CDNNs with early exits over multi-tier
networked distributed Fog platform under hard constraints on the
allowed per-exit inference delays.

https:/ /github.com/mscarpiniti/DeepFogSim
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Overall, on the basis of the carried out review summarized in Table 1, the main new
features of the proposed DeepFogSim toolkit are the following;:

1. DeepFogSim provides a software platform for the simulation of the energy-vs.-delay
performance featuring the execution of CDNNs with early exits atop multi-tier dis-
tributed networked virtualized Fog technological platforms;

2. DeepFogSim allows the user to explicitly model the joint effects on the resulting
performance of the underlying Fog execution platform of both the fraction of the
input data that undergoes early exits and the user-dictated constraints on the per-exit
maximum tolerated inference delays; and

3. DeepFogSim allows the dynamic tracking of the performed resource allocation under
time-varying operating conditions and/or failure events affecting the underlying Fog
execution platform.

This leads, indeed, to two main conclusions. First, the main pro of the proposed
DeepFogSim toolkit is that it allows us to properly account for the impact of the multiple per-
exit inference delays on the resulting minimum-energy allocation of the computing-plus-
networking resources over the multi-tier Fog execution platform of Figure 1b. In this regard,
we note that, to the best of our knowledge, up to date, there is no competing simulation
toolbox which natively retains this feature, and the synoptic overview of the related work
of Table 1 supports, indeed, this conclusion. Second, a possible limitation of the current
version of the DeepFogSim toolkit may arise from the fact that the implemented optimization
engine inherently exploits the hierarchically-organized stack topology featuring the overall
family of the here considered feedforward DNNs (see Figure 1a). This precludes, indeed,
the application of the proposed toolkit for the simulation of the inference phase of neural
networks which do not retain stacked-type topologies, such as, for example, the family of
the so-called Recurrent Neural Networks (RNNs) [10].

We finally remark that, by design, the DeepFogSim toolkit refers to the simulation of the
inference phase of the CDNN with early exits of Figure 1a over the multi-tier Fog execution
platform of Figure 1b. Hence, topics related to: (i) the optimized design and placement
of the CDNN early exits; (ii) the CDNN training; and (iii) the optimized mapping of the
CDNN layers of Figure 3 onto the Fog tiers of Figure 1b are not the focus of this paper.
All these topics have been afforded in our previous contribution in Reference [15].

m Yy Cloud Tier Tier #M
Ru1 \

Local »| Reliability » N 5ia Tersm
‘ »| Aggregator #m Detector #m Local Exit #m "
/ \ / Local Y2 | Retiability N Sig Tiers
——»| Aggregator #2 Detector #2 Local Exit #2 2
Fog(mz, 2)
Local v, Reliability 5 Tier #1
» R ier
Aggregator #1 | Detector #1 _m:a/ Exit #1 V.19
Fog(1,1) | Fog(2, 1) | ~~~~~~~~ Fog(m,, 1)|
Ak ————— L I
S: S Ss  Ss Ss Ss S; loT Tier Tier #0

Figure 3. The IoT-Fog-Cloud execution platform simulated by DeepFogSim.



Appl. Sci. 2021, 11, 377

9 of 42

3. The Envisioned Fog Computing Architecture Supporting the CDNN Execution

In order to describe more in depth the FC platform and the application that should run
atop it, we assume that a data vector Zy(t), arriving at the input of the CDNN of Figure 1a
at time ¢, is processed in a layer-wise way, moving from layer #1, in order to generate a local
class label (i.e., a local decision). If the confidence level computed by the local classifier at
layer#l,1 <1 < L —1, is high enough, the processing is stopped and a decision is output
from the I-th branch of Figure 1a. In the opposite case, the feature vector Zj() extracted
by layer #1 is passed to the next layer #(I + 1) for further processing. Only when an input
data is so challenging to classify to require the processing by the full CDNN stack that
the corresponding decision is generated by the last L-th layer, irrespective of its actual
confidence level.

3.1. On the Hierarchical Organization of the FC Technological Platform

As stated in Section 1, the FC platform is suitable to execute CDNNs with early exits.
The resulting FC technological platform is typically composed of a set of (M — 1) clusters
of medium-size virtualized data centers (i.e., Fog Nodes (FNs)), which are hierarchically-
organized into tiers and exploit (typically wireless) transport links for enabling inter-tier
communication. Doing so, a communication path is implemented from the lowermost
IoT realm at tier #0 to the uppermost Cloud Node (CN) at tier #M. At each intermediate
tier #m, with 1 < m < M — 1, an intra-tier local network allows an AGgregator (AG) node
to provide an early exit by suitably merging the outputs of the corresponding FNs into a
local output (see the per-tier side branches in Figure 1b). Doing so, it is expected that only a
small fraction of the volume vy (t) of data generated by the IoT devices at time  needs to be
transported up to the remote CN for analytics, while a (hopefully) large part of vy (f) early
exits through the available intermediate per-tier local outputs. Figure 3 shows a sketch of
the envisioned multi-tier networked technological platform for the distributed execution
of the inference phase of an (already designed and trained) CDNN with early exits.

Basically, the Fog platform of Figure 3 is composed of the hierarchically organized
cascade of three main segments, namely:

1. the lowermost segment (i.e., tier #0), where a set of spatially distributed resource-poor
IoT sensors operate. Since current IoT devices (for example, smartphone, tablets and
personal assistants, just to name a few) are natively equipped with built-in sensors,
IoT devices at tier #0 are assumed to be co-located with Fog nodes at tier #1 (see the
dark blue triangles at the bottom of Figure 3);

2. the middle segment, where a number of spatially distributed and networked Fog
nodes operates. According to Figure 3, this segment is hierarchically organized
into (M — 1) stacked tiers numbered from tier #1 to tier #(M — 1). At tier #m, with
1 <m < M-—1,acluster: {Fog(j,m), 1 < j < my}, with m,, > 1, of Fog nodes
operates by exchanging data with a local aggregator AG(m) over an intra-tier LAN.
From time to time, the local Detector #m generates a local decision ¢, (i.e., a class label)
on the current input data generated_) by the sensors at tier #0 when the confidence

level of the per-tier aggregated data Y ,, delivered by AG(m) is high enough (see the
dotted red lines in Figure 3). In the opposite case (i.e., when the confidence level of

Y is estimated to not be high enough), the local output is the empty set: @, that s,
no data is generated by the m-th local output;

3. the uppermost segment (i.e., tier #M), where a (single) remote Cloud node (labeled as
Fog(1, M) in Figure 3) operates. Its task is to perform complex analytics on the most
hard-to-classify input instances, so as to provide a final decision ¢j; on the class label
of the currently sensed input data, regardless of its actual confidence level.

From time to time, the sensors at the bottom of the technological platform of Figure 3
sense the local surrounding environment and then pass the sensed data in upstream for
its tier-by-tier hierarchical mining. At each intermediate tier #m, with1 < m < (M —1),
an (average) fraction p,, of the input data is passed to the next tier #(m + 1) for further
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processing, while the remaining fraction (1 — p,,) undergoes local exit, in order to produce
the corresponding decision ¢;;. Due to the real-time nature of the considered IoT application
scenario, the inference-delay, at which the decision &, exits at each tier#m, 1 < m < M,

is assumed to be limited up to a per-tier upper bound ng()” (s), 1 < m < M, in which
the actual value is set on the basis of the Quality of Service (QoS) requirements of the
supported application.

In order to support real-time inference, the time axis, over which the platform of
Figure 3 operates, is partitioned into time-slots which are labeled by a discrete-time slot-
index t > 0. In the case of periodic sensing, the slot duration is fixed at Ts, so that the
t-th slot spans the half-open time-interval: (¢Ts, (t +1)Ts). In the more general case of
event-driven sensing, the duration Ag(t) of the #-th slot depends on the slot-index ¢, so that
the t-th slot covers the half-open interval: (&(t), &(t) + As(t)), where: &(t) = Zf;(l) As(i) is
the starting time of the t-th slot. We expect that all the results presented in the following
hold verbatim in both cases of periodic and event-driven sensing, provided that, in the
second case, the minimum slot duration is lower bounded by T, that is, Ag(t) > Ts, Vt.

The envisioned technological platform of Figure 3 is assumed to be equipped with
both networking and computing capabilities. Specifically, the required inter-node message
passing is implemented by a number of inter-tier and intra-tier transport connections (see
the arrows of Figure 3). Up-link communication between FNs falling in adjacent tiers is
supported by a number of TCP/IP one-way reliable connections, which are sustained by
wireless (possibly, single-hop and WiFi-based) communication links (see the continuous
purple arrows in Figure 3 between adjacent tiers). Since load balancing is assumed to be
performed at the outputs of each tier, all the transport connections going from Fog nodes
at tier #m to Fog nodes at tier #(m + 1) are assumed to operate at a same bit-rate of Ry,
(bit/s). Horizontal communication between the Fog nodes and the Aggregator falling into
the same tier is assured by an intra-tier (wired or wireless) LAN which relies on UDP/IP
two-way transport connections (see the continuous blue arrows in Figure 3). Being of
local-type and used only for (sporadic) aggregation operations, these intra-tier connections
are assumed to operate at low bit-rates, so that the impact of their energy consumption is
expected not to be so substantial.

Finally, the protocol stack implemented by the envisioned architecture of Figure 3 is
detailed in Figure 4. Specifically, the three-layered architecture of the simulated protocol
stack of Figure 4 reflects the corresponding partition of the technological platform of
Figure 3 into three hierarchically-organized main segments, namely: (i) the lower-most
segment, at which the IoT devices operate; (ii) the middle segment, which embraces the
clusters of Fog nodes; and (iii) the upper-most segment, where the remote Cloud works.

A
Application
Layer Cloud Platform
- <
Network management S g
sub-layer £ o
g| g
g5
Transport sub-layer g £ Fog Platform
Communication -
Layer = E
Network sub-layer 2 G
w )
74
Access sub-layer
loT/Mobile Devices
Thing Layer { Sensor and/or actuators
\ 4
Functional Stack Computing Stack

Figure 4. DeepFogSim: the protocol stacks of the considered technological platform of Figure 3.



Appl. Sci. 2021, 11, 377

11 of 42

Remark—On the optimality of the considered multi-tier hierarchically-organized Fog topology.
A final remark concerns the generality and optimality of the considered hierarchically-
organized and multi-tier Fog topology of Figures 1b and 3. In this regard, four main
considerations are in order. First, due to its feedforward nature, the topology in Figure 1a
of the CDNN to be executed is, by design, of stack-type. This forces, in turn, to select a
hierarchically-organized companion topology for the corresponding execution platform of
Figure 1b, in order to allow the ordered execution of the layers of the supported CDNN.
Second, the multi-tier feature of the considered Fog platform of Figures 1b and 3 is dictated
by the requirement that the execution of the inference phase of the CDNN of Figure 1a
can be of distributed-type. Third, the Fog execution platform sketched in Figure 3 allows,
by design, that: (i) the number M of the Fog tiers; (ii) the number m,, of the Fog nodes
equipping the m-th tier; (iii) the topologies of the inter-tier networks of Figure 3; and
(iv) the number and placement of the output local branches of Figure 3 are freely set and
customized by the designer on the basis of the actually considered application scenarios.
Overall, these considerations support the conclusion that the considered networked Fog
topology of Figure 3 suitably matches the main requirements demanded for the distributed
execution of the inference phase of the overall family of the feedforward CDNNs with
early exits of Figure la.

3.2. On the Optimized Layer-to-Tier Mapping

A factor impacting on the energy consumed by the execution of the inference phase
of the CDNN of Figure 1a on the distributed multi-tier networked computing platform
of Figure 1b is the adopted strategy for mapping the CDNN layers onto the available
Fog/Cloud tiers. This problem has been afforded in deep in our recent contribution in
Reference [15]. Hence, here we only recap the main results.

Therefore, according to Reference [15], let us consider a partition 7,, C {1,2,...,L},
m=1,..., M, of the set of the layers of the CDNN of Figure la into M subsets, which is
characterized by the following three defining properties:

e the first (respectively, last) layer of the CDNN of Figure 1a is mapped onto an element
of the set 77 (respectively, Tys) of the considered partition;

e the |7, elements of 7, are the indexes of consecutive (that is, adjacent) CDNN layers;

e the cluster of computing nodes at tier#m, 1 < m < M, exhibits sufficient computing
power and communication bandwidth to host all the layers of the m-th partition
set Tp.

In Reference [15], it was formally proved that, at least in the case in which all the
involved computing nodes exhibit the same power-consumption profile, such a kind of
partition individuates a feasible Layer-to-Tier mapping 7,;, which minimizes the average
energy wasted by the multi-tier platform of Figure 1b for the execution of the CDNN of
Figure 1a. Motivated by this formal result, we assume that the mapping of the layers of the
CDNN of Figure 1a onto the tiers of the execution platform of Figure 1b has been already
performed according to this minimum-energy criterion.

4. DeepFogSim: The Considered System Model

In this section, we introduce the basic definitions and formal assumptions about the
constrained resource optimization problem tackled by the DeepFogSim.

For this purpose, let us denote by Fog(j, m) the j-th FN located at tier #m, with j =
1,...,myand m = 1,..., M, where my, is the total number of FNs present in the m-th
tier, while M is the total number of tiers. By definition, the last M-th tier is the Cloud
one. Moreover, let us denote by Zj(t) the data vector arriving at the input of the CDNN
of Figure 3 at time ¢ that will be processed in a layer-wise way, moving from layer #1. In a
similar way, we denote by Z;(t) the feature vector extracted by layer #! and passed to the
next layer #(1 4 1) for further processing.
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4.1. Container-Based Virtualized Fog Node Architecture

In principle, the technological platform of Figure 3 may run, in parallel, multiple
CDNNSs which carry out different analytics on the same set of sensed data by resorting to
the virtualization of the full spectrum of available physical resources [40].

Hence, according to this consideration, we assume that all Fog/Cloud nodes of
Figure 3 are equipped with software clones of the run CDNNs. The number of clones
simultaneously hosted by each FN equates to the number of (possibly, multiple) CDNNs
which are running in parallel over the technological platform of Figure 3. Doing so, each
clone is fully dedicated to the execution of a single associated CDNN, and then it acts as a
virtual “server” by providing resource augmentation to the tied “client” CDNN. For this
purpose, each clone is executed by a container (CNT) that is instantiated atop the hosting
FN. The container is capable of using (through resource multiplexing) a slice of the physical
computing and networking resources of the hosting FN. The logical view of the resulting
virtualized container-based FN is detailed in Figure 5.

All containers hosted by Fog(j, m) in Figure 5 share: (i) a same Host Operating System
(HOS); and (ii) the pool of computing (i.e., CPU cycles) and networking (i.e., bandwidth
and I/0O Network Interface Cards (NICs) and switches) physical resources available on
the hosting FN. The task of the Container Engine of Figure 5 is to allocate these physical
resources to the requiring containers by performing dynamical multiplexing.

Container#1 Container#2 Container#7 .
SW Libraries SW Libraries SW Libraries
Clone Manager Clone Manager e Clone Manager
CDNN Virtualized Clone||CDNN Virtualized Clone CDNN Virtualized Clone

Container Engine

Physical CPUs and Switches

Figure 5. Logical view of a virtualized container-based Fog node. 7. is the number of containers
hosted by each Fog node.

The resulting virtualized architecture of Fog(j, m) is sketched in Figure 6. Specifically,
in Figure 6 we have that:

1. the (j, m)-th Virtualized Convolutional Processor, running at frequency f;,,, provides the
computing support for the execution of the set of |7, | consecutive convolutional and
pooling layers of the supported CDNN to be executed on tier #m. In the envisioned
architecture, the input data z,,_1(j) at the Virtualized Convolutional Processor is a
feature vector received from the FNs working at the previous tier #(m — 1), while the
corresponding output data Z,(j) is provided to the associated Virtualized Classifier
Processor, as well as forwarded to the FNs operating at the next tier #(m + 1);

2. the (j, m)-th Virtualized Classifier Processor, running at frequency fjm, provides the
computing support for the execution of the local classifier of the CDNN. Its task
is to process the feature vector generated by the corresponding Virtualized Convo-
lutional Processor, so as to produce the output vector ?m (j) to be delivered to the
corresponding m-th Local Aggregator of Figure 3 for the (possible) generation of an
early-exit;

3. Fog(j, m) is also equipped with a number FanlIn(j,m) > 1 of virtualized input ports.
Hence, the task of the MUltipleXer (MUX) at the bottom of Figure 6 is to merge
the corresponding information flows received by the FNs operating at the previous
tier #(m — 1), so as to generate a (single) aggregate feature vector z,,,_1 (j). All input
flows at the bottom of Figure 6 are assumed to operate at a same bit-rate R,,_; (bit/s);

4. the main task of the De-MUltipleXer (DEMUX) at the top of Figure 6 is to replicate
the received feature vector Z,,(j) over the FanOut(j, m) > 1 virtualized output ports
equipping Fog(j, m). Each output flow is forwarded to the FNs at the next tier #(m +1)
at a bit-rate R, (bit/s); and
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5.  the task of the Virtual Switch (VS) of Figure 6 is to enable the transmission of the
output feature Z,,(j) to the FNs at the next tier #(m + 1) only when early-exit does not
occur at tier #m.

FanOutm)

Ry, (Pe‘r-ﬂow output rate)
(Virtual Output Port)

m
Virtual Switch >Z

3,0

to the m-th local
Aggregator

EAO)) BN

(Virtual Processor running at f,m)

(Virtual Processor running at fjm)

(Virtual Input Port)
cee Ry;,_1 (Per-flow input rate)
V-

Fanln (jm)

Figure 6. Envisioned virtualized architecture of Fog(j,m). It is hosted by a container and im-
plemented by the associated virtualized clone. NIC: Network Interface Card; MUX: Multiplexer;
DEMUX: De-multiplexer.

4.2. Featuring the Average Traffic and Workload

Since all FNs of a same tier of Figure 3 cooperate, by definition, in performing the
same type of processing, all flows output by FNs of tier #m have the same throughput Ry,
(bit/s), with1 <m < M — 1.

In the case that |7;,| consecutive layers of the supported CDNN collapse into a single
component layer at the m-th tier, the corresponding layer interior architecture becomes
composed of the cascade of | 7| convolutional blocks followed by a single nonlinearity
and a single soft-decisor that sits atop the last convolutional blocks. As a consequence of
these architecture features, we have that:

1. the processing density of each (j, m)-th Fog convolutional processor passes from &,
to | T lem;

2. the processing density of each (j, m)-th Fog classifier processor is B, regardless of the
number |7,,| of CDNN layers, which are executed by the FNs at tier #m;
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3.  the average volume of data v;(j, m) (bit) received in input by Fog(j, m) during each
sensing period is:

g ]

. oL , FanlIn(j, m)
< E{d - = 1
vr(j,m) = E{dim(Zy1(j))} = vo % g M | X S Fanln (e, m)’ ©)
where E{-} denotes the expectation and dim(Z) is the size (in bit) of the vector Z;
4. the average volume of data vp(j, m) (bit) output by Fog(j, m) is
i |7l .
. o Fanln(j, m)
£ E{d = @2
woliom) 2 EfdimE(i)y =0 x | TI ome | x g gt @

4.3. Per-Node Execution Times

Since we assume that the transmit Network Interface Cards (NICs) of Fog(j, m),
at the top of Figure 6, may operate in parallel, the per-node execution time Tgxg(j, m)
can be expressed as the summation of three terms, i.e., the computation time Tcon(j, m),
the classification time Tcy 4 (j, m) and the network transmission time Txgr(j, m). Hence,
it equates:

vi(j,m) | vo(jm)  vi(jm)
o + i A (3)

Texe(j, m) £ Teon(j,m) + Tepa(j,m) + Tner(j,m) =

where fj;, (respectively, f]-m) is the processing speed (in (bit/s)) of the convolutional proces-
sor (respectively, the classifier processor) equipping Fog(j, m) (see Figure 6).

Furthermore, since the Cloud does not perform transmission but only convolutional
and classify tasks, its execution time comprises only the first two terms of the above
expression, that is:

Cloud) v[(ll M) UO(l M)
Texe(1, M) 2 T} +
EXE Fim f1 "

(4)

4.4. Per-Tier Execution Times
Since the m-th local aggregator in Figure 3 must receive all the |Q|-dimensional
vectors {]}’](m) clo, 19, 1<j< mm} before performing its final operation, the (per-

tier) execution time Texg(m) at tier #m equates to the execution time of the slowest FN,
so that we have:

Texe(m) = 1?},1352 {Texe(j,m)}. @)

By definition, the multi-tier Fog architecture of Figure 3 processes the data generated

)

by IoT devices of Figure 3 in a sequential way. Hence, the aggregate execution time Télxrg
needed to generate the local exit at tier #m equates to:

EXE = Z Texe(k Z 11<nax {Texe(k)}, 1<m<M, (6)
=

so that the resulting time constraint on the allowed local decision at tier #m reads as follows:

T}(EXE) < TéX)IT' I<m<M, @)

(

where TE’;)IT is the tolerated upper bound on the time needed for the generation of the
local decision at tier #m.
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4.5. Models of the Per-Node Computing Power and Energy

In this subsection, we provide the formal relationships modeling the power and
energy consumption of each FN. Specifically, we analyze separately the contributions of
the convolutional and classifier processors equipping each FN in Figure 6.

4.5.1. Power and Energy Wasted by the Convolutional Processor

The power wasted by the convolutional processor of Fog(j, m) in Figure 6 is composed

of a static part P((:IODI\%E) (j,m) (Watt), with 1 < j < m;,, and 1 < m < M, and a dynamic one:

. (jm)
YN) . , .
PLON o) = KIS ( Taleju f) 0%, 1< j<my 1<m<M, @)
where [41]:
1. 'ygg;\)] is a dimensionless power exponent that depends on the power profile of the
underlying CPU;

2. ¢gjy (CPUcycle/bit) is the so called processing density of the computation operations
performed by the underlying CPU when a single layer of the CDNN must be executed.
It depends on the number of convolutional neurons that compose a single layer
of the considered CDNN and the average number of summations/multiplications
performed by each neuron [15];

3. fjm (bit/s) is the processing frequency of the (j, m)-th convolutional processor;

4. |Ty| is the number of layers of the underlying CDNN to be executed by Fog(j, m).
This term accounts for the fact that the workload to be processed by the (j, m)-
th convolutional processor scales (more or less) linearly with the number |7y, | of
convolutional layers of CDNN to be executed by the Fog(j, m) [15]; and

i (j,m)
5. K(C]g;\)l, measured in (Watt/(CPU cycle/ s)WC]ON), is a power scaling factor that depends
on the power profile of the CPU supporting the (j, m)-th convolutional processor.

In order to compute the (average) energy Sgg;g (Joule) consumed by the (j, m)-th
convoultional processor during each sensing interval, we note that: (i) the (j, m)-th convo-

(1,M)

lutional processor must remain turned ON for a time TE%SA equal to the execution time
required by the Cloud node of Figure 3, i.e., the maximum time needed for the processing
of the data generated by the server in a sensing period; and (ii) since the (j, m)-th convolu-
tional processor works at the processing speed f;,, (bit/s) and the workload to be executed
is v7(j, m) in (1), the resulting processing time is Tcon(j, m) in (3). Hence, we have the
following relationship for Econ(j, m):
Econ (jom) & Econ " (j,m) + EEN" (rm) = PEon" Gom) x TEXE + PEN () x Teon (iom)
©)

' (jm) (Gm) _
IDLE) . LM ‘ , .
= péow (j,m) T)(EXE) +vl(]/m)KgOWQ]O'];n'g]-m)’YCON % fJCON )

where Tg&lg) = Z,ICVL 1maxq<j<m { Texe(j, k) } is the full (i.e, worst case) execution time of
the supported CDNN of Figure 1a.
4.5.2. Power and Energy Wasted by the Classifying Processor

Let P((:ILaLE) (j,m) (Watt) be the idle power consumed by the CPU of the (j, m)-th
classifying processor in Figure 6. Then, the corresponding dynamic power component may
be modeled as [41]:

‘ )
PO Gm) = KE (Bin Fin) "™, 1< <mu 1<m< M, (10)

where:
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Ecra(j,m)

(2851 my e TS+ K (8 5 s (7001

1. 'y(C]’Ln;) is a dimensionless power exponent that depend on the power profile of the
underlying CPU;

2. f;m (bit/s) is the processing frequency of the (j, m)-th classifying processor;

3. Bjm (CPUcycle/bit) is the processing density of the computation operations per-
formed by the underlying CPU [15]; and

i (j,m)
4. Kg’LnQ, measured in (Watt/(CPU cycle/ s)'YC]LA ), is a positive scaling factor that depends
on the power consumption of the CPU that supports the (j, m)-th classifier.

Hence, the energy Ecpa(j, m) (Joule) consumed by the (j, m)-th classifier during a
sensing interval equates to:

EUPLE) (j,m) + €M) (,m) = PUPEE) (,m) x TSR + PN (G, m) x Tepaj,m)

(j.m) (j,m) 1 (11)

with T}g&]g) being still the full (i.e, worst case) execution time.

4.6. Models of the Per-Flow Networking Power and Energy

Before developing the power/energy network models, some remarks about the net-
work aspects of the Fog platform of Figure 3 are in order.

First, we assume that the m-th bit-rate R, (bit/s), 1 < m < M — 1 in Figure 3 is a
per-flow transport-layer throughput. However, both the consumed network power and
energy depend on the corresponding bit-rate R,, measured at the physical layer of the
protocol stack of Figure 4. In general, the (average values of the) above communication
rates may be related as:

Ry=t¢uRy, 1<m<M-1, (12)

where ¢, is a dimensionless coefficient that accounts for the communication overhead
incurred by passing from the Transport layer to the Physical one of the underlying protocol
stack of Figure 4. Typical values of ¢;, are in the range: 1.45 < ¢, < 1.70 [40].

Second, each FN Fog(j, m) must act as both a computing and a (wireless) network
switch. Furthermore, depending on the actual network topology, in general, its fan-in and
fan-out may be different, i.e., FanIn(j, m) § FanOut(j,m). According to this consideration,
Fog(j, m) in Figure 6 is equipped with two distinct sets of input and output NICs.

Third, since all FNs that compose the same tier cooperate in the execution of the same
set of CDNN layers, it is reasonable to retain that the total volume of data v;(j, m) received
in input by Fog(j, m) is balanced over its FanIn(j, m) input ports.

The mentioned features of the networking infrastructure of the envisioned Fog execu-
tion platform of Figure 3 will be exploited in the sequel for developing the corresponding
network power and energy models.

4.6.1. Power Wasted for Receiving Network Operations

Let 73](\{;?7? EiRz) (j,m) (Watt) be the idle power consumed by each receive port of

Fog(j, m) in Figure 6. Hence, the corresponding receive dynamic power can be modeled
as [41]:
DYN;Rx)  ; Rx) /. (Rx) (j,
Pl(\,ET %) (j,m) = Q%”f%(],m)(l/JmRm)g (Gm) 2 <m < M. (13)

Now, the idle time is still Tg’(]g). However, the receive time is:

(Rx) /: B Z)](j, m) < <
TNET(]’m) - Rm—l « Fanln(j,m)' 2 Sms M (14)

because the overall workload v;(j, m) received by Fog(j, m) is evenly split over its FanIn(j, m)

input ports, each one working at R,,_1. Hence, the total network energy gl(\]REsz (j,m) con-

sumed by Fog(j, m) for receiving operations over a sensing interval equates to:
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g8 (j,m) & gDLERD (j 1y 4 g DYNRD) (7 1)

= Fanln(j,m) x {PI(\]IETLE;RX) (j,m) x T}ggl\sd)

. (Rx) (4 i
+ O m) (1R )E T )} (15)
= FanIn(j, m) x PI(\]IETLE;RX) (j,m) x Tél)é]g) +o(j,m) x Q%zg%(],m)

(Ro) (RY) () —
X (le—1)gR (m) 5 (Rm_l)éR (jm) =1

The above expression holds for m > 2 because, in our framework, sensors are co-
located with FNs at tier #1 (see Figure 3). Q%{g%(], m) and ¢(R*)(j,m) in (15) depend on
the communication technology employed at the Physical layer and can be modeled as

follows [41]:

o (RY(j,m) > 2is a positive dimension-less exponent, in which the actual value
depends on the transmission technology actually implemented at the Access sub-layer
of the functional stack of Figure 4 [42,43];

o Qg\lfg% (j, m) is a positive coefficient (measured in Watt/((bit/s)¢ x (s)")), which accounts
for the effect of the round-trip-time RTT,,_1 of the received flows. Specifically, in the
case of single-hop connections, it can be formally modeled as in the following [41,44]:

(RTTy-1)" x(j, m) %)
1+ (Iy1)"

Rx) /.
Ny (jom) = , (16)
where: (i) 7 ~ 0.6 is a dimension-less positive exponent; (ii) /,,—1 is the length
(i.e., coverage, measured in meter (m)) of the wireless connections in Figure 3 going
from tier #(m — 1) to tier #m; (iil) « > 2 is a fading-induced path-loss exponent; and (iv)
the positive coefficient x(j, ) (R*) accounts for the power profile of the receive ports.

4.6.2. Power Wasted by Fog(j, m) in the Transmit Mode

Let PI(\{ETL ETx) (j, m) (Watt) be the idle power consumed by a single transmit port of

Fog(j, m). Hence, the corresponding per-port dynamic transmit power can be modeled
as [41]:
. . . (T2) (j
PUr T (,m) = QUEGm) (YRS 0™, 1 <m < M~ 1. (17)

Now, the idle time is still Tl(gl)’(ll\;/[). However, since the overall data v (j, m) generated
by Fog(j, m) is entirely replicated over each output port (see Figure 6), the corresponding
transmit time equates to:

. vol(j, m
Tyer (jom) = Ogm ! (18)

Hence, the total energy 5](\]?%( j,m) wasted by Fog(j, m) over a sensing interval for

transmission purpose can be modeled as follows:
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EneLlom) 2 ENprE ™) (iym) + e\ T (jom)

= FanOut(j, m) x {PISJIETLE ) (j,m) x T}&II\SA)

+ O, m) (@ Ro) 0 < TR ) } (19)

= FanOut(j,m) x {PAEr ™ (j,m) < THE + vo(j,m) x O (ym)

()0 (R

The above expression holds for 1 < m < M — 1 because, by design, the last node

(ie., the Cloud) in Figure 3 does not transmit. The parameters {(T*)(j, m) and Qgg% (j,m)
in Equation (19) play the same roles and then assume the same formal expressions to the
receive counterparts in Equations (15) and (16).

4.7. Total Energy Wasted by the Overall Networked Virtualized Fog Computing Platform

Let Eror (Joule) be the (average) overall energy wasted by the virtualized networked
computing platform of Figure 3 over a (single) sensing period for both network and
computing operations. Hence, by definition, we have that:

Eror = Ecop + ENET, (20)

where the overall computing energy £cop equates to (see Figure 6):

M my
Ecor =Y. Y (Econ(j,m)+Ecra(j,m)), (21)
m=1 j=1

while the overall network energy Engr is given by:

my —2 My
Ener = ) ENEr(i1) + Z Z( NErGom +51(\17;SXT)(j/m)) +gl(\]RExT)(1/M)- (22)
j=1 m=2 j=1

Equation (22) is the summations of three terms, i.e., (i) the energy wasted by tier #1 for
transmission; (ii) the energy consumed by all intermediate tiers for receive and network oper-
ations; and (iii) the energy consumed by the uppermost Cloud node for receiving purposes.

Before proceeding, a remark about the formal meaning of 7o is in order. Specifically,
according to the virtualized nature of the proposed DeepFog technological platform of
Figure 5, ETo7 in (20) is the total (i.e., computing-plus-communication) energy wasted over
a (single) sensing period by all and only Fog clones that actually support the execution of
the considered CDNN. Hence, E7o1 considers only the energy consumed for the execution
of the supported CDNN of Figure 1a and does not represent the total energy wasted by the
full hardware infrastructure of Figure 1b, which can be used for the simultaneous support
of multiple jobs and/or CDNNSs. This meaning of Eror is in agreement with the virtualized
architecture of each FN that has been previously detailed in Figures 5 and 6.

4.8. The Underlying Resource Allocation Problem

From a formal point of view, the proposed DeepFogSim toolkit numerically computes
the solution and evaluates the resulting performance of an optimization problem that is
concerned with the joint allocation of the available computing-plus-networking resources
to the FNs of the virtualized execution platform of Figure 3 under per-exit constraints on
the tolerated inference delays.
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In order to introduce this problem, let Q = Y, m,, be the number of FNs of the
- = ~ ~ 1T
platform of Figure 3. Let: f 2 [fi1,..., fan]" € Rg, f & [fn, . .,fMJ € Rg and

R2[Ry,...,R M_1]T € Rf_l be the vectors of the convolutional and classifier processing
frequencies and the vector of the inter-tier network throughputs, respectively. Finally,

o= 07
let ¥ £ {f  f R} € RZ9" M1 pe the resulting compound vector. Hence, the tackled

constrained resource allocation problem is formally defined as follows:

mjn ETOT , (233)
X

s.t.:

(Lm) _ m(m) _

o<t <1 om=1,...,M, (23b)
0< fi < FMAX) i, m=1,..., M, (23¢)
ogﬁmgf}mMAX), i=1,...mm, m=1,...,M, (23d)
0<Rw < RMAX) i1, M, (23¢)

where: {Tg;}T, m = 1,...,M} ), {f].(,fj“x), J=1,... i, m= 1,...,M} (bit/s),

{f}rﬁ/mx), j=1,...,my, m= 1,...,M} (bit/s) and {Ry, m=1,...,M —1} (bit/s) are
the set of the M +2Q + M —1 = 2(M + Q) — 1 assigned constraints on the maximum
allowed resources and tolerated per-exit inference delays.

The box constraints in (23c)—(23e) upper bound the computing frequencies at the FN
and the inter-tier network throughput, respectively. The M constraints in (23b) guarantee

that each local exit is generated within a maximum inference delay. In the case in which no

delay constraint is enforced to the m-th local exit, we set Tgl()lT = +-o0.

The problem in (23) is a continuous-valued optimization problem that embraces (2Q +
M — 1) non-negative continuous optimization variables and 2(M + Q) — 1 constraints. The
(2Q + M — 1) constraints in (23c)—(23e) are of box-type, while the M delay constraints in
(23b) are nonlinear constraints involving the optimization vector X.

After indicating by £ the Lagrangian function of the problem in Equation (23), and
by {Am, m =1,..., M} the Lagrange multipliers associated to the delay constraints in
(23b), let: {X*, 1*} be a solution of the optimization problem. In order to compute it, we
implement the iteration-based primal-dual approach recently customized in Reference [45]
for broadband networked application scenarios. The primal-dual algorithm is an iterative
procedure that updates on per-step basis both the primal ¥ and the dual A variables, in
order to throttle the corresponding Lagrangian function £ towards its saddle point. Hence,
after introducing the dummy position [Z]Z £ max{a, min{z,b}}, the (k + 1)-th update of
the i-th scalar component x;,i = 1,...,(2Q + M — 1) of the resource vector X reads as:

Xi

20 50
er) _ x(k),a(k)aﬁ(" A0)

i i i axi 4
0

k>0, i=1,...,20+M—1,  (24)

while the (k + 1)-th update of the m-th scalar component of the Lagrange multiplier vector
Ais:
ac(x,i®) "
oA ’
0
In order to guarantee fast responses to abrupt (and possibly unpredictable) changes
of the operating conditions, as well as (asymptotic) convergence to the steady state of

AHD R a6 k>0, m=1,..., M. (25)
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the iterations in (24) and (25), we implemented the following “clipped” relationships for
updating the step sizes in (24) and (25):

2 2
(xl(k) = max{aMAX; min{aMAX X (xl-(MAX)) ; <x§k)) }}, i=1,...,20+M-1, (26)
and

2 2
gl.(k) = max{aMAX; min{aMAX X max{(xl.(MAX)) }; ()L,(qf)) }}, m=1,...,M. (27)
1

The goal of the clipping factor a4 x is to avoid both too small and too large values
of the step-size in (24) and (25), in order to guarantee a quick self-response to operative
changes and small oscillations in the steady state.

Remark—On the generality of the considered resource allocation problem and coverage area of
the related DeepFogSim toolbox. Regarding the generality of the resource allocation problem
in Equation (23), and then the related coverage area of the implementing DeepFogSim tool-
box, we stress that the proposed toolkit is flexible enough to be applied for the calculation
of the optimized resource allocation and simulation of the inference phase of the overall
family of the conventional (that is, early exit-free) family of the feedforward (convolutional
or dense) DNNs [10]. In fact, a direct examination of the tackled optimization problem of
Equation (23) leads to the conclusion that it suffices to set:

. . . . A MAX) .
e the per-classifier maximum processing frequencies: { f/(m ), j=1,..,my; m=

1,..., M} in Equation (23d) to zero; and
® the per-exit maximum tolerated inference delays: {Tén}?n, m=1,...,M—1} in

Equation (23b) to infinite,
in order to turn out the afforded resource allocation problem over the CDNN with early
exits of Figure 1a into the corresponding resource allocation problem over a conventional
early-exit-free DNN equipped with L (convolutional or dense) layers. Furthermore, by setting
the constraint: TéA)?I)T on the tolerated inference delay of the uppermost M-th tier in Figure 1b
to infinite, then all the delay constraints in Equation (23b) are relaxed. As a consequence, the
solutions of the afforded resource allocation problems returned by the DeepFogSim toolbox
under this setting are capable of featuring delay-tolerant application scenarios.

Overall, the above considerations lead to the conclusion that the proposed DeepFogSim
toolbox is capable of properly covering a broad spectrum of delay-sensitive and delay-
tolerant resource allocation problems involving both feedforward CDNNs with early exits
and conventional early-exit-free DNNS.

5. The DeepFogSim Toolkit: Software Architecture and Supported Resource
Allocation Strategies

The core of the DeepFogSim simulator is built up by three software routines that
implement a number of strategies (i.e., optimization policies), in order to numerically solve
the constrained optimization problem in (23). MATLAB is the native environment under
which the optimization routines are developed and run. Differently from our previous
simulator [39], the problem solved here is intrinsically sequential; hence, the current version
of DeepFogSim does not exploit the parallel programming on multi-core hardware platforms
supported by the Parallel Tool Box of MATLAB, which is utilized by the VirtFogSim package.

5.1. The General SW Architecture of DeepFogSim

The main functionalities of DeepFogSim are implemented by the functions listed in
Table 2. In the following of the paper, these functions are briefly described. A detailed
explanation about the usage of such functions is found in the DeepFogSim User Guide,
which can be downloaded along with the software package (see Section 9). The main
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functions in Table 2 use some auxiliary functionalities implemented by the set of additional
routines listed in Table 3.

Table 2. Main functions implemented by DeepFogSim.

Function Description

DynDeF_RAS ( fo, fo, Ry, 7\0) Implements the Resource Allocation Strategy to solve the optimiza-
tion problem in Equation (23).

DynDeFog_TRACKER ( fo, J?O/ Ry, 7\0) Tests the convergence rate at the steady state and the steady-state
stability of the primal-dual iterations performed by the RAS func-
tion when abrupt changes happen.

Static_Allocation() Runs the Static Allocation strategy.

Table 3. Auxiliary functions implemented by DeepFogSim.

Function Description
Check_convexity() Checks the strict convexity of the underlying optimization problem in Equation (23).
Check_feasibility/() Checks the feasibility of the underlying optimization problem in Equation (23).
Check_input() Checks the correct value ranges of the input parameters.
[ o, ?0, Ry, 7\0] = init_other_global() Initializes all the remaining variables.
[tier, column] = oneDtotwoD(oneDindex) Converts the 1D indexing of a Fog node to the corresponding 2D row /column one.
oneDindex = twoDtooneD(tier, column) Evaluates the 1D equivalent index of the 2D indexing of a Fog node.

To describe the general software architecture of the simulator, we note that DeepFogSim
acts as the main program that:

1.  allows the user to setup 34 input parameters (refer to Table A2), which characterize
the scenario to be simulated by the user (see Figure 3);
2. optionally calls the Static_Allocation function to simulate the same scenario where all

the resources are set to their maximum values { f (MAX), f(MAX), K(MAX) } (bit/s);
3. optionally, calls the DynDeFog TRACKER function. It returns the time plots over the
interval: [1, iteration_number| of the:

(@) total energy Eror consumed by the overall proposed platform of Figure 3;

(b)  the corresponding energy £cop consumed by the convolutional and classifier
processors of Figure 3;

() the corresponding energy Enpr consumed by the network connections of
Figure 3; and

(d) the behavior of the first and last (M-th) lambda multipliers in (25) associated to
the constraints in Equation (23),

when unpredicted and abrupt changes in the operating conditions of the simulated
Fog platform of Figure 3 occur. The user may set the magnitude of these changes,
in order to test various time-fluctuations of the simulated environment of Figure 3
(see Section 5.4 for a deeper description of the DynDeFog TRACKER function and its
supported options).

The current version of the DeepFogSim simulator is equipped with a (rich) Graphical
User Interface (GUI) that displays:

1.  the numerical values of the best optimized frequencies for the convolutional and
classifier processors and the network throughputs; and

2. the numerical values of the optimal energy consumption, which are returned by the
DynDeF_RAS function.
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5.2. Supported Resource Allocation Strategies

In this subsection, we describe the supported resource allocation strategies provided
by the DeepFogSim toolkit and listed in Table 2.

(a) The RAS function

The DynDeF_RAS function implements the primal-dual adaptive iterations in (25) and
(27) for the numerical evaluation of the solution of the optimization problem in (23). The
goal is to perform the optimized constrained allocation of the computing and networking
resources needed by the simulated hierarchical Fog platform of Figure 3 for sustaining
the inference phase of the CDNN of Figure 1a running atop it. The input parameters of

this function are the following four vectors: { ﬁ), fo, ﬁo, Xo }, which are needed for the
initialization of the primal-dual iterations in (24) and (25). The values of these vectors are
set by calling the main script of the DeepFogSim simulator.
The DynDeF_RAS function returns, by saving the values to the corresponding global
variables, the following output variables:
1. [fmex] € ROX¥IMAX (bit/s): the matrix collecting the frequencies of the convolutional
processors on a per-iteration basis;
2. []?mtx] € RO*Imax (bit/s): the matrix collecting the frequencies of the classifier proces-
sors on a per-iteration basis;

3. [Rut] € RM=DxImax (bit/s): the matrix collecting the frequencies of the network
throughputs on a per-iteration basis;

4. [Amtx) € RMXIMax (Joule): the matrix collecting the lambda multipliers on a per-
iteration basis;

5. Eror € RV*IMax (Joule): the vector collecting the total energy in (20) on a per-
iteration basis;

6. Svco; € R*Imax (Joule): the vector collecting the computing energy in (21) on a
rLr—i:ceration basis; and

7. Ener € R™IMax (Joule): the vector collecting the network energy in (22) on a per-
iteration basis,

where the Iy14x parameter fixes the maximum number of the allowed primal-dual iterations.
The last column of the previous matrices and vectors are the optimized (best) values

of the allocated resources and consumed energy, respectively: fvest), f (best) R(best) F(best)

Egloe“;’f), Sgg;t), and £ I(\?ESTt), which represent the final output of the DynDeF_RAS function.

Algorithm 1 presents a pseudo-code of the DynDeF_RAS function. An examination of
this code points out that the asymptotic computational complexity of the DynDeF_RAS
function scales linearly with Ip;4x.
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Algorithm 1 DynDeF_RAS function
function: DynDeF_ RAS(ﬁ), fo, ﬁo, XO).

Input: The initialized values: fo, fo, ﬁo, /_\)0.

Output: f (best) f(b“t), and R(®¢st) vectors of the best resource allocation; scalar total

energy Eygf %) (Joule), scalar computing energy Eélg?X) (Joule), and network energy

E I(\[Ag? X) (Joule) consumed under the optimized allocation vectors.

> Begin DynDeF_RAS function
1: form=1:M do

2; forj=1:my; do

3: Compute vy (j, m) with Equation (1)

4 Compute v (j, m) with Equation (2)

5: end for

6: end for

7. fort =1: Ipax do > RAS iterations

8: form=1: M do

9: forj=1:my; do

10: Compute the Tgxg(j, m) with Equations (3) and (4)
11: end for

12: Compute Texg(m) with Equation (5)

13: end for

14: Compute Tél)é"g)

with Equation (6)
15: Compute Ecop with Equations (9), (11), and (21)
16: Compute Enpr with Equation (22)

17: Compute Erpr with Equation (20)

18: Compute all the derivatives of the Lagrangian function
19: Update f, ?, and R with Equations (24) and (25)

20.  Update A, @, and ¢ with Equations (26) and (27)

21: end for

=2

22: Obtain f(b“t), f(best) and R (best)

23: Compute Egg;t) with Equations (9), (11), and (21)

24: Compute & ZE]AEI?X) with Equation (22)

25. Compute 5%1? X) with Equation (20)

26: return [f(b“t), flbest), R(best) E;bgsTt), Eébéi,t), 51(\?;57{) . > End DynDeF_RAS function
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(b) The Static Allocation strategy

The Static Allocation strategy, implemented by the Static_Allocation function, calculates
the computing, networking, and total energy consumed by the simulated Fog platform
of Figure 3 for sustaining the delay-constrained inference phase of the considered CDNN

=2
under the (static) maximal allocation vectors: { FIMAX) - £(MAX) R(MAX) }
Hence, the Static_Allocation function returns:

1. 5;1\(;1? %) the maximum total energy consumed by the the simulated Fog platform of

Figure 3 under the maximal resource vectors;

2. Eggﬁx): the maximum computing energy consumed by the the simulated Fog plat-
form of Figure 3 under the maximal resource vectors; and
3. €& I(\,Ag? %); the maximum network energy consumed by the the simulated Fog platform

of Figure 3 under the maximal resource vectors.

Algorithm 2 presents a pseudo-code of the implemented Static_Allocation function. An
examination of this code points out that the asymptotic computational complexity of the
Static_Allocation function scales linearly with the sum of M of tiers and the total number Q
of Fog nodes, i.e., M + Q.

Algorithm 2 Static_Allocation function

function: Static_ Allocation().

Input: FanIn(j, m), FanOut(j, m), f(MAX), f(MAX), and R(MAX)

Output: scalar total energy E;Zg? %) (Joule), scalar computing energy E((:Ag;x) (Joule), and

network energy £ I(\,AS?X) (Joule) consumed under the maximal allocation vectors.

> Begin Static_Allocation function

1: form=1: M do

2: forj=1:my; do

3 Compute v (j, m) with Equation (1)

4 Compute v (j, m) with Equation (2)

5: Compute the Trxg(j, m) with Equations (3) and (4)
6: end for

7: Compute Texg(m) with Equation (5)

8: end for

9: Compute Tél)gg) with Equation (6)

10: Compute 5&1\(31;}){) with Equations (9), (11), and (21)

11: Compute &£ I(\]A,/EI?X) with Equation (22)

12 Compute E;Zg? %) with Equation (20)

> End Static_Allocation function

13: return [S(MAX) g(MAX) 5(MAX)}

TOT 7 ~COP 7 ®NET

5.3. Auxiliary Functions of DeepFogSim

In this subsection, we provide the description of some auxiliary functions called from
the previous main routines. These auxiliary functions are listed in Table 3.

The Check_convexity function checks for the (strict) convexity of the optimization prob-
lem in (23). If the problem is not strictly convex, the function returns an error message and
then exits the program.
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The Check_feasibility function tests the (strict) feasibility of the underlying constrained
optimization problem in (23) by checking M delay-induced constraints in (23b). If at least
one of these M constraints fails, the function generates an error message indicating the
failed delay constraint and then stops the overall program.

In a similar way, the Check_input function checks for the formal validity of the input
data set by the user. If any input variable is not formally valid, the function returns an error
message and then exits the program.

The init_other_global function initializes all the output and dummy (global) variables
that have not been directly set by the user in the configuration script.

Finally, the oneDtotwoD and twoDtooneD functions allow transformation of the mono-
dimensional (i.e., string type) representation of the network topology of Figure 3 to the
corresponding bi-dimensional one. Specifically, these functions are used to map the bi-
dimensional index of the i-th Fog node lying in the j-th tier into a sequential scalar number
falling in the range 1, ..., Q. In more detail:

e The function [tier, column] = oneDtotwoD(oneDindex) converts the 1D indexing of a Fog
node to the corresponding 2D row /column one. The input parameter oneDindex must
be an integer and fall in the range: 1, ..., Q. The returned tier parameter is an integer
and falls in the range: 1,..., M. The returned corresponding column parameter is an
integer and falls in the range: 1, ..., my,.

¢ The function oneDindex = twoDtooneD(tier, column) evaluates the 1D equivalent index
of the 2D indexing of a Fog node. The returned oneDindex is integer-valued and falls
in the range: 1, ..., Q. The value of the tier parameter must be an integer and fall in
the range: 1,..., M. The value of the column parameter must be an integer and fall in
the interval: 1, ..., my,,.

5.4. DynDeFog_TRACKER: The Dynamic Performance Tracking Function

The goal of the DynDeFog_TRACKER function is to test the convergence rate to the
steady state and the steady-state stability of the primal-dual iterations performed by the
DynDeF_RAS function when unpredicted and abrupt changes in the operating conditions of
the simulated Fog platform of Figure 3 happen. These changes are formally dictated by the
scaling vectors: ]'Lt—m;;l and ju—m;;z (see Table A2), which multiply the scalar components of

the input maximal resource allocation vector: {7}’0, f (MAX) | §(MAX) R’(MAX)} . Specifically,

at the time indexes multiple of ((k/5) x iter_number) + 1, with k = 1,...,5, the initial

=2

[?O,f(MAX), FMAX) R(MAX)

values of the sliced resource vector: }, undergo changes.

These changes are obtained by multiplying (on a per scalar entry-basis) the components of
the sliced vector [?o,f(MAX), f(MAX), K(MAX)} by: jump; and jump;.
The input parameters of the DynDeFog_TRACKER function are the same ones of the

DynDeF_RAS function, namely fo, fo, Ry, and Ag. The outputs of the DynDeFog TRACKER
function are the resulting time-traces of the computing energy, network energy, total energy,
A1 multiplier and Ay multiplier over the time interval (1, iter_number), evaluated for three
values of the speed-up factor ay4x (stored into the (1 x 3) input vector dpr4x).

The feasibility of the operating conditions induced by ju—m;;l and ju—mr;z are explicitly
tested by the DynDeFog_ TRACKER function, and suitable terminating error messages are
generated if infeasible operating conditions occur.

Graphic plots of the time traces of the returned output matrices are displayed at
the end of the DynDeFog TRACKER run. A detailed description of each of the steps
performed by the DynDeFog TRACKER can be found in the User Guide of the DeepFogSim
package. From the previous description, it follows that the asymptotic complexity of the
DynDeFog_TRACKER function scales up as in: O((2(Q + M) — 1) x iteration_number x 3).

Overall, Table 4 presents a synoptic view of the asymptotic computational complexities
of the described DynDeF_RAS, Static_Allocation, and DynDeFog_TRACKER functions.
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Table 4. A synoptic overview of the computational complexities of the main functions supported by
the DeepFogSim toolkit.

Function Asymptotic Computational Complexity
DynDeF_RAS O(Iyax(2(Q+ M) —1))
Static_Allocation 02(Q+M)-1)

DynDeFog_ TRACKER O((2(Q+ M) — 1) x iter_number x 3)

6. DeepFogSim: Supported Formats of the Rendered Data

Under the current version of the simulator, both the DeepFogSim and DeepFogSimGUI
interfaces (see Appendix A) support four main formats, in order to render the results
output by the three main routines of Table 4. The functions, used to obtain these formats,
are listed in Table 5 and are described in depth in the DeepFogSim User Guide (see Section 9).
These rendering formats are:

1. the Tabular format, which is enabled by the print_solution graphic function;

2. the Colored Graphic Plot format, which is enabled by the plot_solution graphic func-
tion;

3.  the Colored Time-tracker Plot format, which is enabled by the plot_FogTracker graphic
function; and

4.  the Fog Topology format, which is enabled by the plot_Topology graphic function.

Table 5. Rendering functions for the supported formats implemented in DeepFogSim.

Function Description

plot_Topology()

Implements the Fog topology format.

print_solution(strategy)

Implements the tabular format.

fignumber = plot_solution( fignumber, options) Implements the colored graphic plot format.

fignumber = plot_FogTracker( fignumber) Implements the colored time-tracker plot format.

Specifically, the print_solution function prints on the MATLAB prompt the result
obtained by running the tested strategies under the selected topology and given input
parameters (see Table A2). This function has an optional input parameter that allows the
print of the results obtained by the DynDeF_RAS function and the Static_Allocation function,

respectively. The function prints, in a numerical form, the results related to the optimized

. . p. o . best
frequencies of the convolutional and classifier processors, the optimized energies SéoesT),

Eéb(;;t), and £ 1(\?25%"), and the ratio £ Z(fgsTt) / S%BSTL‘). If the Static_Allocation is selected in the main

script, it also prints the maximum energies 5%1(\)4? X), Sézgglx)’ and 52(\%?)() consumed by

the maximal resource allocation strategy and the ratio £ I(\lz\g;\x) / 5%1\(;[? X)_ In addition, the

print_solution function prints on the MATLAB prompt the total computing time needed for
running all the selected strategies.

The plot_solution function opens a number of figure windows, which graphically
display the numerical results obtained by the DeepFogSim simulator. This function accepts
two optional input parameters, i.e., (i) the number of figure from which to start and (ii)
a flag used to choose whether the results returned by the Static_Allocation function must
be also plotted. A maximum of eleven different figures may be opened. Specifically,
this function displays the traces of the resources allocated by the DynDeF_RAS function
(and eventually by the Static_Allocation one) and the related consumed total, computing
and networking energy. A figure showing a bar plot of the per-exit actual-vs.-maximum
tolerated delay ratio is also provided.
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The plot_Topology function returns a graphic representation of the Fog topology set
in the input configuration for the Fog platform to be simulated. This function reads the
global matrix variable (A), which represents the adjacency matrix of the tree. An illustrative
screenshot of the network tree plot by this function is shown in Figure 7.

Finally, the plot_FogTracker function provides the graphic capabilities needed for a
proper plot of the time-traces of the total energy, computing energy and networking energy,
and the first and last lambda multipliers generated by the DynDeFog_TRACKER function
under the three values of step-size that are stored by the input vector ZI’(F]X;X) (see Table Al).
Its input parameter is the number of figure from which to start, to be sequential from the
last plotted figure. Specifically, the function renders five figures that orderly report: the
total (computing-plus-networking), computing, and networking energy, and the first and
last lambda multiplier. All curves have been evaluated under the three step-size values
stored by the input Zig/ﬁx) vector. Some illustrative screenshots of the dynamic plots

rendered by the FogTracker function are shown in Figures 15 and 16 of Section 7.3.

Diagram of the network tree

.-Z .2 [ X} 9,
\ N \ 7 )
o o
\ 4
o,

Figure 7. An illustrative screenshot of the Fog topology rendered by the execution of the
plot_Topology function.

In the current version of the DeepFogSim package, it is available an archive that stores
several test setups, together with the related sets of (suitably tuned) input parameters.
These Fog topologies are ready-for-the-use, i.e., they may be retrieved by the user and then
run under both the (previously described) interfaces of the simulator. The archived set-ups
cover several topologies, with different number of tiers and per-tier nodes. Specifically,
the number of Fog nodes ranges from Q = 7, to Q = 63, the number of tiers ranges from
M = 3 to M = 6, while the number of links varies in the range (10, 682).

7. Performance Evaluation

This section aims at showing the actual capabilities of the developed DeepFogSim
toolkit by numerically testing and comparing the energy-delay-tracking performance of its
natively supported optimization tools of Section 5 under some use cases of practical interest.

The peculiar features of the considered CDNN with early exits is the presence of a
number of hierarchically organized delay-constraints (see Equation (23b)) on the allowed
per-exit maximum tolerated inference times. To the best of authors” knowledge, neither
resource allocation algorithms nor related simulation packages are currently present in
the open literature, which explicitly consider these multiple inference delays featuring the
considered operating framework. Hence, motivated by this consideration, the proposed



Appl. Sci. 2021, 11, 377

28 of 42

DeepFogSim simulator natively supports, as a benchmark for performance comparison, the
so-called Maximal Resource Allocation strategy of Algorithm 2. This is a not adaptive
resource allocation strategy that takes fixed at their allowed maximum values all the com-

=2

MAX) f (MAX) R(MAX)

ponents of the resource allocation vectors { f ( } The performance

comparisons against this benchmark allow us to appreciate, indeed, the actual resources
savings arising from the implementation of the adaptive resource allocation engine of
Algorithm 1 which is the core of the proposed DeepFogSim simulator.

A joint examination of the volumes of the input and output workloads in Equations (1)
and (2) processed by the (j, m)-th EN, and the related model for the dynamic power profile
’P((:[OHI/\,N) (j, m) of the (j, m)-th convolutional processor in Equation (8), points out that the
information about the CDNN with early exits, needed for running the DeepFogSim simulator
are [15]: (i) the vector of the per-layer compression factors cri = [emy,..., cmL,l]T € lel,
where cmj, 1 <1 < L — 1, is the ratio between the size (in bit) of the workload at the output
from layer #I with respect to that at its input (i.e., 0 < cm; < 1 takes account of the fraction
of the workload that does not undergo early exit); and (ii) the vector of the Layer-to-Tier

mappings featured by the actually performed partition 27 map = [|Tal, -, | Tml] Te NM,
where | 7|, 1 < m < M, is the number of (adjacent) CDNN layers in Figure 1a mapped
onto the m-the tier in Figure 1b.

An in-depth analysis and evaluation of the overall topic of the optimized design of
CDNN s with early exits is presented in Reference [15], together with numerical examples of
the vectors ¢t and L2T map for some CDNNs of practical interest (see, in particular, Tables
4-6 of Reference [15] and the related texts). As already detailed in Reference [15], we note
that, in practice, the actual values of these vectors depend on a number of design factors,
like the topology of the considered CDNN, the number and placement of the corresponding
early exits, the sets of examples used to train and validate the CDNN, just to name a few.

All the simulations have been carried out by exploiting an hardware execution plat-
form equipped with: (i) an Intel 10-core i9-7900X processor; (ii) 32 GB of RAM DDR 4; (iii)
an SSD with 512 GB plus an HDD with 2TB; and (iv) a GPU ZOTAC GeForce GTX 1070.
The release R2020a of MATLAB provided the underlying software execution platform.

We remark that, unless otherwise stated, all the simulations have been carried out
under the parameter setting reported in the last column of the final Table A2 in Appendix B.

7.1. Use Cases and Simulated Fog Topologies

The reported tests of the DeepFogSim package refer to the Fog topologies sketched in
Figure 8, hereinafter referred to as T1 and T2, respectively. Specifically:

e topology T1is composed of Q = 9 nodes, which are arranged onto M = 3 tiers. Each
node at tier #m is connected to every node at tier #(m + 1); hence, the T1 topology
embraces 10 transmission links;

e topology T2 is composed of Q = 15 nodes, which are arranged onto M = 4 tiers. Each
node at tier #m is connected to every node at tier #(m + 1); hence, the resulting T2
topology embraces 42 transmission links.
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Figure 8. The considered two test topologies: (a) topology T1 and (b) topology T2.

Due to space constraints, we have decided to limit to report the performance results
under T1 and T2 topologies. However, the archived set-ups in the DeepFogSim package
cover several topologies, with different number of tiers and per-tier nodes.

In the carried out simulations, we refer to a CDNN with L = 9 layers to be suitably
scattered over the available M tiers of the Fog platform of Figure 1b. In particular, we
assume the following default numerical settings:

o m® =[0.045,0.1,0.3, 0.5, 0.71, 0.7, 0.7, 0.9, 0.9]" for the compression vector;

o IL2T %r, = [4,2,1]" and L2T 5,93,, = [2,2,2,2]" for the mapping vectors under the two

considered Fog topologies T'1 and T2, respectively; and
o T)(EO))UT = [Ts, Ts, 0.4T5]T (s) and 7:%0})(” = [Ts, Ts, Ts, 0.4T5]T (s) for the per-tier
maximum allowed inference times under the two considered topologies in Figure 8.
In addition, in the carried out simulations, we set the maximum allowable resources
to: FMA%) — 9 (Mbit/s), FIMAX) — g (Mbit/s), RIM*X) = 8 (Mbit/s), and RIM4Y) = 9

)
m ]
(Mbit/s) under topology T1 and to: fj(rfl\/IAX) = 4.2 (Mbit/s), f, (,2/1 AX) —3.73 (Mbit/s), and

]
R,&MAX) = 1.95 (Mbit/s) under topology T2. These values are the same for every node, i.e.,

forallj=1,..., Mandm=1,...,my,.

7.2. Resource and Energy Distribution Returned by DeepFogSim

In this subsection, we provide results obtained by the DynDeF_RAS function in terms
of both resource allocation and energy performance.

To begin with, the DeepFogSim has been tested under topology T1 and the obtained
plots are shown in Figure 9. Specifically, Figure 9a,b illustrate the traces of the optimized
frequencies of the convolutional and the classifier processors, respectively. Although the
total number of iteration Iy;4x of the DynDeF_RAS function in Algorithm 1 is set to 450,
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these figures clearly show that the DeepFogSim simulator stops Algorithm 1 after only 33
iteration. An examination of the traces and legends shown in Figure 9a,b also suggests
that all the involved frequencies (both for the convolutional and classifier processors) are
clustered into three groups, which correspond to the FNs allocated over each of the three
tiers of the considered Fog topology. This behavior is justified by the fact that, at each tier,

each FN has to process the same volume of the input workload.

Traces of the convolutional frequencies . .
9 ; ; ; ; ; 8 Traces of the classifier frequencies
:(;'i) ",' frilde(1,1)
gl f(3,1) | 751 fiilde(2,1) | 7
(3.1) »,‘ ftilde(3,1)
_ :E‘l‘g B 77 ftilde(4,1) | 7
S| 2| = \ ftilde(1,2)
a7 227 %65 flilde(2,2) | 1
£ fl3)| | 5 \ ftilde(1,3) [
< - S gtk -
6 o .
55 .
5+ 1 5L\ ]
| | | | | B — \\wu | | | | |
5 10 15 20 25 30 5 10 15 20 25 30
Iteration index Iteration index
(a) (b)

(Mb/sec)

Figure 9. Traces under topology T1 of the obtained frequencies of the: (a) convolutional processors and (b) classifier processors.

8 The optimized convolutional frequencies at iteration 33

The last values of the traces in Figure 9a,b, i.e., the optimized frequencies of the
convolutional and the classifier processors returned by the Algorithm 1, are shown in
the bar plots of Figure 10a,b, respectively. These plots confirm the clusterization of the
optimized frequencies of both the convolutional and the classifier processors: the four

frequencies of the first tier converge to the same value, and a similar behavior holds for the
two frequencies of the second tier.

The optimized classifier frequencies at iteration 33

N
T

(Mb/sec)
N w B (6]

[N
T

2 |
0 |
1

2 3

1D indexed convolutional frequency number

()

o

4 5 6 7 1 2 3 4 5 6
1D indexed classifier frequency number

(b)

Figure 10. Values under topology T1 of the final optimized frequencies of the: (a) convolutional processors and (b) classifier

processors.

In a similar way, Figure 11a shows the traces of the optimized flow rates R and R,
between tier #1 and tier #2, and between tier #2 and tier #3, respectively. This figure shows
that, although the rates start from different values, they converge to similar values at the
steady state. Figure 11b illustrates the convergence of the lambda multipliers in (25) and

supports the conclusion that a very limited number of iterations is sufficient to converge to
a feasible solution.
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Figure 11. Traces under topology T1 of the: (a) transmission rates and (b) Lagrange multipliers.

The values of the optimized values of the flow rates Ry and R; are presented in
Figure 12a, once again highlighting the similar optimized values. Figure 12b, instead,
shows the ratio between the actual delay needed to perform the computation-plus-communi
cation task at each tier in (6) and the maximum tolerated delays Tgx 7. By definition, the
returned optimized solution is feasible if all these rates are not greater than the unit.
Figure 12b clearly shows that this constraint is met in all the three cases; hence, the pre-
sented steady-state resource allocations are, indeed, feasible.

In order to describe the energy plots returned by the DeepFogSim toolkit, Figure 13

presents the returned traces of the total energy 8#755;) (top plot), computing energy égg?)

(middle plot), and network energy & I(\?EST” (bottom plot). In addition, for the energy con-

sumption, it is evident that DeepFogSim allows a considerable saving after only 33 iteration
of Algorithm 1. The final optimized values for these energies are shown by the bar plots of
Figure 14a, which explicitly illustrate that the main fraction of the total consumed energy is
due to the computing part, while the network one is limited up to about 10%.

In order to provide fair comparisons, Figure 14b presents the bar plots of the total

energy 5%1? X), computation energy Sggﬁx), and network energy & I(\]A}/SI?X) consumed in
the case that all the available resources are set to their maximum values: fl.(].MAX), )F].%VIAX),

and RS,[MAX) . These energies are evaluated by the Static_Allocation function described in

Section 5.2 and presented in Algorithm 2. A comparison of plots in Figure 14a,b demon-
strates the noticeable energy saving offered by the adaptive Algorithm 1 implemented by
the DeepFogSim toolkit.
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The optimized inter-tier flow rates at the iteration 33
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Figure 12. Values under topology T1 of the: (a) optimized transmission rates and (b) actual-vs.-
maximum tolerated delay ratios. By design, the returned optimized resource allocation is feasible if
all these ratios are not larger than the unit.
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A synoptic view of the energy consumption under topology T1, compared to the static
allocation solution and the ratios between these two solutions, is analytically presented

in the first row of Table 6. This table also shows the ratio between the optimized network

energy and the total one: EI\?ESTt / STlgsTt).

Regarding the network topology T2, we have numerically ascertained that traces
similar to those of the previous Figures 9-14 are obtained; hence, we do not show them
here. However under topology T2, Algorithm 1 converges within only 23 iterations. Once
again, the number of needed iterations is very small.

The energy performance under the network topology T2 is also summarized in Table 6
(see the second row). Moreover, this table also presents the energy performance under
topologies T1 and T2 by using a different Layer-to-Tier mapping vector 27 5,9,3,, and
different maximum allowable resources. We named this new tested settings as T1a and

T2a, respectively (see the 3rd and 4th rows in Table 6). The new sets of values are: 27 ,(193,, =

3,3, 3], fMA%) — 9 (Mbit/s), FMX) — 8 (Mbit/s), and R\®) = 8.2 (Mbit/s) under
topology T1a; and LZT,(mzp =13,321], f(MAX =9 (Mbit/s), f (MAX) _ g (Mbit/s), and

RSnMAX = 9 (Mbit/s) under topology 12a.
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Trace of ETOT returned by DynDeF_RAS
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Figure 13. Traces under topology T1 of the: (top) total energy Eror; (middle) computing energy Ecop; and (bottom)
network energy Engr returned by the DynDeF_RAS.

Optimized energies returned by DynDeF_RAS at iteration 33 Maximum energies returped by Static_AllocaFion
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Figure 14. Values under topology T1 of the: (a) optimized energy consumption returned by the DynDeF_RAS function and
(b) energy consumption returned by the Static_Allocation function.

An examination of the related rows of Table 6 shows that the adaptive Algorithm 1,
in all tested cases, allows a considerable energy saving with respect to the benchmark
static one of Algorithm 2. In addition, Table 6 suggests that Fog topologies with higher
numbers of tiers generally allow greater savings with respect to topologies with fewer
numbers of tiers. This is justified by the fact that better distributions of the workload may
be attained over a greater number of nodes at the first tier and greater fractions of the
workload undergo to early exit for increasing number of the topology tiers.
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Table 6. Energy comparison under the test T1 and T2 Fog topologies.

Topology 000 el o o Ses  Seo o
TOT TOT
T1 1960.9 369.6 333.5 36.2 9.8 % 18.8 %
T2 1140.0 144.3 114.1 30.3 21.0 % 12.7 %
T1a 12148.7 1192.1 1017.2 174.9 14.7 % 9.8 %
T2a 12486.7 552.9 477.8 75.1 13.6 % 4.4 %

The energy sensitivity of the resource allocation returned by DeepFogSim is measured
at different values of the vector T gx;r (s) of the maximum allowed inference times under
topology T2 and the results are comparatively presented in Table 7. We consider values of

the vector TEXIT in the range of 0.5 x Téo))(n —25x T"(EO))UT.

Table 7. Energy sensitivity on the vector TE x17 (5) of the maximum allowed inference times under the simulated topology T2.

TexiT (5) eMAN gy gl gy gleh gy glbesh gy iii (%) gigx (%)
25x T, r 1140.0 5.3 12 41 77.4% 0.5 %
12X T, 1140.0 73.4 66.1 7.3 9.9 % 6.4 %
1.0 X T 7 1140.0 144.3 114.1 303 21.0 % 12.7 %
0.7 x T 1 1140.0 403.4 358.6 44.8 11.1% 35.4 %
0.5 x T, 1140.0 1097.7 10452 525 48% 96.3 %

An examination of Table 7 confirms that, since, by design, the static allocation strategy

fixes at their maxima all the available resources regardless of the actually enforced con-

(MAX)

straints, then, the corresponding consumed total energy &5~ does not depend, indeed,

on the allowed maximum inference times. Table 7 also shows that the total energy 5%’?) of

the optimized resource allocation returned by Algorithm 1 increases when the constraints

on the inference times become more stressed (see the 3rd column of Table 7). Finally, the

(best)

7th column of the Table 7 shows that the total energy £;5;’ consumed by the optimized

solution returned by Algorithm 1 is a small fraction of the corresponding energy 5;1\0/[}4 X)

consumed by the static allocation strategy when the constraints on the inference times are
very broad, but it converges to higher fractions if these constraints become stricter.

7.3. Comparative Tracking Performance Returned by DeepFogSim

The goal of this subsection is to test the convergence speed to the steady state and
the steady-state stability of the primal-dual iterations implemented by the DynDeF_RAS
function of Section 5.4 when abrupt changes in the operating conditions of the Fog platform
of Figure 3 occur. For this purpose, we ran the DynDeFog TRACKER function of Section 5.4

under the (previously described) Fog topology of Figure 8b. The obtained dynamic behav-

iors of the total consumed energy 5;%?, network energy & I(\?ESTt), and first and last (i.e., the

M-th) lambda multipliers are presented in Figures 15 and 16. The plots of these figures refer
to three values of the clipping factor ays4x in Equations (26) and (27).
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Figure 15. Tracking performance of DynDeFog_TRACKER under the sequential failure of nodes Fog(1,3) and Fog(2,3) of

topology T2.

Specifically, we have simulated a failure-affected scenario in which some nodes of the
considered topology sequentially fail and then resume at the iteration indexes k = 1, 90,
180, 270, and 360 according to the following pattern: (i) at k = 1, all nodes and links are
ON; (ii) at k = 90, a FN fails, i.e., both the operating frequencies of its convolutional and
classifier processors vanish; (iii) at k = 180, the failed FN resumes its normal operating
conditions; (iv) at k = 270, the convolutional and classifier processors of a second FN
fail; and, finally, (v) at k = 360, the failed FN turns to be operative. After each change in
the operating conditions, Algorithm 1 self-reacts by re-computing the components of the
resource vector, in order to suitably reconfigure the underlying technological platform of
Figure 3, so as to attempt to still meet the constraints in (23b) on the inference times.

The first scenario, presented in Figure 15, refer to the case in which Fog(1,3) and
Fog(2,3) nodes sequentially fail under T2 topology. This figure illustrates the obtained

dynamic behaviors of the total and networking energy E%ZSTO and £ I(\?E‘C;), as well as the
Lagrange multipliers A1 and A4 associated to the first and last constraints on the inference
times in (23b). Figure 15 shows that increasing values of the a4 x clipping factor speed-up
the convergence of Algorithm 1 and the Fog platform of Figure 3 self-adapts its resources
in within 70 iterations (see the third and fourth plots in Figure 15). In addition, we can
argue that the tracking behavior is robust to the settings of the a4 x parameter, so that the
resulting technological platform of Figure 3 is capable of self-react and promptly adapt to
abrupt failures of some of FNs composing the execution platform within a broad range of
values of the ap14x clipping factor. A careful examination of the second and fourth tracts of
the curves of Figure 15 (i.e., the index intervals 90-180 and 270-360) shows that the energy
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assumes the same steady-state values. This behavior is justified by the symmetry of the
considered topology after failure events. In fact, in both the segments, the failure event
involves one of the two FNs located at tier #3 of T2 in Figure 8 that share the same values
of the underlying resources. In both cases, after the failure, tier #3 remains with a single
active FN, and then it consumes the same energy.
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Figure 16. Tracking performance of DynDeFog TRACKER under the sequential failure of nodes Fog(1,3) and Fog(4,2) of

topology T2.

Finally, the second scenario featured by Figure 16 refers to the case in which Fog(1,3)
and Fog(4,2) nodes of the topology T2 sequentially fail. This figure suggests a conver-
gence behavior similar to the previous scenario, and once again the platform is capable of
automatically and promptly adapting its resource allocation for coping with the experi-
enced failure event. However, in this case, differently from the first scenario, the failures
involve nodes located at different tiers of the T2 topology, and this gives rise to asymmetric
steady-state behaviors. In fact, a careful examination of the curves in Figure 16, specifically

in the second and fourth tracts (i.e., over the index intervals 90-180 and 270-360), shows

that the steady-state energy assumes different values. Specifically, the total energy 8%35;)

after the failure of Fog(4,2) is about 17 (Joule) greater than the corresponding one after the
failure of Fog(1,3). This behavior is justified by both the convexity of the energy model
introduced in Section 4 and the fact that the workload to be processed at each tier reduces
going up in the topology, towards the Cloud node, since a considerable fraction of the
workload undergone early exits. This observation implies, in turn, that the failure of FNs
at lower tiers (such as Fog(4,2)) causes a greater energy consumption than the failure of
FNs at higher tiers (such as Fog(1, 3)).
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To summarize, the proposed DeepFogSim toolkit can be considered as an effective soft-
ware tool for simulating and testing the energy-vs.-delay performance of the technological
Fog platform supporting the distributed execution of the inference phase of CDNNs with
early exits.

8. Conclusions and Hints for Future Research

It is expected that the convergence of Conditional Deep Neural Networks, Fog Com-
puting and IoT allows the energy-efficient and real-time distributed mining of big volumes
of data generated by resource-limited sensing devices, possibly scattered over large ge-
ographically areas. Motivated by this expectation, in this paper, we present DeepFogSim,
a MATLAB-supported software toolbox aiming at simulating and testing the performance
of Fog-based technological platforms supporting the real-time execution of the inference
phase of CDNNs with early exits. The DeepFogSim toolkit provides a new software en-
vironment that accounts for the main system parameters featuring the computing and
network aspects of the underlying Fog-Cloud execution platforms. The core engine of
the DeepFogSim toolbox allows the optimized allocation, simulation, and tracking of the
computing-plus-networking resources wasted by the dynamic execution of the inference
phase of CDNNs with early exits under hard constraints on the allowed per-exit inference
delays. The GUI equipping the DeepFogSim package allows a user-friendly rendering of
the simulated data under a number of easy-to-understand graphic formats.

The current version of the DeepFogSim package could be extended along four main di-
rections. First at all, the stack topology the considered CDNNs with early exits of Figure 1a
could be augmented by inter-layer feedback connections, so as to give rise to recurrent-type
CDNNs which are capable of exploiting the time correlations possibly present in some IoT
input streams, such as those typically featuring video/audio sequences, as well as multi-
view scenes, to name just a few. Second, the networking energy models of Section 4 can be
extended by accounting of the effects of spatial coding and multiplexing [46,47] operating
over Terahertz communication channels, in order to exploit a massive number of terminal
antennas as envisioned by the future 6G communication paradigm [2]. Third, suitable
algorithms for the forecast of the inter-tier network traffic and the automatic start/stop of
the carried out iterations of Equations (24) and (25) could be introduced, in order to allow
the simulated platform of Figure 3 to cope with failure events in a pro-active (instead of
re-active) way. Finally, new functions could be introduced in the current version of the
DeepFogSim toolkit, in order to simulate the effects of inter-thing social relationships, such
as those featuring the emerging paradigm of the so-called Social IoT (SIoT) [48].

9. Availability of the DeepFogSim Package

The full software package of the DeepFogSim simulator and the corresponding User
Guide are downloadable for free on the GitHub repository site at: https://github.com/
mscarpiniti/DeepFogSim. In addition, access to the software package is provided on the
authors’ academic web pages.
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Abbreviations

The following main abbreviations are used in this paper:

AG Aggregator

CDNN  Conditional Deep Neural Network
CN Cloud Node

CNT Container

DL Deep Learning

DNN Deep Neural Network

FC Fog Computing

FN Fog Node

GUI Graphical User Interface
LAN Local Area Network
NIC Network Interface Card
QoS Quality of Service

SA Static Allocation

VM Virtual Machine

WAN Wide Area Network

Appendix A. DeepFogSim: Supported Dual-Mode User Interface

The current version of the simulator supports two user interfaces, referred to as
DeepFogSim and DeepFogSim Graphic User Interface (DeepFogSimGUI). As detailed in the
following, both interfaces make available the same set of basic optimization routines of
Table 4, so that they provide the same set of numerical results. A complete description of
both the interfaces can be found in the User Guide of the DeepFogSim package. However,
we remark that:

1. the DeepFogSim interface is oriented to a scientific use of the simulator; it is oriented
to check and optimize the performance of the Fog execution platform of Figure 3; and

2. the DeepFogSimGUI interface provides a rich set of self-explicative ready-to-use native
facilities that allow less (or even not) skilled users to directly run the simulator under
a number of pre-loaded (but, in any case, customizable) application scenarios.

The GUI interface is opened by entering the command: DeepFogSimGUT in the com-
mand line of a running MATLAB session. The screenshot of the displayed graphic window
is shown in Figure A1l. An examination of Figure Al points out that the GUI interface
of the simulator supports seven pre-built functions (namely Help, Algorithm, Archived Fog
Topology, Edit Fog Topology, Save Fog Topology, Run, and Close), which can be activated by the
user by clicking over the corresponding bottoms. Table A1 lists these native GUI functions
and points out their meaning and associated actions.
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| [# DeepFogSimGUI -

Algorithm
|

Static Allocation (STA)
‘ Fog Tracker (FGT)
|
|
|
‘ Archived Fog Topology
|

Edit Fog Topology

Save Fog Topology

Run Help Close

Figure A1. A screenshot of the Graphical User Interface (GUI) interface.

Table Al. A synoptic overview of the functionalities offered to the user by the DeepFogSimGUI interface.

Available GUI Functions Associated Actions
Help Allows to access the User Guide of the simulator by opening a dedicated PDF file.

. Allows to select any subset of the natively supported optimization algorithms by clicking the corre-
Algorithm -

sponding labels.
Archived Fog Topology ﬁ)licilv;si tto retrieve an already archived Fog topology with the corresponding simulation setup, in order
. Allows to edit a new Fog topology and/or a new simulation setup by compiling the list of input
Edit Fog Topology parameters of Table Al.
Save Fog Topology Allows to save the lastly edited Fog topology and assigns it an identification label.
Run Allows to run the selected optimization algorithm under the retrieved/edit Fog topology and associ-
. ated simulation setup.

Close Shuts down the current working session of the DeepFogSim simulator and closes all the figure windows.

Appendix B. Full List of the Input Parameters of DeepFogSim

The following Table A2 collects the full list of the (settable) input parameters of the
current version of DeepFogSim, together with their meaning/role, measuring units, and
default values used for the simulation of Section 7.
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Table A2. Input parameters of the DeepFogSim simulator and their simulated settings of Section 7.

Parameter =~ Meaning/Role Measuring Units Simulated Settings
L Number of the CDNN layers Dimensionless L=9
cm Vector of per-layer compression Dimensionless 0<cm(m)<1
Ts Duration of an inter-sensing period (s) Ts =1
M Number of tiers of the considered Fog platform Dimensionless 3<M<6
pertiery,ges  Vector collecting per-tier numbers of Fog nodes Dimensionless 1 < pertier,gzes(m) < 32
Q Total number of Fog nodes Dimensionless 7<Q<63
R (MAX) X‘;ﬁ::; oorft rél:;(;lrencttlirg ntranspor’c rate of each directed UDP/IP (Mbit/s) 8 < R(MAX) () < 9
To Vector of volumes of input data (Mbit) 15 <w(m) <15
A Matrix describing the topology of the simulated multi-tier Dimensionless Matrix entries in set {0, 1
Fog platform
Kt Vector of per-node processing densities of convolutional processor  (CPU cycles/bit) 10° < e(m) <5 x 10°
B Vector of per-node processing densities of classifiers (CPU cycles/bit) 0.5 x 103 < B(m) < 2.5 x 103
ﬁ’_fmap Xreli(t)ofhio,lrllej:%% ;}}ger;unr?]ierl of thi/ICDNN layers that are mapped Dimensionless 1< 12T,y (m) < 4
TE XIT Vector of the maximum tolerated delays for the per-tier local exits  (s) 0.5 < Texir(m) < Ts
3 Vector of the scaling coefficients of the dynamic power consumed  (Watt/(CPU _36
Keon by the convolutional processors cycles/s)YcoN) 0 < Kcon <5x10
KCLA ]Y;Ctt}?; Slfa gsliiiia}l)l?oi Z;);jilsments of the dynamic power consumed (Watt/(CPU cycles/s)7cta) 0 < Kepa < 5 x 10736
Vector of the exponents of the dynamic power consumed by the . .
YcoN convolutional processors Dimensionless 3 < rcon(m) <32
Tera lezcsts(;;‘ig: ;};ce) Ceeé};g;\sents of the dynamic power consumed by the Dimensionless 3 < yeia(m) <32
3 (IDLE) Vector of the idle power consumed by the (IDLE) 7
Peon convolutional processors (Watt) Peoy " (m) =10
T’)(CI F AL E) Vector of the idle power consumed by the classifier processors (Watt) pé’LEi\LE ) (m) =107
T’)(I?TL ERY) " Vector of the idle power consumed by each receive port (Watt) 1078 < PI(\]IE)TLE;R" ) (m) <1077
?%?TL T3 Vector of the idle power consumed by each transmit port (Watt) 1078 < PI(\]IgTLE; Tx) (m) <1077
e Vector of the dimensionless Transport-to-Physical protocol . .
¥ overheads at m-th tier P Y P Dimensionless $(m) =1.105
=2(R3 Vector of the scaling coefficients of the dynamic power consumed (Tx) _
Qg\’g% by each transmit pc%rt Y P (Watt/ (bit/s)NET) 0 < Offp(m) <1071
Zg\z]zg% 1\‘:eccéciovreo; (’ilte exponents of the dynamic power consumed by each Dimensionless 21< é%?% (m) <23
=2(Tx Vector of the scaling coefficients of the dynamic power consumed Rx) _
Q;”g% by each transmit pgrt m P (Watt/ (bit/ S)‘ZI(VQT) 0 < Offr(m) <1074
Z»gg% XZ(;:;; ci)tf ;l;(retexponents of the dynamic power consumed by each Dimensionless 24< gxgg% (m) <25
2 Vector of the maximum processing frequencies of the .
fMax convolutional processors B (Mbit/s) A0 (m) =9
£ (MAx) XZC;S?ES: }t)t;(e) il;)ggum processing frequencies of the (Mbit/s) FMAX) () — g
Ipmax The maximum number of primal-dual iterations Dimensionless Ipax = 450
Clipping factor of the step-sizes of the implemented . . _5
ApMAX primal-dual iterations Dimensionless apmax = 1.3 x10
iter_number gc;tsgr;;;;big c;‘f g[gsrﬁal-dual iterations performed by each run of Dimensionless iter_number — 450
~(MAX) Vector of the clipping factors tested by each run of . . _ MAX B
Aot Dyn DeFog_TRA%?(E% y Dimensionless 1076 < al(:DgT J(m) <7 %1076
oy ecrot b updonmmitpicatcscali s Bl 0100 imensinis o< jumpim) <1
— Vector of the up/down multiplicative scaling factors ;pplied to the . . .
Jump2 scalar components of the input vectors of DynDeFog_ TRACKER Dimensionless 0 < jump(m) <1
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